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Mario Beraha†∗ and Alessandra Guglielmi∗

We thank the authors (also denoted by Camerlenghi et al. hereafter) for a very inter-
esting paper, which addresses the problem of testing homogeneity between two popula-
tions/groups. They start from pointing out a drawback of the Nested Dirichlet Process
(NDP) by Rodriguez et al. (2008), i.e. its degeneracy to the exchangeable case: when
the NDP is a prior for two population distributions (or for the corresponding mixing
measures in mixture models), it forces homogeneity across the two samples in case of ties
across samples at the observed or latent level. In fact, as pointed out by Camerlenghi et
al., the NDP does not accommodate for shared atoms across populations. This limita-
tion, which is clear from the definition of NDP in Rodriguez et al. (2008), has a strong
impact on the inference: as showed in this paper, if two populations share at least one
common latent variable in the mixture model, the posterior distribution would either
identify the two random measures associated to the populations as completely different
(i.e. it would not recover the shared components) or it would identify them as identi-
cal. The need for a more flexible framework is elegantly addressed by the authors who
propose a novel class of Latent Nested Nonparametric priors, where a shared random
measure is added to the draws from a nested random measure, hence accommodating
for shared atoms. There are two key ideas in their model: (i) nesting discrete random
probability measures as in the case of the nested Dirichlet process by Rodriguez et al.
(2008), and (ii) contaminating the population distributions with a common component
as in Müller et al. (2004) (or as in Lijoi et al., 2014). The latter yields dependency
among the random probability measures of the populations and avoids the degeneracy
issue pointed out by the authors, while the former accounts for testing homogeneity in
two-sample problems.

As a comment on the computational perspective, we note that their Markov Chain
Monte Carlo (MCMC) method relies on the analytical expression of the Partially Ex-
changeable Partition Probability Function (pEPPF), which the authors obtain in the
special case of I = 2 populations. However, the sampling scheme poses significant com-
putational issues even in the case of I = 2, needing to rely on Monte Carlo integration
to approximate some intractable integrals.

In this comment, we address the problem of extending their mixture model class for
testing homogeneity of I populations, with I > 2, according to the first path the au-
thors mention in their concluding remarks. In particular, we assume the mixture model
for I populations/groups, when the mixing random probability measures (p̃1, . . . , p̃I)
have a prior distribution that is the Latent Nested Dirichlet process (LNDP) measure.
This prior is more manageable than their general proposal, thanks to the stick-breaking
representation of all the random probability measures involved, which can be easily
truncated to give an approximation and is straightforward to compute. Here, we apply
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the Latent Nested Dirichlet Process mixtures to simulated datasets from this paper,
while the authors adopt a different latent nested nonparametric prior for I = 2 popu-
lations. By using the truncation approximation of stick breaking random probabilities,
we do not need to resort to the pEPPF anymore and we are able to extend the analysis
to cases with more than two populations.

However, our experience shows that this vanilla-truncation MCMC scheme does not
scale well with I: the computational burden becomes demanding even for moderate val-
ues of I, which are common when testing homogeneity for different groups, for example
while comparing a treatment in a small group of hospitals. If one assumes the LNDP as
a prior for the mixing random probability measures (p̃1, . . . , p̃I), we have showed that
we really need to derive either the posterior characterization of the LNDP, as suggested
by the authors, or significantly more efficient truncation-based schemes.

1 Latent Nested Dirichlet Process Mixture Models

In this section, we make explicit the details of the definition of the Latent Nested Process
that was introduced by the authors, and then consider the Latent Nested Dirichlet
Process as the mixing distributions for I different populations. We also apply this model
to synthetic data.

In what follows, we use the same acronyms as the authors, specifically NRMI and
CRM for normalized random measure with independent increments and completely
random measure respectively.

Consider the (Euclidean) space Θ and let MΘ be the space of all bounded mea-
sures on Θ. Let q̃ be a random probability measure, q̃ ∼ NRMI[ν,MΘ] with intensity
ν(ds, dm) = cρ(s)dsQ(dm); here c > 0, ρ is a function defined on R

+ under conditions∫ +∞

0

min{1, s}ρ(s)ds < +∞,

∫ +∞

0

ρ(s)ds = +∞,

and Q is a probability measure on MΘ. We skip the details on the σ-algebras attached
to the spaces we consider. We know that q̃ =

∑∞
j=1 ω̃jδη̃j , where {(ω̃j , η̃j)} are the

points of a Poisson process with mean intensity ν(ds, dm). In particular, η̃j
iid∼ Q, i.e.

each η̃j is itself a CRM on Θ with Lévy intensity ν0(ds, dθ) = c0ρ0(s)dsQ0(dθ), which

implies η̃j =
∑∞

k=1 J
j
kδθj

k
, where, for each j, {(Jj

k , θ
j
k), k ≥ 1} are the points of a Poisson

process with mean intensity ν0(ds, dθ). Here c0 > 0, ρ0 is a function on R
+ under the

same conditions as ρ(s) and Q0 is a probability measure on Θ. Finally, let qS be the
law of μS , a CRM on Θ, with Lévy intensity ν∗0 = γν0, where γ > 0.

Similarly to the authors, we define a Latent Nested Process as a collection of random
probability measures p̃1, p̃2, . . . , p̃I on Θ such that

p̃i =
μi + μs

μi(X) + μs(X)
= wi

μi

μi(X)
+ (1− wi)

μS

μS(X)
, i = 1, . . . , I,

where
μ1, μ2, . . . , μI , μS |q̃, qS ∼ q̃ × q̃ . . .× q̃ × qS .
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In particular, if we set ρ(s) = ρ0(s) = s−1e−s, s > 0, we obtain the Latent Nested
Dirichlet Process; since the μi’s and μS are independent gamma processes in this case,
the μi’s also being iid, and

pi =
μi

μi(X)
, i = 1, . . . , I, pS =

μS

μS(X)
,

i.e. pi and pS are draws from two independent Dirichlet processes, we have

pi | G iid∼ G =

∞∑
l=1

πlδG∗
l
, i = 1, . . . , I, (1.1)

pS =

∞∑
h=1

wS
h δθS

h
, (1.2)

where G is a Nested Dirichlet process, i.e. a DP whose atoms are DPs. We use notation
(p̃1, . . . , p̃I) ∼ LNDP (γ, ν0, ν) for

p̃i = wipi + (1− wi)pS , i = 1, . . . , I.

Note that each p̃i is a mixture of two components: an idiosyncratic component pi and a
shared component pS , where the latter preserves heterogeneity across populations even
when shared values are present. As pointed out by the authors, the random indicator
functions of the two events p̃i = p̃i′ and pi = pi′ coincide a.s., if i 	= i′. This latter
event has positive prior probability for any couple of distinct indexes i, i′ in {1, . . . , I}.
Summing up, this prior induces a prior distribution for the parameter ρ, the partition
of population indexes {1, 2, . . . , I}: two populations are clustered together if they share
the same mixing measure.

Now, suppose that we have data from I different populations (e.g. measurements
on patients in different hospitals). Let yji, j = 1, . . . , ni, be observations for different
subjects in population i, for i = 1, . . . , I. We assume that, for any i = 1, . . . , I,

yji | p̃i iid∼
∫
Θ

f(yji | θ)p̃i(dθ), j = 1, . . . , ni

(p̃1, . . . p̃I) ∼ LNDP (γ, ν0, ν).

(1.3)

For computing posterior inference, instead of considering model (1.3), we consider a
truncation approximation of the stick-breaking representation of the LNDP, similarly
as in Rodriguez et al. (2008). In particular, instead of (1.1)-(1.2), we consider the pi’s
iid from a L-H truncation of a nested Dirichlet process, i.e.,

pi|G iid∼
L∑

l=1

πlδG∗
l
, πl = νl

l−1∏
s=1

(1− νs), νl
iid∼ Beta(1, c) l = 1, . . . , L− 1, νL = 1

G∗
l =

H∑
h=1

wlhδθ∗
lh
, wlh =ulh

h−1∏
s=1

(1− uls), ulh
iid∼ Beta(1, c0) h=1, . . . , H − 1, ulH =1

θ∗lh
iid∼ Q0 for all l, h
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and pS itself is an H–truncated Dirichlet Process of parameters γc0 and Q0. Since wi

is defined from the total masses of independent gamma processes, then

wi =
μi(Θ)

μi(Θ) + μS(Θ)
∼ Beta(c0, γc0), i = 1, . . . , I.

This truncation approximation could be exploited to design blocked Gibbs sampling
schemes as in Ishwaran and James (2001), or more general truncation schemes (see
the references in Argiento et al., 2016); in the next section we use this truncation
approximation in order to write a JAGS code to fit the data from the examples.

2 Simulation Study

We have fitted the truncated Latent Nested Dirichlet Process mixture model to sim-
ulated data via JAGS, using L = 30 and H = 50. The parametric kernel f(y|θ)
in (1.3) is the unidimensional Gaussian density with mean θ and variance σ2, i.e.
θ = (μ, σ). For every simulated dataset, we have considered the base measure Q0(μ, σ) =
N

(
0, λσ2

)
×U(σ | 0, 2), with λ = 10. Moreover we set c = c0 = 1 and let γ ∼ U(0.25, 5).

Chains were run for 10,000 iterations after 15,000 iterations of adaptation and 5,000
iterations of burn-in, thinning every 10 iterations for a final sample size equal to 1,000.

First, we considered two of the simulated scenarios examined in the paper, specifi-
cally scenarios I and II, and we simulated n1 = n2 = 100 observations from each group.
Scenario I corresponds to full exchangeability across two groups of data, i.e.

yj1, yj2
iid∼ 0.5N (0, 1) + 0.5N (5, 1),

while scenario II corresponds to partial exchangeability with a shared component be-
tween the populations

yj1
iid∼ 0.9N (5, 0.6) + 0.1N (10, 0.6) yj2

iid∼ 0.1N (5, 0.6) + 0.9N (0, 0.6).

Both scenarios were tested in the paper under the same Gaussian kernel we consider,
with a latent nested σ-stable mixture model instead of the LNDP as a prior for the mix-
ing distributions. We have considered another simulated dataset from I = 3 populations,
with n1 = n2 = n3 = 100, that is

yj1
iid∼ 0.2N (5, 0.6)+0.8N (0, 0.6) yj2

iid∼ 0.2N (5, 0.6)+0.8N (0, 0.6) yj3
iid∼N (−3, 0.6),

which corresponds to full exchangeability across populations 1, 2 but not across 1, 2, 3.

As pointed out by the authors, Bayes factors for homogeneity tests across popula-
tions are available as a by-product of their model. Homogeneity tests with hypotheses

H0 : p̃i = p̃j vs H1 : p̃i 	= p̃j (2.1)

are performed by the authors in case (i, j) = (1, 2), by introducing the auxiliary variable
I{p̃1=p̃2} in their MCMC state space, so that draws from its posterior are straightfor-
wardly available. In our formulation of the LNDP mixture model instead, we resort to
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the cluster allocation variables of the nested process, sj = l iff pj = G∗
l for j = 1, . . . , I,

to perform the same tests.

In case of I > 2 populations, it is also possible to perform global tests on the cluster
structure arising among the populations. In our new (third) scenario, we are interested
in testing the presence of one single group against the presence of three groups (for
example), i.e.

H0 : p̃1 = p̃2 = p̃3 vs H1 : p̃1 	= p̃2 	= p̃3.

This type of tests are straightforward to obtain, since they are based on the EPPF
of the nested process. Indeed, a priori, P (p̃1 = p̃2 = p̃3) = P (ρ = {1, 2, 3}) while
P (p̃1 	= p̃2 	= p̃3) = P (ρ = {1}, {2}, {3}), where ρ is the partition of {1, 2, 3} arising
from the nested process; posterior odds are obtained once again monitoring the values of
the allocation variables sj ’s. The Bayes factor for this specific test equals 0.18, providing
evidence in favour of H1.

Scenario (i, j) BF01

I (1, 2) 1.00

II (1, 2) 0.08

3 populations
(1, 2) 1.27
(1, 3) 0.07
(2, 3) 0.09

Table 1: Bayes factors for hypotheses (2.1) under the three simulated scenarios.

Table 1 reports the Bayes factors for tests (2.1) computed via our MCMC, while
Figure 1 displays the predictive densities in each population. As far as the Bayes factors
are concerned, we have computed those corresponding to hypotheses (2.1) with (i, j) =
(1, 2) for scenarios I and II, while for the new scenario we consider all the possible
pairwise tests, i.e. (i, j) = (1, 2), (1, 3), (2, 3). The Bayes factors in Table 1 correctly
indicate strong evidence in favour of the alternative hypothesis for the second and
third test of the 3-populations scenario, as well as for scenario II, while for the other
tests there is no clear evidence in either direction. The BF01 for scenario II is much
larger than the corresponding Bayes factor computed by the authors, obtained under
the latent nested σ-stable mixture model; similarly, our BF01 for scenario I is equal
to 1, while the authors obtain a larger value, giving evidence in favour of the true
hypothesis. Of course, the mixing of the chain produced by JAGS, especially for scenario
I with equal mixture weights, is generally worse than any specifically-designed MCMC
scheme, as the one described by the authors. However, the density estimates (in black)
for scenario II in Figure 1(b) are accurate, unlike those in Figure 1(a) where we clearly
see that the JAGS code is not able to recover the weights in the true density in each
group, while recovering the locations. Predictive densities in Figure 1(c) are close to the
true population distributions in all the groups, even though we experienced the same
difficulties in recovering the true weights of all the mixtures because of the large number
of allocation parameters in the JAGS model, which makes sampling much less efficient.

To conclude our experiments, we have also designed a scenario with 4 populations
simulating ni = 100 observations from each true population distribution, which is a
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Figure 1: Density estimates for scenario I (a), II (b) and the new scenario with I = 3
populations (c). In every panel, the black line denotes the predictive density in the
population, while the red line is the density which generated the data.

mixture of two Gaussian components. The Bayes factors for hypotheses (2.1), computed

via our JAGS MCMC, are in agreement with the true underlying clustering, that is

{1, 2}, {3, 4}. However, even with as little as 100 observations per group, the MCMC

simulation took more than 8 hours to run. To make a comparison, in our experience,

the runtime of our JAGS code for I = 3 populations was about 2.5 times longer than

for I = 2 populations, and that for I = 4 groups was approximately 4 times larger than

for I = 2.

Despite the construction of ad-hoc Gibbs sampling schemes, possibly based on the

truncated stick breaking representation, which could greatly improve the performances

we reported, we believe that this model, generalized as we have presented here to the

case of I > 2 populations and using a truncation approximation for the LNDP, contains

inherent computational difficulties which are not easy to deal with. Assuming a larger

value for I, even though a moderate value as in case of, e.g., comparing a patient

treatment in a few dozens of hospitals, will still be challenging using the model we

have considered here, taking into action the suggestion Camerlenghi et al. made in their

concluding remarks.
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