
Sub-zonal computational fluid dynamics in an object-oriented 
modelling framework 

Marco Bonvini1 (), Mirza Popovac2, Alberto Leva3 

1. Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94704, USA 
2. Austrian Institute of Technology, Energy Department, Giefinggasse 2, 1210 Vienna, Austria 
3. Dipartimento di Elettronica Informazione e Bioingegneria, Politecnico di Milano, Via Ponzio 34/5, 20133 Milano, Italy 

Abstract 

Airflow modelling is of fundamental importance for evaluating ventilation performance and 
energy consumption in buildings, and various approaches to the problem—starting from purely 
empirical up to the CFD ones—have been proposed and evaluated in the past years. Moreover, 
since the ultimate goal is whole building modelling, airflow simulation needs coupling with Energy 
Simulation (ES), in order to assess the overall energy performance. Due to the substantial 
differences between the software employed for airflow and ES, co-simulation is very often felt as 
the only way to handle such a problem. For example, in recent years a lot of effort has been spent 
in to couple ES and CFD tools. This paper proposes an alternative, in the form of an approach for 
solving the Navier–Stokes equations in a general multi-domain modelling framework. Since 
co-simulation is not involved, the correctness of the numerical solution relies on a single solver, 
thus being really transparent to the analyst. This is a first step towards a whole building simulation 
tool embedded in a unique framework capable of performing energy analysis, computing airflows, 
and representing control systems. 
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1 Introduction 

Energy-related building simulation is a long lasting research 
field, and in the last years new and important challenges 
have been emerging. Among said challenges, three are the 
major ones: dynamic simulation capability, a transition from 
“subsystem-specific” to efficient “whole-building” tools, and 
the possibility of simulating a project at each of its steps, so 
as to perform “scalable-detail” and “system-level” studies. The 
work presented herein is part of a wider research aiming 
at fulfilling the demands just mentioned, and concentrates 
on a specific aspect that—if not treated properly—can 
significantly impair the necessary modularity, namely the 
modelling of airflows.  

The mentioned problem comes to be of interest in 
cases where a fully mixed approach—i.e., considering the 
air properties as uniform—is not adequate. The zonal 
approach can serve this purpose. It is based on the idea to 
subdivide a space into zones connected through hydraulic 
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resistances following the idea of “electric equivalents”. For 
such models modularisation is not a difficult issue. The 
cases where fully mixed models are inadequate are those 
that most frequently oblige to use co-simulation, where 
air volumes are modelled along the CFD approach, thus 
difficult to integrate with models of other types—especially 
if modularity is an issue (Arias 2006; Zhai 2003; Beausoleil- 
Morrison 2000).  

The main contributions of this manuscript can be 
summarised as follows. A particular spatial discretisation 
of the Navier–Stokes equations is proposed, taking care 
of reducing the number of empirical parameters to a 
minimum. It is also illustrated how the proposed approach, 
inflected in the object-oriented (OO) framework, allows to 
obtain modular models, with a scalable level of complexity 
(e.g., for turbulence descriptions) and a standardised interface. 
Examples show that the obtained results are in reasonable 
accordance (of course as long as the introduced simplifi-
cations are valid) with those of fine-scale CFD models, 



while simulation performance improvements are observed. 
In addition, the standardised interface allows to couple the 
obtained models with others, also from different physical 
domains, in a very straightforward manner.  

A key aspect of this work is the use of an OO equation- 
based modelling language, namely Modelica (Mattsson et 
al. 1998). Models are written in a totally transparent manner 
with respect to the way the system of DAE (Differential 
and Algebraic Equations) obtained by connecting them, is 
solved. Modelica (and OO at large) models are a-causal, 
i.e., it is not necessary to specify at modelling time which
variables will be inputs and which outputs. This allows to
write models independently of how they will be assembled,
or equivalently, of which type of boundary condition will
be presented to them in the context of a larger model
containing them. The interested reader can refer to this
well organised book (Cellier and Kofman 2006).

All these features make OO modelling—and in particular 
the Modelica language—very suited for multi-domain 
simulations. Thanks to the modular structure paradigm 
offered by connectors, it  is in fact possible to link models  
that belong to different domains (e.g. mechanical, thermal, 
as well as electrical and control) and simulate them together 
in a unique framework. For such a reason Modelica is a 
promising tool in the context of building energy simulation. 
Model libraries are already available to represent part of the 
building structure as well as HVAC plants and the control 
system (Wetter 2009; Wetter et al. 2011). Complementing 
such a scenario with models capable of accurately representing 
the temperature distribution and the airflow within rooms, 
is a step ahead in the direction of an effective integrated 
whole building simulation tool.  

In synthesis, the purpose of this paper is to illustrate 
how the adoption of OO modelling, if suitably exploited, 
offers CFD-like simulation capabilities, at a level certainly 
adequate for energy-related system studies in buildings, 
without the need to use and coordinate different tools. 
Models are thus described in a single language, and solution 
issues are made transparent to the analyst. Apart from 
efficiency, this allows for great improvements as for model 
creation, maintenance, and above all readability. Note that 
this particular exploitation of OO modelling is definitely 
innovative: analogous works such as (Ljubijankic et al. 
2011), for example, are still tied to co-simulation.  

2 State of the art 

Airflow models accounting for the thermodynamic state 
of the air are very important in the context of building 
simulation. Such models can help create a thermally 
comfortable environment—e.g., with a desired temperature 
or humidity distribution. Simulating the model allows to 

predictively assess the building performance at design 
time—in fact the scalable-detail paradigm proposed here 
permitting this at earlier design stages than CAD-based ones 
do—and therefore to adapt its envelope, as well as HVAC 
components and controls, to satisfy the required comfort 
criteria.  

Representing the entire building with a suitable tool (or 
a suite of them) addressing all of its subsystems, is another 
widespread and well assessed idea (Crawley et al. 1997). 
This was demonstrated in the past e.g. by the merging of 
BLAST and DOE-2, two historical tools developed by the 
US government (Pedersen et al. 1997). At that time, the 
need to simulate the air motion inside buildings (e.g. rooms 
or atriums) in a fast and reliable way, became a relevant 
issue. One of the first attempts to face the problem of 
air motion and ventilation performance prediction in a 
simplified and thus computationally light manner was 
proposed in (Allard et al. 1990), introducing the so called 
“subzonal” models. The basic idea was to split the spatial 
domain in a coarse mesh of volumes, and then apply 
simplified relationships to compute the airflow field. The 
idea was introduced also in some commercial tools like 
COMIS (Ren and Stewart 2003). Further improvements, 
detailed in (Mora et al. 2003), were proposed to improve the 
behaviour of the models in some cases (e.g. forced convection) 
where the shortcomings of the mentioned approach were 
too significant. Since the improvements were based on 
empirical assumptions, however, they could not avoid some 
loss of generality and applicability.  

A different approach, that proved to yield good results 
and was thus extensively adopted in the following years, 
was proposed in (Chen and Xu 1998). In that paper they 
present a zero equation turbulence model particularly 
suited for the context of building energy simulation. Some 
simplification (e.g. in the turbulence model) and the 
usage of quite coarse meshes, together with the increasing 
computational power, enlarged the penetration of CFD codes 
in the context of building simulation (Chen 2009). Such an 
approach is still used by the main Energy Simulation (ES) 
software that typically use co-simulation to couple the whole 
building model together with a CFD code simulating the 
contained air.  

In recent years, thanks to the increase of computer 
performances as well as to the introduction of new 
architectures, new approaches have been studied. A relevant 
work in this context is the Fast Fluid Dynamics (FFD) 
proposed in (Zuo and Chen 2010). FFD uses a semi- 
lagrangian approach, that is natively parallelisable, thus can 
be significantly accelerated if implemented on parallel 
architectures such as Graphic Processing Unit (GPU) ones. 
The same authors also presented an improved version of 
their models, in which undesired numerical diffusion 



was reduced through higher-order discretisation technique 
(Zuo et al. 2010).  

Despite coupling between CFD end ES is at present a 
standard practice, it is in general a complex and resource- 
consuming process, that can sometimes prove error-prone 
unless correctly managed to prevent erroneous behaviours, 
see e.g. (Zhai and Chen 2004). An interesting work about 
co-simulation in the context of buildings and HVAC 
simulation tools is (Trčka et al. 2009, 2010). The authors 
evidence how to manage in a consistent and correct way 
the simulations performed with the involved tools and 
their step size. Of course, as the number of players (i.e., 
the individual simulation tools) increases, the time spent 
for synchronisation and management becomes relevant, 
diminishing the overall simulation performance.  

The presented scenario is correctly summarised by the 
sentences taken from (Sahlin et al. 2004) and marked as 
fairly broad consensus issues: “The existing simulators were 
too rigid in their structure to be able to accommodate the 
improvements and flexibility that would be called for in the 
future. Each added feature required a larger implementation 
effort than the previous one.” and “A promising technology 
for the future were the general simulation methods offered 
by equation-based methods using program-neutral model 
descriptions and domain-independent solution methods”. 
The same author in (Sahlin 2000) stresses the idea of replacing 
the present tools with equation-based ones, leading to a true 
whole building simulation tool.  

To compare present industry-standard tools with an 
equation-based one, in (Wetter and Haugstetter 2006) the 
authors performed a comparison between TRNSYS and 
the preliminary version of the Modelica Buildings library 
(Wetter and Haugstetter 2006). The work evidences that the 
time spent in the model development phase using Modelica 
is five to tenfold less with respect to TRNSYS. The main 
drawback of Modelica, evidenced at that time, was the 
limited set of models representing the various HVAC 
components and its computing time. The first drawback is 
becoming less relevant because thanks to an increasing 
interest in this research field the preliminary version of the 
Buildings library has been regularly updated and supported 
(Wetter et al. 2011). Thanks to the modularity of the language, 
adding a new model in Modelica requires less effort than 
any other traditional tool (e.g. TRNSYS, EnergyPlus, etc.), 
to the advantage of re-use and models’ diffusion. Also, 
the computational aspects are made transparent by the 
equation-based approach, as stated e.g. in (Sahlin et al. 
2004). On the other hand, new challenges involving parallel 
architectures in the context of equation-based approach are 
promising research fields (Ostlund et al. 2010).  

At present the Modelica Buildings library (Wetter et al. 
2011), as well as the Modelica Standard Library, contain 

fluid flow models, but do not aim at describing airflow inside 
“large” spaces, or more in general, at any case where CFD 
like models would be the choice of election if “accurate 
enough” results are needed (see e.g. (Ljubijankic et al. 2011) 
where Modelica is coupled together with a CFD code).  

Based on the panorama just sketched, and on previous 
results such as (Bonvini et al. 2012), this work provides the 
improvements described in the introduction, and discussed 
more in detail in the following sections. 

3 Description of the model 

3.1 Governing equations 

The flow of Newtonian fluid can be described with the mass, 
energy and momentum conservation equations. This set of 
equations, commonly referred to as the Navier–Stokes (NS) 
ones, can be written as  




( ) 0ρ ρ
t
+⋅ =v     ( )mass   (1a) 



( ) ( ) ( )ρe ρ h k T

t
+⋅ = ⋅ v   ( )energy   (1b) 




T( ) ( ) ( )ρ ρ p μ
t

+⋅ + =⋅  +
v vv v f

( )momentum   (1c) 

where the fluid flow quantities p, T, e, h are respectively 
the absolute pressure, absolute temperature, specific energy 
and specific enthalpy of the fluid, together with the fluid 
properties ρ , k  and μ  representing the density, thermal-
conductivity and dynamic viscosity respectively, while v  
and f  represent the fluid velocity and the external forces 
(e.g. gravity). Vector quantities are here denoted by bold 
letters, in order to distinguish them from scalar ones.  

For fluid density ρ , the ideal gas relationship can be 
approximated with a linearised model, since the discrepancy 
between the ideal gas and the linearised model is very 
limited in the typical operating temperature and pressure 
range. This leads to  

pρ
R T*

=  ( )ideal gasrelationship   (2a) 

o
o o2

o o

1 ( )pρ ρ P T T
R T TR* *= + - - ( )linearisedmodel   (2b)

with R*  being the specific ideal gas constant, and oρ , op  
and oT  representing respectively the fluid density, absolute 
pressure and absolute temperature at the linearisation point, 
and oP p p= -  being the relative pressure, used in the rest 



of the paper instead of the absolute one, to better exploit 
the available numeric precision.  

Finally, to close the set of equations, the specific energy 
and specific enthalpy are expressed as   

ve c T= ( )specific energy   (3a) 

ph e
ρ

= +   ( )specific enthalpy   (3b) 

where cv is the specific heat capacity at constant volume, 
and a linear relationship between specific energy and absolute 
temperature is assumed.  

3.2 Generic form of the governing equations 

In order to present the implementation of the fluid 
flow equations in Modelica, we shall recast the set of 
governing equations into the generic Convection–
Diffusion (CD) form, i.e., 

 
   
   

Φ i
Φ Φ

j i i source
unsteady diffusiveconvective

ρ ρv Φ ΦΓ S
t x x x

+ = +( )


(4) 

where the transported quantity is represented by the 
generic scalar Φ , with its diffusivity coefficient ΦΓ , and its 
generation rate per unit volume ΦS .  

The idea is to approach the set of governing equations 
in a unified manner (see (Patankar 1980; Versteeg and 
Malalasekera 2007)). This is summarised in Table 1, showing 
how Eqs. (1a), (1b) and (1c) are represented using the 
generic CD Eq. (4) with a suitable choice of variables. For 
brevity and to lighten the notation, the mentioned table (as 
well as the rest of this paper) presents the equations in a 2D 
Cartesian coordinate system (i.e., the velocity ( )x yv v= ,v , 
and the coordinates ( )x y= ,x ), but everything can be 
extended to 3D without loss of generality and in a 
straightforward manner.  

Table 1 The terms in the generic form of the Convective–Diffusive 
unsteady equation

Generic form 
     

      
yx

Φ Φ Φ
ρv ΦρΦ ρv Φ Φ ΦΓ Γ St x y x x y y+ + = + +( ) ( )

Φ  ΦΓ ΦS
Mass  1 0 0 
Energy  pc T effk sourceQ

x-momentum xv effμ 

P
x

y-momentum yv effμ 

P ρgy -

3.3 Turbulence model 

In the simulation of a turbulent flow (which is the most 
common flow type of engineering importance), one has to 
account for the small scale interactions between fluid flow 
structures. For engineering applications this is typically 
done by enhancing the diffusion (which resembles extensive 
mixing caused by these interactions) through increased 
diffusivity coefficient. In the momentum equation this 
implies the introduction of the turbulent viscosity μT , in 
addition to the molecular viscosity of the fluid μ . By 
analogy to the molecular viscosity, the turbulent viscosity 
is defined through “characteristic length” and “velocity 
scales” (although these are the characteristics of the flow, 
and not the characteristics of the fluid), as described by 
given turbulence model.  

Different turbulence models yield the characteristic 
length and velocity scales by solving additional (algebraic or 
differential) model equations. To keep the model complexity 
as low as possible we use a zero-equation turbulence model: 
no additional equations are solved, but rather algebraic 
expressions are used for defining the characteristic scales. 
Following Prandtl’s mixing length idea, it is assumed that 
the turbulent viscosity varies linearly with the minimal 
distance from the wall yw , as 

Tμ κy+ +=     (5) 

where T T /μ μ μ+ =  is the normalised eddy viscosity, y+ =  
w /τρu y μ  is the normalised minimal distance from the 

wall, and the normalisation is performed using the friction 
velocity τu , while κ=0.41 is the Von Karman constant.  

In this model, the minimum distance from the wall yw 
represents the characteristic length scale, while the friction 
velocity uτ is taken as the corresponding velocity scale. Based 
on the momentum boundary layer theory, the friction 
velocity is defined here with the velocity magnitude U 
calculated in the immediate wall vicinity uτ = cUU, with the 
proportionality constant cU = 0.0945 proposed by Chen and 
Xu (Chen and Xu 1998), and adopted as a standard practice 
for the HVAC simulations. It has to be noted that this 
simple model is derived for the equilibrium flow conditions, 
hence for the non-equilibrium flows (e.g. with stagnation 
point or strong recirculation) it can introduce a modelling 
error.  

For the calculations of temperature distribution in 
wall-bounded flows, the same idea of describing turbulence 
effects by introducing the turbulent thermal conductivity 
kT is used. The analogy between the momentum and 
thermal boundary layer states that the Prandtl number Pr 
defines the ratio between the momentum and thermal 
diffusivity Pr = cpμ/k (assumed to be constant for a specific 
fluid). In the same way is the turbulent conductivity kT 



expressed through the turbulent viscosity μT, and turbulent 
Prandtl number PrT, hence the modelling of turbulence 
effects in the energy equation is directly coupled to the 
turbulence modelling in the momentum equation.  

Finally, as shown in Table 1, the turbulence model 
implementation is reduced to introducing into the generic 
CD Eq. (4) the effective viscosity μeff instead of the dynamic 
viscosity μ regarding the momentum Eq. (1c), and intro-
ducing the effective thermal conductivity keff instead of the 
thermal conductivity k regarding Eq. (1b), i.e. 

eff T wτμ μ μ μ ρκu y= + = +    (6a) 

Pr
p w

eff T
T

τρκc u y
k k k k= + = +  (6b) 

3.4 Near-wall treatment 

In wall-bounded turbulent flows, the steepest variations in 
the distribution of flow variables (e.g. velocity, temperature 
etc.) occur in the immediate vicinity of walls, and the 
accuracy of the numerical predictions (the wall fluxes in 
particular) strongly depends on the accurate representation 
of this variation. A straightforward way to accurately 
represent this steep variation is to increase the spatial 
resolution in the wall-normal direction; however, this 
can be computationally very demanding. Since however a 
fully rigorous—thus very detailed—representation of the 
mentioned local steep variation is not relevant to catch 
energy-related facts at a system level, one can use a pre- 
defined logarithmic profile (log-law) which was proven to be 
valid for an attached plane flow with high Reynolds number. 
This yields 

1 ln( )U Ey
κ

+ +=  (7) 

where / τU U u+ =  is the normalised velocity, and E =8.9 
is the log-law constant.  

The idea behind this near-wall treatment is to satisfy 
the log-law behaviour even in the situation when the wall- 
normal resolution is not sufficient to fully resolve the spatial 
variation of the flow characteristics in the near-wall region. 
To this purpose, the effective viscosity—derived using 
Eq. (7)—is imposed at the walls (whence the name wall 
viscosity μw) in order to provide for a suitable boundary 
condition in the momentum equation regardless of the 
spatial resolution in the near-wall region, obtaining  

w w

if  5

if  30
ln( )

τ

μ y
μ ρκu y y

Ey

+

+
+

ì <ïïïï= íï >ïïïî

 (8) 

with the linear interpolation used in the y+ range between 
5 and 30. Clearly, using a boundary layer analogy, the same 
approach can be applied for the thermal equation as well, 
thus introducing the wall conductivity  

Pr
w p w

T

if  5

if  30

k y
k c μ

y

+

+

ì <ïïïï= íï >ïïïî

   (9) 

4 Implementation in Modelica 

4.1 The grid 

The governing Eqs. (1a), (1b), (1c) need to be discretised 
over a spatial domain. The grid adopted here for that 
purpose is a structured and non-uniform one, as shown in 
Fig. 1 (left).  

The result of such a representation (in the 2D case) is a 
grid of rectangular shaped boxes or Control Volumes (CV); 
extension to 3D is straightforward. The spatial domain is 
thus described by its dimensions (respectively base and 
height), while the grid is described by the number of CVs 
along the x and y axes (I and K) and the percentage of space 

 occupied by the volumes contained into the grid. A grid 
composed by 5 × 5 volumes uniformly spaced is described 
by two vectors X=[0.2, 0.2, 0.2, 0.2, 0.2] and Y=[0.2, 0.2, 0.2, 
0.2, 0.2]. If non-uniform these vectors became e.g. X=[0.1, 
0.2, 0.4, 0.2, 0.1] and Y=[0.1, 0.1, 0.6, 0.1, 0.1]. The 
complexity in the implementation when using a non-uniform 
grid is practically the same as in the uniform case. The notion 
of “staggered grid” recalls that the CVs where the energy and 
mass preservation are discretised (usually called Pressure 
or P-cells) differ from the ones where x and y momentum 
are, as shown in Fig. 1 (right). For such a reason three 
different coordinate systems for univocally numbering the 
CVs have been adopted. The three systems are respectively 
for identifying scalar quantities inside P-cells, and the Vx, 
Vy air velocities, as shown in Fig. 2. 

Fig. 1 (Left) non-uniform structured grid; (right) staggered grid 
for the discretisation of the NS equations 



4.2 Domain boundaries 

Boundary conditions, needed to solve the governing equations, 
are provided in terms of temperatures and air velocities on 
the domain boundaries (e.g., a wall surrounding the room). 
Such values can be assigned to a subset of variables located 
on the domain border, as shown in Fig. 2. Table 2 contains 
the subsets of variables that represent the boundaries.  

Usually, the velocities on the boundaries are defined 
as null, except when describing inlets or outlets (e.g., for 
HVAC). Concerning the temperatures, in order to describe 
a room with a wall kept at a given temperature, it suffices to 
assign the desired temperature to each node in the boundary 
set (as defined in Table 3). On the contrary, an adiabatic 
wall should be described by imposing a null temperature 
gradient between adjacent cells (see Table 3).  

Table 2 Set of variables on the domain boundaries 

 Left Right Bottom Top 

T T[1,2,...K+1] T[I+2,2,...K+1] T[2,...I+1,1] T[2,...I+1,K+2]

Vx Vx[1,1,...K+2] Vx[I+1,1,...K+2] Vx[1,...I+1,1] Vx[1,...I+1,K+2]

Vy Vy[1,1,...K+1] Vy[I+2,1,...K+1] Vy[1,...I+2,1] Vy[1,...I+2,K+1]

Table 3 Boundary conditions for temperatures 

Left wall boundary 

Fixed temperature T[1,2,...K+1] = Twall 

Adiabatic wall T[1,2,...K+1] = T[2,2,...K+1] 

4.3 Preservation equations 

This section shows how mass, energy and momentum preser-
vation equations have been discretised and implemented in 
Modelica. The starting point is the numerical integration 
with the finite volume approach of the CD Eq. (4), a well 
known subject in the context of fluid dynamics (see (Patankar 

1980; Versteeg and Malalasekera 2007) for more information). 
The discretisation of such an equation leads to the following 
compact representation: 

P
P P E E W W N N S S

d +
dρ
ΦV a Φ a Φ a Φ a Φ a Φ S
t

+ = + + +  (10) 

where all the terms accounting for convective and diffusive 
exchanges are collected into the aP,N,S,W,E coefficients (where 
N,S,W and E correspond to north, south, west and east), 
while the sources are merged into S. When taking into 
account the 2D case such coefficients are defined as 

E e e e(| |) ,0a D A P F= + -      (11a) 

W w w w(| |) ,0a D A P F= +    (11b) 

N n n n(| |) ,0a D A P F= + -    (11c) 

S w s s(| |) ,0a D A P F= +      (11d) 

P W E N Sa a a a a= + + +       (11e) 

where ,a b   is the maximum between a and b, while D 
and F are respectively the diffusion conductances and 
mass fluxes. Into Eq. (11) the Péclet numbers (Pn,s,w,e) are 
introduced and defined in Eq. (12) as the ratio between the 
flows and the diffusive conductances of a given face of the CV. 

with  {n,s, w,e}x
x

x

F
P x

D
    (12) 

The Péclet number aims at comparing the effect of  
the diffusion of the scalar quantity Φ  with respect to the 
transport of the same quantity by fluid motion. It comes 
into play as an argument for function A(·). This function, 
introduced in (Patankar 1980), allows to decouple the 
numerical discretisation from the employed convective 
scheme. In this way it is possible to define a unique structure 

Fig. 2 Grid for the discretised version of the equations in Modelica: energy and mass (left), x-momentum (center) and y-momentum (right)



for the constitutive equations, where the convection scheme 
can be adapted, in order to satisfy the given requirements 
(e.g., concerning accuracy). The functions listed in Table 4 
are just some examples of how the possible schemes can be 
implemented. A general discretised formulation for the CD 
equation has been presented. The remaining part of the 
section shows how such a general form can fit the mass, 
energy and momentum preservation equations. 

Table 4 The various functions A(|P|)  

Scheme Function for A(|P|) 

Central differencing 1–0.5|P| 

Upwind 1

Hybrid ||0,1–0.5|P| ||

4.4 The continuity equation 

The discretised continuity equation is obtained by integrating 
Eq. (1a) along a CV located in a P-cell (a grey cell in Fig. 3), 
leading to  

t
P

e w n s
d 0
d
ρV F F F F+ - + - =   (13) 

For such a CV, the mass flow on the east face can be 
computed as  

x

x

v

v

e
Ee

e e e
P

if 0
( )

if 0x x

ρ
F ρu v

ρ
ì <ïï= = ⋅íï >ïî

 (14a) 

where ρP is the density of the CV considered, ρE is the 
density of the CV that surrounds the considered one on its 
east side, while xve  is the x-velocity of the air crossing the 
eastern surface (other fluxes can be computed in a similar 
way). Velocities (due to the implementation of the staggered 

Fig. 3 Grid with dimensions and notations. The grey volume is the 
CV in which the continuity equation has been integrated. Arrows 
indicate the positive directions of the mass flows 

grid approach) are immediately readable from the 
surrounding x (and y) momentum CVs. Concerning the 
Modelica representation, taking as reference the numbering 
convention shown in Fig. 2, for the CV [i,k] the density 
and the velocities are the ones listed in Table 5. Since the 
flows defined above are useful for computing other quantities, 
they are saved into matrices Fe_M[*,*], Fw_M[*,*], Fn_M[*,*] 
and Fs_M[*,*] representing the four flows for each volume 
[i,k].  

Table 5 Density and velocities to be considered when discretising 
the continuity preservation equation over the corresponding CV 
(P-cell)  

Pρ  rho[i,k] 
e
xv  Vx[i,k] 
w
xv  Vx[i-1,k] 
n
yv  Vy[i,k] 
s
yv  Vy[i,k-1] 

4.5 The energy equation 

The discretised energy Eq. (1b), once integrated over a 
CV located in a P-cell (see grey cell in Fig. 3), can be 
rewritten as  

P
v v P P v E E W W N N S S source

d ( )
d
TVρc c a T c a T a T a T a T Q
t
+ = + + + +

(15) 

where TP is the temperature of the CV analysed, and TE,W,N,S 
are the temperatures of the surrounding CVs. The definition 
of the coefficients aP,E,W,N,S provided for the general case in 
Eq. (11) have to be adapted. In particular, just the diffusive 
conductance has to be updated, since the CV taken into 
account is the same used for the continuity equation, the 
flows are the same (as defined in Eq. (14)). The diffusive 
conductances are thus computed as 

 e
effe

e
E E

d
d d

x γ yAD
x x

= =  (16a) 

 w
effw

w
W W

d
d d

x γ yAD
x x

= =  (16b) 

 n
n eff

n
N N

d
d d

yA γ xD
y y

= =   (16c) 

 s
s eff

s
S S

d
d d

yA γ xD
y y

= = (16d) 

where γeff is the effective thermal conductivity of the air. By 
implementing the general Eq. (15), it is possible to employ 



different convective schemes by choosing the proper A(·) 
function. When the CV [i,k] is considered, the distances 
that appear in Eq. (16) and shown in Fig. 3, can be computed 
as listed in Table 6. 

Table 6 Distances for computing diffusive conductances with 
respect to the continuity CV 

dx  dx[i-1] 

dy  dy[k-1] 

dxE  0.5*dx[i-1]+0.5*dx[i] 

dxW  0.5*dx[i-2]+0.5*dx[i-1] 

dyN  0.5*dy[k-1]+0.5*dy[k] 

dyS  0.5*dy[k-2]+0.5*dy[k-1] 

4.6 x-momentum equation 

The discretised x-momentum equation reads 

P
P E W N S

P E W N S W E
d ( )
d

x
x x x x x x

vVρ a v a v a v a v a v A P P
t
+ = + + + + -  

(17) 

where P
xv  is the horizontal velocity of the air in the 

considered CV, E,W,N,S
xv  are the surrounding ones, Ax is  

the CV surface normal to the x-direction and PW,E are the 
pressure in the surrounding P-cells. The CV employed for 
the discretisation, as shown in Fig. 4 is shifted along the x 
axis of half a volume (both left and right), with respect to 
adjacent P-cells. This has two consequences: First, the 
velocity located in the centre of the CV (x-cell) is exactly 
in the middle of the faces of the continuity CV (P-cell). 
Second, the pressure on the east and west boundaries of the 
x-momentum CV, appearing in Eq. (17), are exactly the
ones computed in the continuity CV (no interpolation
for retrieving the value on the faces is needed). As in the
previous cases, the flows and the diffusive conductances have
to be defined. The flows are defined according to Fig. 4.
The east face of the CV (the grey one) is surrounded by the

Fig. 4 Grid for the x-momentum discretisation. In grey the  
CV for the discretised x-momentum cell, with other colors the 
surrounding P-cells 

horizontal flows computed for the continuity CV on the 
right (the green one in Fig. 4—left). The same is valid for 
the west boundary (the yellow one in Fig. 4—center). For 
such a reason, the flows on the east (e) and west (w) faces can 
be computed as the mean of the flows of the surrounding 
continuity CVs  

E E
e w

e e( )
2x

F FF ρv +
= =     (18a) 

W W
e w

w w( )
2x

F FF ρv +
= =   (18b) 

where E
e,wF  indicate the fluxes on the east and west faces of 

the continuity CV located on the right of the x-momentum 
CV (the same is valid for the opposite face). For computing 
the flows over the south (s) and north (n) faces of the 
x-momentum CV, the vertical velocities that surround the
volume have to be involved. Doing so, four y-velocities
located exactly on the four corners of the volume respectively

NE,NW,SE,SW
yv  come into play. For each one of these velocities,

crossing the north/south faces of the continuity CVs that
surround the one considered here, flows are associated.
The two remaining flows can be defined through mean
values and computed as

E W
n n

n n( )
2y

F FF ρv +
= =   (19a) 

E W
s s

s s( )
2y

F FF ρv +
= =   (19b) 

Concerning the Modelica implementation, if the x-momentum 
CV [i,k] is considered, the surrounding flows are listed 
in Table 7. The next step is the definition of the diffusive 
conductances as shown in Eq. (20) 
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Since the grid is staggered, also the distances between 
the centre of the cell and the surroundings CVs differ. 
Considering an [i,k] x-momentum CV, its dimensions 
are defined in Table 8.  



Table 7 Flows that surround the x-momentum CV 
E

eF  Fe_M[i,k-1] 
E

wF  Fw_M[i,k-1] 
E

nF  Fn_M[i,k-1] 
E

sF  Fs_M[i,k-1] 
W

eF  Fe_M[i-1,k-1] 
W

wF  Fw_M[i-1,k-1] 
W

nF  Fn_M[i-1,k-1] 
W

sF  Fs_M[i-1,k-1] 

Table 8 Distances for computing diffusive conductances with respect 
to the x-momentum CV 

dx  0.5*dx[i-1]+0.5*dx[i] 

dy  dy[k-1] 

dxE  dx[i] 

dxW  dx[i-1] 

dyN  0.5*dy[k-1]+0.5*dy[k] 

dyS  0.5*dy[k-2]+0.5*dy[k-1] 

4.7 y-momentum equation 

The discretised version of the y-momentum preservation 
equation reads  

P
P E W N S

P E W N S

S N P

d
d

( )

y
y y y y y

y

v
Vρ a v a v a v a v a v

t
A P P ρ gV

+ = + + +

+ - - (21)

and it differs from the x-momentum one (Eq. (17)) because 
it contains the gravity term Pρ gV-  (where g is the gravity 
acceleration). The only part of this term that is notable, 
is the density ρP, since the other quantity are constants. 
Of course such a density is not defined in the centre of 
the considered CV, but it is on the continuity CVs that 
surround the considered one (green and yellow volumes in 
Fig. 5). As for the other quantities it is possible to obtain 

Fig. 5 Grid for the y-momentum discretisation. In grey the CV for 
the discretised y-momentum cell, with other colours the surrounding 
ones 

its value by a weighted mean 

s n
P 2

ρ ρρ +
=  (22) 

s nwhere ρ and ρ are the densities computed in the centre of 
the continuity CVs shown in Fig. 5 (respectively the 
yellow and the green CVs). The remaining terms of the 
y-momentum equation do not differ significantly from the
ones introduced in the discretised x-momentum equation,
except for the indices, thus omitted.

4.8 Turbulence model  

The turbulence model is present in each x and y-momentum 
CV. For a given [i,k] velocity CV, the turbulence model is
implemented as shown in Table 9, where mu is the air 
dynamic viscosity, rho is the air density (here assumed to 
be constant), Cu is a constant parameter of the turbulence 
model, karm is the von-Karman constant, y_plus is the 
normalised minimal distance from the wall and y_wall is 
the distance between the centre of the CV and the nearest 
wall. In the model is present also a boolean flag, laminar, 
that neglects the turbulence model when the laminar flow 
assumption is assumed to be valid (e.g. very low velocities 
or high viscosity). The quantities muY30 and gammaY30 
are respectively the viscosity and the thermal conductivity in 
the near wall region when y_plus is assumed to be equal 
to 30. These values have been used for a linear interpolation 
between the various cases, as shown in Table 9.  

Table 9 Modelica implementation of the turbulence model 

Quantity Equation 
y+ y_plus = MUx[i,j]/karm/mu 
μeff MUeff= if laminar 

mu 
else 

mu + karm*Cu*Sqrt(Vx[i,j]^2) 
*rho*y_wall

μw MUwall= if y_plus < 5 then 
mu 

else if 5 <= y_plus < 30 then 
mu + (y_plus -5)*(muY30 -mu)/25

else if y_plus >= 30 then 
rho*karm*Cu*Sqrt(Vy[i,j]^2) 

*y_wall/log(E*y_plus)
keff K = if laminar then 

gamma 
else 

gamma + (MUeff-mu)*gamma/mu 
kw Kwall = if y_plus < 5 then 

gamma 
else if 5 <= y_plus < 30 then 
gamma + (y_plus -5)*(gammaY30 

-gamma)/25
else if y_plus >= 30 then 
gamma*(MUeff-mu)/MUwall 



4.9 State equations 

To complete the set of equations, the fluid state ones are 
introduced and coded in Modelica. These relationships 
have to be written for each continuity CV (P-cell). A brief 
summary of the state equations for the [i,k] CV is reported 
in Table 10, according to their definition in Eqs. (2b) and (3a). 

Table 10 State equations included in the continuity CV 
Scalar Expression

Density ρ rho[i,k]  = rho_o + ComprCoeff*P[i,k] 
-ThermExpCoeff*(T[i,k]-To)

Specific 
energy e 

e[i,k] =  cv*T[i,k] 

4.10 Interfaces 

The Modelica model has been written in a way that makes it 
possible to define the boundary conditions through standard 
interfaces. The adoption of such interfaces, in Modelica 
named connectors (Mattsson et al. 1998), allows the model 
to describe a specific part of the physical system. The 
model of the room is not the solution of a specific problem 
(e.g. the natural convection in a square room), it describes 
the interaction between the boundaries and the interior 
domain, so the same model can be used for representing 
various scenarios, each one characterised by its specific 
boundary conditions.  

The boundaries of the domain, as defined in Section 4.2, 
are a specific subset of the domain variables. More in detail, 
the domain is represented by 2D array variables while a 
specific boundary (e.g. the east one) is represented by 1D 
array variables. Such boundary variables will be defined 
through connectors. The model of the room, incomplete 
because without specific values for its boundaries, will be 
completed by connecting it to surrounding models. The 
equations belonging to the surrounding models, describing 
various physical phenomena do not come into play except 
for the value provided to the connector linked together to 
the one of the room.  

The structure of the Modelica connectors (Modelica, 
2013) linked to the variables and volumes on the boundaries 
of the room is shown in Table 11. With such an approach a 
variety of cases can be represented without additional effort. 
For example a wall that surrounds the room will impose 
the mass flow equal to zero and a given temperature to the 
boundary temperature nodes (without taking into account 
if the model of the wall has a given number of layers). If the 
wall has an air inlet the temperature and velocities will be 
defined as in the previous case, except for the volume in 
which the air is injected. Here the velocity e.g. will be imposed 
and the condition of the incoming air (specific enthalpy, 
density) will be defined by the surrounding component.  

Table 11 Variables contained within the Modelica interfaces 

Name Type Description

T Effort Temperature (K)

Q Flow Heat flow rate (W) 

P Effort Pressure (Pa)

m_flow Flow Mass flow rate (kg/s) 

h Stream Specific enthalpy (J/(kg·K)) 

rho Stream Density (kg/m3) 

Connectors can be used also for accounting internal heat 
gains such as a person (or an appliance) heating a specific 
volume. In this case the interaction will be represented 
by imposing the heat flow rate (appearing in the energy 
equation as a source term). Figure 6 shows an example in 
which the model of a pipe, through connectors, can be 
connected together with the model of a room. In this case, 
heat flux flowing through the connection and coming into 
play as a source term in the energy equation will be defined 
according to the temperature difference between the pipe 
surface and the air. 

Fig. 6 Example of interaction between different models through 
connectors: a pipe fed with hot water heating the interior of the 
room 

4.11 The numerical solver 

The aim of this subsection is to help the reader familiarise 
with the numerical techniques used to solve the problem. 
One of the advantages of the equation-based modelling 
approach (which Modelica adopts) is that the problem 
expression is separated from its numerical solution. In 
accordance with that, in the previous sections there are not 
explicit references to any algorithm or numerical solution 
techniques. In other words, adopting an equation-based 
approach makes solver-related issues transparent to the 
user. The problem, and thus the equations, are described 
as they are, without explicitly introducing e.g. any time 
discretisation facts. The Modelica-based tool manipulates 
the set of equation (e.g., for index reduction) in order to get 
a system of Ordinary Differential Equations (ODE). Once 
the ODE system is available, a suitable numerical (either 
implicit/explicit fixed/variable time step) solver is applied. 
The solver that has been used in the reported examples is 
an implicit variable step one (namely DASSL). 



5 Applications 

In this section, some examples show the capabilities of 
the developed models to correctly represent the 
temperature distribution and the airflow pattern in 
three main cases: natural, forced and mixed 
convection. For each case a comparison between 
experimental results and data obtained via simulation 
(using Dymola as Modelica tool) has been done. Results 
have also been compared with those provided by fine-scale 
CFD models, developed with Fluent (2006). 

5.1 Natural convection 

The introductory example is a validation of the presented 
model, investigating the case of natural convection in a 
tall cavity (see Fig. 7 (left)) where the right wall is heated 
while the left one is cooled. The cavity dimensions are 
0076×.21.8×05.2[m]. Experimental results for such a cavity 
are taken from (Betts and Bokhari 2000). The shape of the 
cavity, as well as its symmetry, allows to describe the 
fluid with a 2D grid, without reducing the accuracy in the 
description of the temperature distribution and the airflow 
field. For such a reason a non-uniform grid of 11´21  

volumes has been used. The comparisons between simulation 
data and experimental results are listed in Figs. 8 and 9. In 
particular, both temperature and vertical velocity profiles 
at different heights ( {0 1,0 4,0 6,0 9}y Y= . . . . , where Y is the 
height of the cavity) are shown. The agreement between 
results provided by Modelica models and both CFD and 
experimental data is very good as can be seen in Figs. 8 
and 9. For the considered example, the simulation of 200 s 
takes 5.45 s on a standard PC.  

Fig. 7 (Left) scheme of the tall cavity; (right) Modelica connection 
scheme of the natural convection experiment 

Fig. 8 Temperature distributions at different heights—Natural convection in a tall cavity 



5.2 Forced convection 

The second example is the forced convection experiment 
described in (Restivo 1979), for which physical measured 
data are available. The considered room is of rectangular 
shape, as shown in Fig. 10, and its size is ´3 9  [m]. In this 
case, the airflow pattern within the room is mainly driven 
by the air inlet injected in the upper left corner and flowing 
out from the lower right one. The height of the air inlet is 
hIN = .0 056H  (where H is the height of the room), while 
the height of the outlet is OUT = .0 16h H . The air velocity at 
the inlet is V Vx= = 0 4. 55 m/s  and horizontally directed. In 

Fig. 10 Scheme of forced convection room 

this case, since the velocity of the air jet injected in the upper 
left corner of the room is remarkable, it strongly affects the 
airflow motion. Contrary to the previous case, in which the 
unique (small) driving force was the buoyancy, here the 
convective terms appearing in the momentum equations 
play a crucial rule. 

Figures 11, 12 and 13 show the horizontal air velocity 
distribution along two vertical sections of the room, located 
respectively at x=H and x=2H. Figure 11 shows that there is 
a good agreement between experimental data and the one 
obtained with Modelica models, using a mesh of 28 20´  
volumes. Figure 13 shows that despite has been employed a 
coarser mesh, the airflow pattern is correctly represented. 
Previous works, facing the problem with the so called 
sub-zonal approach (Mora et al. 2003), poorly represents 
such a recirculation in the room. In Fig. 12 given a mesh of 
20 15´  volumes, the suitable convective schemes: UpWind 
(UW), Hybrid (Hyb) and Power Law (PL) have been 
compared. Despite all the solutions are good enough since 
they correctly represent the airflow pattern, the higher 
order method (PL) gives the best results. The simulation 
performances of this example are listed in Table 12. 

Fig. 9 Air vertical velocity distributions at different heights— Natural convection in a tall cavity 



Fig. 11 Air horizontal velocity distributions at x = H and x = 2H—Comparison between experimental data, CFD Fluent and Modelica with
a grid of 28 20´  volumes

Fig. 12 Air horizontal velocity distributions at x=H and x=2H— Comparison between experimental data, CFD Fluent and Modelica with
a grid of 20 15´  volumes using different convective scheme (UpWind, Hybrid and Power Law)

Fig. 13 Air horizontal velocity distributions at x=H and x=2H— Comparison between experimental data, CFD Fluent and Modelica with
coarse meshes ( 10 8´  and 6 6´ ) 



Table 12 Simulation time spent for simulating the forced convection 
case: 1000 s

Grid Method Time (s)

6 6´ Hybrid 0.1

10 8´ Hybrid 0.36

20 15´ Hybrid 16.3

20 15´ Power Law 19.6

20 15´ UpWind 18.7

28 20´ Hybrid 160

28 20´ PowerLaw 182

5.3 Mixed convection 

In the case of mixed convection, both the driving forces 
analysed in the previous cases (air inlet and buoyancy) 
are present at the same time. The room addressed in this 
example is of square shape and its size is 1.04×1.04 [m], as 
shown in Fig. 14. The inlet height, located in the left upper 

Fig. 14 Scheme of the mixed convection room

corner, is IN 0 018mh = . , while the outlet height located 
in the opposite one is OUT 0 024 mh = . . The inlet air is 
horizontally injected at a temperature of 15℃ at a velocity 
of 0.455 m/s. The surrounding walls except for the floor are 
kept at a constant temperature of ℃wall 15T = , the floor is 
heated and kept at a temperature of ℃h 35T = . Experimental 
data, namely temperature and velocity profile across the 
middle vertical section of the room, are given in (Blay et al. 
1992).  

In Fig. 15 (left) the temperature profile across the vertical 
section of the room is shown, while Fig. 15 (right) shows 
the horizontal velocity profile over the same vertical section. 
Both figures compare experimental results with CFD and 
Modelica ones. More in detail, Modelica results have been 
obtained using various non-uniform grids, respectively of 
2525, 2020, 1510 and 128 volumes. Figure 15 does 
not include the results of the grid with 2525 volumes 
since they cannot be distinguished by the results obtained 
with the grid 2020. The sensitivity of the velocity profile 
with respect to the number of volumes contained into the 
grid is low, while the same is not true for the temperature 
profile. The Modelica model using the finer mesh reproduces 
almost correctly the temperature profile, while the others 
underestimate the value. To note that even with the coarse 
meshes the shape of the temperature profile is almost 
the same. Concerning the velocity profile, CFD gives better 
results with respect to Modelica models; they correctly 
represent the profile shape but they give an underestimation. 
Table 13, contains the simulation performances and the 
sum of the power flows exchanged through the walls at 
steady state. As the number of volumes increases the power 
exchanged through the walls converges to a single value, 
evidencing the correcness of the model.  

Fig. 15 Temperature (left) and horizontal velocity distributions (right) at x=X/2—Comparison between experimental results, CFD 
(Fluent) and Modelica models with different grid 



Table 13 Simulation time spent for simulating the mixed convection 
case (3600 s) and power flowing through the walls

Grid Method Time (s) Power (W) 

12 8´ Hybrid 2.36 140.5

15 10´ Hybrid 4.02 123.18

20 20´ Hybrid 288 96.709

25 25´ Hybrid 810 95.6314 

6 Conclusion 

A modelling framework has been proposed that plugs the 
NS equations, suitably formulated in a unitary manner and 
spatially managed with a sub-zonal discretisation, into an 
OO environment (namely, by resorting to the Modelica 
language). This results in CFD models that are coarse-scale 
with respect to those typically employed, allow to catch the 
relevant energy-related phenomena in the building context, 
and yield efficiency advantages.  

Also, the OO approach significantly fosters modularity, 
which permits to join airflow, ES, control and other models 
so as to solve everything together, without the need for co- 
simulation. This (again) favours efficiency, but also results 
in a more structured and thus simpler management of 
simulation models, and makes the numerical solution 
transparent to the analyst. Such a feature is important for 
system-level studies, that are often needed also at early 
design stages, thus where full information is not (yet) 
available, or some design data are de facto the subject of the 
investigation. The proposed solution, in this respect, relies 
on a convenient abstraction of model connectors, allowing 
to encapsulate the internal dynamic behaviour of each 
component, thus to have descriptions of the same object at 
different detail levels, and all interchangeable with one 
another.  

Simulation results and comparisons with both other 
simulation tools and experimental measurements have been 
presented to support the proposal.  

Future work will be devoted to extending the proposed 
framework from airflows to other similar problems, and to 
further extend the developed model library. Also, validation 
of said models versus industrial regulations (e.g., the ASHRAE 
140 standard) is underway, as well as the use of the 
developed models in studies aimed at both the design of 
new buildings or neighbourhoods, and the energy-oriented 
refurbishing of existing ones. 

References 

Allard F, Dorer V, Feustel H (1990). Fundamentals of the multizone 
airflow model—COMIS. Technical Note 29, Air Infiltration and 
Ventilation Centre, Coventry, UK. 

Arias D (2006). Advances on the coupling between a commercial 
CFD package and a component-based simulation program. In: 
Proceedings of 2nd National IBPSA-USA Conference, Cambridge, 
MA, USA, pp. 231–237. 

Beausoleil-Morrison I (2000). The adaptive coupling of heat and air 
flow modelling within dynamic whole-building simulation. PhD 
thesis, University of Strathclyde, UK. 

Betts PL, Bokhari IH (2000). Experiments on turbulent natural 
convection in an enclosed tall cavity. International Journal of 
Heat and Fluid Flow, 21: 675–683. 

Blay D, Mergui S, Niculae C (1992). Confined turbulent mixed 
convection in the presence of horizontal buoyant wall jet. 
Fundamentals of Mixed Convection, ASME HTD, 213: 65–72. 

Bonvini M, Leva A, Zavaglio E (2012). Object-oriented quasi-3d 
sub-zonal airflow models for energy-related system-level building 
simulation. Simulation Modelling Practice and Theory, 22: 1–12. 

Cellier FE, Kofman E (2006). Continuous System Simulation. New 
York: Springer. 

Chen Q (2009). Ventilation performance prediction for buildings: A 
method overview and recent applications. Building and Environment, 
44: 848–858. 

Chen Q, Xu W (1998). A zero equation turbulence model for indoor 
airflow simulation. Energy and Buildings, 28: 137–144. 

Crawley DB, Lawrie LK, Winkelmann FC, Buhl WF, Erdem AE, 
Pedersen CO, Liesen RJ, Fisher DE (1997). What next for building 
energy simulation—A glimpse of the future. In: Proceedings 
of IBPSA International Conference, Prague, Czech Republic, 
pp. 395–402. 

Fluent (2006). Fluent 6.3 User’s Guide. 
Ljubijankic M, Nytsch-Geusen C, Rädler J, Löffler M (2011). Numerical 

coupling of Modelica and CFD for building energy supply systems. 
In: Proceedings of 8th International Modelica Conference, Dresden, 
Germany. 

Mattsson S, Elmqvist H, Otter M (1998). Physical system modeling 
with Modelica. Control Engineering Practice, 6: 501–510. 

Modelica (2013). Modelica Association, Available: 
http://www.modelica.org. 

Mora L, Gadgil A, Wurtz E (2003). Comparing zonal and CFD model 
predictions of isothermal indoor airflows to experimental data. 
Indoor Air, 23: 77–85. 

Ostlund P, Stavaker K, Fritzson P (2010). Parallel simulation of 
equation-based models on CUDA-enabled GPUs. In: Proceedings 
of 9th Workshop on Parallel/High-Performance Object-Oriented 
Scientific Computing, Reno, NV, USA, pp: 5:1–5:6. 

Patankar S (1980). Numerical Heat Transfer and Fluid Flow. London, 
UK: Taylor and Francis. 

Pedersen CO, Fisher DE, Liesen RJ, Strand RK, Taylor RD, Buhl WF, 
Winkelmann FC, Lawrie LK, Crawley DB (1997). Energybase: 
The merger of BLAST and DOE-2. In: Proceedings of IBPSA 
International Conference, Prague, Czech Republic, Volume III, 
pp. 1–8. 

Ren Z, Stewart J (2003). Simulating air flow and temperature distribution 
inside buildings using a modified version of COMIS with sub-zonal 
divisions. Energy and Buildings, 35: 257–271. 



Restivo A (1979). Turbulent flow in ventilated room. PhD Thesis, 
University of London, UK. 

Sahlin P (2000). The methods of 2020 for building envelope and 
HVAC systems simulation—Will the present tools survive? In: 
Proceedings of CIBSE Conference, Dublin, Ireland. 

Sahlin P, Eriksson L, Grozman P, Johnsson H, Shapovalov A, Vuolle 
M (2004). Whole-building simulation with symbolic DAE 
equations and general purpose solvers. Building and Environment, 
39: 949–958. 

Trčka M, Hensen JL, Wetter M (2009). Co-simulation of innovative 
integrated HVAC systems in buildings. Journal of Building 
Performance Simulation, 2: 209–230. 

Trčka M, Hensen JL, Wetter M (2010). Co-simulation for performance 
prediction of integrated building and HVAC systems—An 
analysis of solution characteristics using a two-body system. 
Simulation Modelling Practice and Theory, 18: 957–970. 

Versteeg H, Malalasekera W (2007). An Introduction to Computational 
Fluid Dynamics: The Finite Volume Method. Upper Saddle River, 
NJ, USA: Pearson Prentice Hall. 

Wetter M (2009). Modelica library for building heating, ventilation 
and air-conditioning systems. In: Proceedings of 7th International 
Modelica Conference, Como, Italy. 

Wetter M, Haugstetter C (2006). Modelica versus TRNSYS—A 
comparison between an equation-based and a procedural modeling 
language for building energy simulation. In: Proceedings of 2nd 
National IBPSA-USA Conference, Cambridge, MA, USA. 

Wetter M, Zuo W, Nouidui TS (2011). Recent developments of the 
Modelica buildings library for building heating, ventilation and 
air-conditioning systems. In: Proceedings of 8th International 
Modelica Conference, Dresden, Germany. 

Zhai Z (2003). Developing an integrated building design tool by 
coupling building energy simulation and computational fluid 
dynamics programs. PhD Thesis, Massachusetts Institute of 
Technology, USA. 

Zhai Z, Chen Q (2004). Numerical determination and treatment of 
convective heat transfer coefficient in the coupled building energy 
and CFD simulation. Building and Environment, 39: 1001–1009. 

Zuo W, Chen Q (2010). Fast and informative flow simulations in 
a building by using fast fluid dynamics model on graphics 
processing unit. Building and Environment, 45: 747–757. 

Zuo W, Hu J, Chen Q (2010). Improvements in FFD modeling by using 
different numerical schemes. Numerical Heat Transfer, Part B: 
Fundamentals, 58: 1–16. 




