JOIN DURING MERGE: AN IMPROVED SORT BASED ALGORITHM

M. NEGRI and G. PELAGATTI

Dipartimento di Elettronica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy

1. Introduction

A join operation consists in selecting from the
set of all pairs of records of two files F, and F,
those pairs which possess some matching property.
The matching property can be expressed as A, §
A,, where A, and A, are two attributes of the
records of F; and F, respectively, and 8 is a
comparison operator. Without loss of generality
we will assume that 6 is the equality operator
(equijoin).

Because of the importance of the join operation
in database applications, several algorithms have
been proposed for performing it efficiently. These
algorithms can be classified at a first level into two
main classes: those which are based on the ex-
istence of auxiliary data structures, like indexes
and inter-file links, and those which do not use
any auxiliary data structures. This paper deals
with the latter class (i.e., it assumes that auxiliary
data structures are not available for the join).

The algorithms for performing the join in ab-
sence of auxiliary data structures can be further
partitioned into two main subclasses: the ‘nested’
algorithms and the ‘sort-based’ algorithm.

The nested algorithms consist in choosing one
file, called external file, and comparing each re-
cord of it wigh all the records of the other file,
called internalifile. The main disadvantage of these
algorithms is that the internal file is completely
scanned several times. An optimization of this

class of algorithms consists in reading large por-
tions of the external file into a buffer, so that the
number of internal file scans is reduced [1].

The sort-based algorithm consists in first sort-
ing both files on the join attribute and then ad-
vancing in parallel on both sorted files, building
the join. In this algorithm, the cost of performing
two complete sort operations must be added to the
cost of the actual join operation; however, the
latter is clearly much simpler than the nested join.

The relative efficiency of the sort-based al-
gorithm with respect to the nested algorithms de-
pends on several parameters, the most important
of which is the distribution of values of the join
attributes: if the values of the join attributes are all
different, so that they determine a total ordering
of each file, then the maximum advantage is taken
from the sort phase; on the opposite, if all records
have the same value of the join attributes, then the
sort operation is useless. Another relevant parame-
ter is the relative size of the two files with respect
to the available main memory buffer.

For the purpose of this paper, the comparison
between nested and sort-based algorithms is not
relevant; it is sufficient to know that there are
several cases in which the sort-based algorithm is
more convénient.

This paper describes and analyzes an improve-
ment of the classical sort-based algorithm. The
proposed improvement consists in avoiding to
completely sort both files; the join is performed

when the files have been partially sorted into
subfiles. The new algorithm is called *join-during-
merge’, because the join operation is performed
instead of the last merge pass of the sort oper-
ation. In fact, two different algorithms which are
based on the above idea are proposed and analysed,
called one-way and two-way join-during-merge.

The following assumptions are made in the
remainder of this paper:

(a) A paged-memory environment is assumed
and the number of page fetches from the disk is
considered to be the primary cost measure of a
join operation (this assumption is also made in
[1,2,3].

(b) The values of the join attributes in each file
are all different, so that they determine a total
ordering of the file; this assumption is meaningful,
because the sort-based algorithm is more conveni-
ent in this case.

(c) A constraint exists on the available main
memory buffer, otherwise it would be possible to
read the whole file into main memory; in this case,
the nature of the join problem would change com-
pletely. This constraint is indicated by the maxi-
mum available buffer size By,x (in pages).

The join-during-merge algorithm is compared
with the classical sort-based algorithm with respect
to the required page fetches and it is shown that it
behaves always better. Therefore, this paper sug-
gests to use the join-during-merge algorithm in-
stead of the sort-based algorithm in all cases where
the sort-based algorithm was considered conveni-
ent.

2. Sort-based join (SBJ)

Let us first recall the main characteristics of the
classical sort-based join. A sort-based join is per-
formed as shown in Fig. 1: both files are first
completely sorted by performing a sequence of
Sort /Merge (S/M) passes and then the two sorted
files are joined in one pass (SJ). The Sort/Merge
(S/M) passes are described in the literature on
external sorting (see, for instance, [4]), while the
Sorted Join (SJ) pass is described in [3].

For understanding this paper it is sufficient to
consider the following aspects of a Sort/Merge
algorithm for sorting a file: the file is first decom-
posed into many subfiles that are sufficiently small
to fit into the available main memory buffer; the
first S/M pass reads each subfile into the buffer
and sorts it (internal sort); subsequent S/M passes
merge the sorted subfiles until all récords have
been merged into one ordered file, which is the
final sorted file.

The size B, (in pages) of the main memory
buffer which is required for sorting a file F; using
n; S/M passes, is

B~ ||, M

where P, is the number of pages of the file F,. This
formula can be explained as follows (see [3] and [5]
for an extensive discussion): the Sort/Merge al-
gorithm performs at each pass a B-way merge,
since it has only B pages of main memory availa-

pass ny
A

S/M

pass ny

pass 1 pass ny =1
A A
SIM craaranes S’M

pass 1 pass ny-1
A — A
SIM S/IM

Fig. 1.

:SIM

ble. Therefore, with n passes it can sort a file of at
most B" pages.

Since the last pass SJ can be performed using a
buffer with size B > 2 independently from the size
of the two sorted input files, the maximum buffer
size which is required for performing a join using
n, and n, S/M passes on the files F; and
respectively is expressed by

Bgpy (P, Py, g, nz)zmax{[n{/i], [nv})—z]} (2)

3. One-way join-during-merge (JM1)

The one-way join-during-merge (JM1) al-
gorithm consists in completely sorting one file and
only partially sorting the other file and then per-
forming the join. We will assume that file F, is
completely sorted while file F, is only partially
sorted. Algorithm JM1 works as follows:

Step 1. Sort one file (say F,) in join column
order.

Step 2. Perform n, sort/merge (S,/M) passes on
the other file (F,), so that a partially sorted file F;
is obtained consisting of m subfiles Fj;, ..., Fj_,
(the condition for determining m and n; depends
on the maximum available buffer size B,y and
will be stated in the sequel).

Step 3. Read the first page of F, and of each
subfile F{;, ..., F{, into the buffer.

Step 4. Repeat until F, and F| have been
completely scanned:

(a) Join the records of the page of F, con-
tained in the buffer with the matching
records of the pages of the subfiles Fj,
1 <1< m contained in the buffer.

(b) Write the joined records to the output file.

(c) For each input page in the buffer which is
completely processed, read a new page
from the associated file F, or subfile Fj;,
l<i<m

Consider now the problem of determining n, and
m at Step 2. These must be such that the following
Steps 3 and 4 can be performed with the available
buffer By;.x. Let B{(P;, n;) be the size of the
buffer which is needed for performing the n; S/M
passes on file F; and Steps 3 and 4 of the al-

gorithm. The condition for determining n, and m
in Step 2 is therefore B,(P;, n;) < By;.x. The func-
tion B,(P;, n;) is expressed by the following for-
mula:

B,(P;, n;) =min{x:x > [P,/x™] + 1, x integer}.
(3)

Proof of formula (3). Let x represent possible
buffer sizes, in pages. After n, sort/merge passes,
the file F| contains

m= [P,/x”‘]

sorted sublfiles. The final steps (Steps 3 and 4) of
JMI1 require m + 1 pages of buffer; therefore, the
buffer size must satisfy the condition

x = [P /x™] +1.

Formula (3) now follows from the fact that the
minimum buffer size which satisfies this necessary
condition is chosen.

Taking also into account the necessity of sort-
ing file F,, the required buffer for performing the
join with the JM1 algorithm is expressed by

B (P, Py,ny,m,y) = max{Bl(Pls n,), [ﬂ\f—ﬁz—l}
(4)

4. Comparison of the SBJ and JM1 algorithms

The cost of performing the join (i.e., the num-
ber of required page-fetches) is expressed by the
following formula:

C=2P(n, +1)+2P,(n, +1) +P. (5)

Formula (5) is determined as follows:

— each S/M pass on a file F, requires to read
and write P, pages, hence 2P,n; page fetches
are required (read and write operations are
assumed to have the same cost),

- both F; and F, have to be read by the last
phase (the join pass) and then the result F, is
written, hence P, + P, + P. page fetches are
required.

Formula (5) shows that the cost of performing the

ble. Therefore, with n passes it can sort a file of at
most B" pages.

Since the last pass SJ can be performed using a
buffer with size B = 2 independently from the size
of the two sorted input files, the maximum buffer
size which is required for performing a join using
n, and n, S/M passes on the files F, and F,
respectively is expressed by

Bggs (P, Py, ny,m5) = max{[n\l/ﬁ] ; [n\:'sz]} (2)

3. One-way join-during-merge (JM1)

The one-way join-during-merge (JM1) al-
gorithm consists in completely sorting one file and
only partially sorting the other file and then per-
forming the join. We will assume that file F, is
completely sorted while file F, is only partially
sorted. Algorithm JM1 works as follows:

Step 1. Sort one file (say F,) in join column
order.

Step 2. Perform n, sort/merge (S,/M) passes on
the other file (F)), so that a partially sorted file F;
is obtained consisting of m subfiles Fj,, ..., F|
(the condition for determining m and n, depends
on the maximum available buffer size By,,y, and
will be stated in the sequel).

Step 3. Read the first page of F, and of each
subfile Fj,, ..., F{, into the buffer.

Step 4. Repeat until F, and F] have been
completely scanned:

(a) Join the records of the page of F, con-
tained in the buffer with the matching
records of the pages of the sublfiles Fj;,
1 < i< m contained in the buffer.

(b) Write the joined records to the output file.

(¢) For each input page in the buffer which is
completely processed, read a new page
from the associated file F, or subfile Fj;,
l<i<m.

Consider now the problem of determining n, and
m at Step 2. These must be such that the following
Steps 3 and 4 can be performed with the available
buffer By,x. Let B(P,, n;) be the size of the
buffer which is needed for performing the n, S/M
passes on file F, and Steps 3 and 4 of the al-

gorithm. The condition for determining n, and m
in Step 2 is therefore B (P}, n,) < By ,x- The func-
tion B,(P, n;) is expressed by the following for-
mula:

B,(P,, n;) =min{x:x > [P,/x™] + 1, x integer} .
(3)

Proof of formula (3). Let x represent possible
buffer sizes, in pages. After n, sort/merge passes,
the file F| contains

m = [P,/x™]

sorted sublfiles. The final steps (Steps 3 and 4) of
JMI1 require m + 1 pages of buffer; therefore, the
buffer size must satisfy the condition

x> [P /x™] +1.

Formula (3) now follows from the fact that the
minimum buffer size which satisfies this necessary
condition is chosen.

Taking also into account the necessity of sort-
ing file F,, the required buffer for performing the
join with the JM1 algorithm is expressed by

BJMl(Pl- P,, n,, nz) = maX{BI(Pl > nl)a (HJE]}
(4)

4. Comparison of the SBJ and JM1 algorithms

The cost of performing the join (i.e., the num-
ber of required page-fetches) is expressed by the
following formula:

C=2P/(n, +1)+2P,(n, +1)+P,. (5)

Formula (5) is determined as follows:

- each S/M pass on a file F, requires to read
and write P, pages, hence 2P,n; page fetches
are required (read and write operations are
assumed to have the same cost),

— both F, and F, have to be read by the last
phase (the join pass) and then the result F, is
written, hence P, + P, + P, page fetches are
required.

Formula (5) shows that the cost of performing the

join grows linearly with the number of required
S/M passes 1 and n,. Therefore, the comparison
of algorithms SBJ and JM]1 can be done by com-
paring the numbers of S/M passes which are
required by each one of them for performing the
same join operation with a limited buffer Byax-
The main relationship which is needed for compar-
ing the two algorithms is expressed by the follow-
ing proposition.

Proposition 4.1. The sizes Bgp; (P, P, 0y, 2) and
B,yu(Pi Py — 1, n,) of the buffers which are
required by algorithms SBJ and IM1 for performing
the same join operation in (n,, n,) and (n, — 1,n,)
S/M passes respectively, satisfy the following rela-
tionship:

B5M1(P1» P.ni—1; nz) éBSBJ(Pl’ P,. n;, n,)+1.

Proof. Consider formulas (2) and (4). Since the

n, .
term { JP? \ which is due to the sort of file F, 1
the same in both formulas, we need only to com-
pare the other term.

Let B= In.y_P'll be the buffer size which is re-
quired to completely sort file F;. Aftern, —1S/M
passes performed using a buffer of size B, m
ordered subfiles are obtained. Clearly, m>1,
otherwise the last (n,th) S/M pass would not be
required for completely sorting the file, and m < B,
otherwise the last S/M pass would not be suffi-
cient to completely sort the file.

The last pass of the JM1 algorithm requires
m + 1 buffer pages, because it must keep in main
memory one page for each of the m subfiles Fjy,
..., Fj, and one page of file F,. Therefore,

(1) if m < B, the last pass of the JM1 algorithm
can be performed using B pages,

(2) if m = B, the last pass requires B + 1 pages.
a

A useful corollary of Proposition 4.1 is the
following,.

Corollary 4.2. The following relationship holds on
the sizes of the buffers which are required for perfor-
ming the SBI and JM1 algorithms using the same
number of S/M passes:

BJM](PI’ P, ny, n2)‘€~BSBJ(Plﬁ P,, ny, n,).

Sketch of proof. It is sufficient to show that the
terms which refer to file F, in formulas (2) and (3)
are related in the following way:

min{x:x > [P/x"™] +1} < [n‘:ﬁ;l_\

and the same reasoning for the proof of Proposi-
tion 4.1 can be used. 0O

Proposiﬁon 41 shows that it is possible to
perform the same join saving one S/M pass by
using the JM1 algorithm instead of the SBJ al-
gorithm, provided that it is possible in some cases
to use one additional buffer page. In the case that
an additional buffer page is required and that
it is impossible to obtain it (e, Byax =
Bgpy(P1s Pyy 11 112) and Bjya(Py, Py — 1, n,)>
Buax): the IM1 algorithm can be performed using
the same number of S/M passes and a buffer
which is equal or smaller to the buffer which is
required by the SBJ algorithm. As a consequence,
we can state that the JM1 algorithm dominates the
SBIJ algorithm.

Concluding remarks on JM1

(1) It is convenient to completely sort the
smaller one of the two files, thus saving one S/M
pass of the larger one.

(2) Since, with today’s technology, large main
memory buffers are available, typical values of n,
and n, are in the order of 2 to 4 passes (for
example, with a page size of 1 Kbyte, a 10 Mbyte
file can be sorted on a 22 Kbyte memory buffer in
n =73 passes) and therefore the relative gain of
saving one pass is not irrelevant.

5. Two-way join-during-merge (JM2)

If the available buffer Byax is large enough, it
is possible to save the last S/M pass on both files
F, and F,. This is done by algorithm JM2. We first
describe algorithm JM2 and then state the condi-
tion which allows performing it.

Step 1. Perform n, and n, S/M passes on files
F, and F,, so that two partially sorted files F] and
E, are obtained consisting of m, and m, subfiles
F/, --.» Fim, and F,, ..., Fon, (the condition for

determining n,, n,, m, and m, depending on the
maximum available buffer size By, will be stated
in the sequel).

Step 2. Read the first page of each subfile Fy;,
.oy Fip, and Fj, ..., i into the buffer.

Step 3. Repeat until F] and F; have been com-
pletely scanned:

(a) Join the records of the pages of the sub-
files Fj;, 1 <i< m, with the matching re-
cords of the pages of the subfiles Fj,
1<j<m,.

(b) For each page in the buffer completely
processed, read a new page from the asso-
ciated subfile Fj;, 1<i<m, or Fj;, 1<)
<m,.

The following formula expresses the relationship
between the required buffer size By, (P, Py,
n,, n,) and the numbers n, and n, of S/M passes
which have to be performed on files F; and F,
respectively in order to obtain the partially sorted
files F| and F;:

Bz (Prs Poy 1y, my)
=min{x:x > ([P,/x™] +[P,/x"])}. (6)

Proof of formula (6) The proof is essentially the
same as the proof of formula (3). Let x be a
possible buffer size (in pages); after the n; S/M
passes performed in Step 1, each file F contains
m, =[P,/x"] sorted subfiles. Steps 2 and 3 re-
quire m, + m, pages of buffer. Formula (6) now
follows from the fact that the minimum buffer size
which satisfies this condition is chosen.

The condition for determining n,, n,, m; and
m, in Step 1 of the JM2 algorithm is clearly
Bjva(Pys Py ny, 1) < Byax-

The convenience of using algorithm JM2 in-
stead of algorithm JM1 depends on the available
buffer size By;.x and on the file sizes P, and P,.
Assume that By,.y, P;, and P, are such that the
SBIJ algorithm can be performed using n, and n,
S/M passes and the JM1 algorithm can be per-
formed in n; —1 and n, passes. Then, the JM2
algorithm should be used if and only if the condi-
tion

Boisl Py By, diy— 1, 51)% By oo

holds, because in this case the JM2 algorithm
allows saving one S/M pass on file F, with respect
to algorithm JM1.

6. Example and conclusion

Two join-during-merge algorithms have been
described and analyzed. Their superiority with re-
spect to the traditional Sort-Based algorithm has
been shown. Table 1 shows, with an example, that
the percentual gain which can be achieved by
using JDM instead of SBJ is significant. In Table 1
it is assumed that two files F, and F,, having sizes
P, =10000 and P, = 1000 pages respectively, are
joined using buffers of sizes from 10 to 999 pages.
For each algorithm (SBJ, JM1, and JM2) the num-
bers n; and n, of required passes on files F, and

Table 1
Buffer Algorithms The best Percentual
size SBJ M1 M2 algorithm gain
n, ny n na n, 5
10 4 3 4 3 4 3 M1 -
11-12 4 3 3 3 3 3 M1 20.4
13-21 4 3 3 3 3 2 IM2 22.4
22 3 3 2 3 2 3 IM1 25.6
23-31 3 3 2 3 2 2 IM2 28.2
32-36 3 2 2 2 2 2 IM1 26.3
37-99 3 2 2 2 2 1 M2 28.9
100 2 2 2 1 2 1 IM1 3.6
101-105 2 2 1 2 1 2 IM1 357
106-999 2 v 2 1 2 1 1 M2 39.3

F, are listed, then the most convenient algorithm is
indicated and in the last column the percentual
gain of the best algorithm with respect to SBJ is
shown.

The percentual gain has been calculated under
the most negative assumption that the size P, of
the result file F. is maximum (P, = 1000); since F,
must be written by all algorithms, if the result file
is smaller (i.e., few tuples have matching values),
then the percentual gain is higher.

Table 1 shows that: (1) except for the two cases
Buax = 10 and B,y = 100 the JDM algorithms
achieve a relative gain varying from 20% to 39%,
and (2) that for most values of B, .y the JM2
algorithm can be used.

Recall that even for the case By.x =10, al-
though no gain can be achieved in page fetches,
the use of JM1 is still convenient, because it uses a
smaller buffer than SBJ (Corollary 4.2).

Let us finally state that, since the choice of the
best algorithm for a given join depends only on
the values P, P,, and B,,,y, it is possible to
choose the optimal algorithm before performing
the join. Therefore, the stated gains can be effec-
tively achieved in reality.

References

[1] W. Kim, A new way to compute the product and join of
relations, Proc. ACM/SIGMOD Internat. Conf. on
Management of Data, 1980.

[2] S.B. Yao, Optimization of query evaluation algorithms,
ACM/TODS 4 (2) (1979).

[3] M.W. Blasgen and K.P. Eswaran, Storage and access in
relational data bases, IBM Systems J. 16 (4) (1977).

[4] H. Lorin, Sorting and Sort Systems (Addison-Wesley,
Reading, MA, 1975).

[5] P. Valduriez and G. Gardarin, Join and semijoin algorithms
for a multiprocessor database machine, ACM,/TODS 9 (1)
(1984).

[6] D.E. Knuth, The Art of Computer Programming, Vol. 3:
Sorting and Searching (Addison-Wesley, Reading, MA,
1973).

[7] D. Bitton and D.J. DeWitt, Duplicate record elimination in
large data files, ACM/TODS 8 (2) (1983).

[8] G.M. Sacco and S.B. Yao, Query optimization in distrib-
uted database systems, in: Advances in Computers (Aca-
demic Press, New York, 1982) 225-275.

[9] W. Kim, On optimizing and SQL-like nested query,
ACM/TODS 7 (3) (1982).

