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In this paper, we prove the quaternionic version of the result of Walsh stating that
the difference between the partial sums of the Taylor expansion of an analytic
function and its interpolation polynomial at the roots of unity converges in a larger
disc than the disc of analyticity of the function. Our result holds for functions
of a quaternionic variable which are slice regular in a ball and thus they admit a
converging power series expansion. We also prove a generalization of this theorem
as well as its converse. Because of the noncommutative setting, the results are
nontrivial and require a notion of multiplication of functions (and of polynomials)
which does not commute with the evaluation.
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1. Introduction

For ρ > 1 and Dρ = {z ∈ C; |z| < ρ}, let us denote Aρ(C) = { f : Dρ → C; f is analytic
in Dρ}. Since f ∈ Aρ(C) we can write f (z) = ∑∞

k=0 zkak (with ak ∈ C), and the partial
sum sn−1( f )(z) =∑n−1

k=0 zkak .
Let Ln−1( f )(z) be the Lagrange interpolation polynomial of degree ≤ n − 1, interpo-

lating f on the n zeros of the equation zn − 1 = 0. It was known that both sn−1( f )(z) and
Ln−1( f )(z) converge uniformly in any closed disc of radius R < ρ, however Walsh proved
the surprising result that the difference sn−1( f )(z) − Ln−1( f )(z) converges uniformly to
zero in a larger set, namely in any closed disc in Dρ2 . This phenomenon is called Walsh
equiconvergence and can be stated as follows.

Theorem 1.1 (see e.g. [1], Chapter 1, p.8, Theorem 6, or Walsh [2], p.153–154) If
f ∈ Aρ(C), then Ln−1( f )(z) converges geometrically to f (z) in any closed disc DR with
1 < R < ρ and, in addition

lim
n→∞[sn−1( f )(z) − Ln−1( f )(z)] = 0, for all |z| < ρ2,
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the convergence being again uniform and with geometric rate of convergence in any DR

with 1 < R < ρ2. The result is the best possible, in the sense that for the function g ∈ Aρ(C)

given by g(z) = 1
z−ρ

, for z = ρ2, we have limn→∞[sn−1(g)(z) − Ln−1(g)(z)] �= 0.

In this paper, we address the problem of proving the generalization of Walsh equicon-
vergence result in the quaternionic framework. This problem is particularly interesting for
several reasons. First of all, polynomials with quaternionic coefficients may be written with
coefficients on the left, on the right or both sides. In the literature, see e.g. [3], all these
situations are considered, however the majority of the results have been obtained in the case
in which the polynomials are unilateral, i.e. with coefficients on one side, see [4]. In this
paper, we will consider the case of coefficients written on the right (the other case is similar)
since they can be seen as a special case of (left) slice regular functions for which there are
integral representation like the Cauchy integral formula. Thus, from now on, by the word
polynomial we will mean a polynomial of the form p(q) = qnan +· · ·+qa1 +a0, ak ∈ H.
Two such polynomials can be multiplied as in [4]: given p1(q) = qnan + · · · + qa1 + a0,
p2(q) = qmbm + · · · + qb1 + b0, we define their multiplication that we denote by ∗

(p1 ∗ p2)(q) =
m+n∑
k=0

qkck, ck =
∑

i+ j=k

ai b j . (1)

Given a polynomial p(q) as above, its evaluation at the point q = α is defined in the
standard way as p(α) = ∑n

k=0 αkak . The notion of evaluation does not work well with
respect to the ∗–multiplication, in fact is not a ring homomorphism: if r(q) = (p1 ∗ p2)(q),
then in general r(α) �= p(α)q(α). To convince themselves, it is sufficient to consider the
following simple example: let r(q) = (q − i) ∗ (q − j) = q2 − q(i + j)+ k then r( j) �= 0
but ( j − i)( j − j) = 0. For this reason, the standard procedure to construct interpolating
polynomials does not work in the quaternionic setting. Indeed, in the complex case, given
the distinct points z1, . . . , zn and the values w1, . . . , wn , the polynomial interpolating these
values can be constructed according to the so-called Lagrange interpolation formula (see
e.g. [5], p.50):

p(z) =
n∑

k=1

wk
w(z)

(z − zk)w′(z)
(2)

where w(z) = (z − z1) · · · (z − zn). This formula is based on the fact that w(z)/(z − zk)

vanishes at all points zi different from zk . In the quaternionic framework, this procedure
cannot work and we will show this fact with a simple example.

Example 1 Consider two distinct points q1 and q2, and the polynomial w(q) =
(q − q1) ∗ (q − q2). This polynomial vanishes at q1 and at q̃2 = (q2 − q1)

−1q2(q2 − q1) so
it interpolates the points (q1, 0) and (q̃2, 0). To divide by a polynomial of the form (q − α)

means to multiply by (q − α)−∗, the ∗-reciprocal of (q − α), see [6] p.129, on the left or
on the right. Assume to divide by multiplying on the left by (q − α)−∗. It turns out that the
polynomial (q − q1)

−∗ ∗ w(q) = (q − q2) does not vanish at q̃2.

Despite these difficulties, it is possible to solve the problem of interpolating n points over
the quaternionic field. The problem has been addressed and solved in the general framework



of division rings by Lam, see [4], who studied the Vandermonde matrix, its invertibility and
interpolation. Other papers, in which similar results are obtained in the specific case of the
algebra of quaternions, are [7] in which the quaternionic Vandermonde matrix and so the
so–called double determinant is studied, and [8] which deals with the Cramer’s rule.

In this paper, we will show that it is possible to construct in integral form the Lagrange
interpolation polynomial Ln−1( f )(q) of degree n − 1 interpolating the values of a function
slice regular in a ball B(0, R) at the n roots of the unit, i.e. the roots of qn − 1 = 0.
Moreover, since a function f slice regular admits power series expansion at the origin
of the form

∑∞
k=0 qkak , we can construct the partial sum sn−1( f )(q) = ∑n−1

k=0 qkak

and we will prove the Walsh equiconvergence theorem (Theorem 3.6) and its converse
(Theorem 3.9). We also treat, see Theorem 3.7, an extension of Walsh result. As in the
complex case, we prove that our results are sharp. Our results are based on the fact that
unilateral polynomials can be considered as slice regular functions, a class of functions
defined over the quaternions which, despite the noncommutative setting, shares several
properties of holomorphic functions of a complex variable.

2. Preliminary results on quaternionic polynomials and slice regular functions

Let us begin by recalling some terminology and preliminary results which will be useful
in the sequel. An element in the skew field of quaternions H can be written as q = x0 +
x1i + x2j + x3k where x0, . . . , x3 ∈ R and the imaginary units i, j, k �∈ R satisfy

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j.

Given a quaternion q = x0 + x1i + x2j + x3k, its conjugate is defined as q̄ = x0 −
x1i − x2j − x3k and its norm is ‖q‖ = √

qq̄ =
√

x2
0 + x2

1 + x3
2 + x2

3 . Finally, the inverse

of a nonzero quaternion q is q−1 = q̄/‖q‖2.
We will denote by S the unit sphere of purely imaginary quaternion, i.e.

S =
{

q = x1i + x2j + x3k, such that x2
1 + x2

2 + x3
3 = 1

}
.

An element I ∈ S is such that I 2 = −1 and for this reason the elements of S are also called
imaginary units. For any I ∈ S, we define CI := {x + I y; | x, y ∈ R}. It is immediate
that CI can be identified with a complex plane. Any nonreal quaternion q is uniquely
associated to the element Iq ∈ S defined by Iq := (x1i + x2j + x3k)/‖x1i + x2j + x3k‖
and, obviously, q belongs to the complex plane CIq . The real axis belongs to CI for every
I ∈ S and thus a real quaternion can be associated to any imaginary unit I . Sometimes, it
will be useful to write a quaternion q as q = Re(q) + Iq‖Im(q)‖ where Re(q) = x0 and
Im(q) = x1i + x2j + x3k.

In the literature, there are several notions extending the holomorphy to functions of a
quaternionic variable. Here, we will consider the notion of slice regularity, see [9], since
polynomials with quaternionic coefficients (on the right) belong to the class of (left) slice
regular functions. Let us recall the following:

Definition 2.1 Let U be an open set in H and f : U → H real differentiable. f is called
left slice regular if for every I ∈ S, its restriction f I to the complex plane CI = R + IR

passing through origin and containing I and 1 satisfies



∂ I f (x + I y) := 1

2

(
∂

∂x
+ I

∂

∂y

)
f I (x + I y) = 0,

on U
⋂

CI .

One can introduce the notion of right slice regular functions thus obtaining a different
class of functions which, however, share properties analogous to those possessed by left
slice regular functions. In this paper, we do not consider right slice regular functions, so for
the sake of simplicity, we will refer to left slice regular functions as s-regular functions.

Let us now introduce the so-called (left) I -derivative of f at a point q = x + I y:

∂I f I (x + I y) := 1

2

(
∂

∂x
f I (x + I y) − I

∂

∂y
f I (x + I y)

)
.

Using this notion, we can now introduce the following:

Definition 2.2 Let U be an open set in H, and let f : U → H be a s-regular function. The
slice derivative ∂s f of f is defined by:

∂s( f )(q) =

⎧⎪⎨
⎪⎩

∂I ( f )(q) if q = x + I y, y �= 0,

∂ f

∂x
(x) if q = x ∈ R.

We have the following result characterizing s-regular functions on ball with centre at
the origin (and more in general with centre at a real point):

Theorem 2.3 Let B(0, R) = {q ∈ H; ‖q‖ < R} and let q = x + I y. A function
f : B(0, R) → H is s-regular if and only if it has a series representation of the form

f (q) =
∞∑

n=0

qn 1

n!∂
n
s f (0) =

∞∑
n=0

qn 1

n!
∂n f

∂xn
(0),

convergent in B(0, R).

Note that from this result, it easily follows that functions like the exponential, logartithm,
sine, cosine and all the converging power series in the variable q with real coefficients are
s-regular functions. Another useful result which will be useful in the sequel is the Cauchy
formula, see [6, Theorems 4.5.3, 4.5.4] and the definition of axially symmetric s-domain,
see [6, Definitions 4.1.4, 4.3.1]. For our purposes, it is enough to know that balls in H are
examples of axially symmetric s-domains.

Theorem 2.4 Let U ⊆ H be an axially symmetric s-domain such that ∂(U ∩CI ) is union
of a finite number of continuously differentiable Jordan curves, for every I ∈ S. Let f be a
s-regular function on an open set containing Ū and, for any I ∈ S, set dsI = −I ds. Then,
for every q ∈ U, we have:

f (q) = 1

2π

∫
∂(U∩CI )

−(q2 − 2Re[s]q + ‖s‖2)−1(q − s)dsI f (s) (3)



where the value of the integral depends neither on U nor on the imaginary unit I ∈ S.
Moreover,

∂n
s f (q) = n!

2π

∫
∂(U∩CI )

(q2 − 2s0q + ‖s‖2)−n−1(q − s)(n+1)∗dsI f (s)

where

(q − s)n∗ :=
n∑

k=0

n!
(n − k)!k!q

n−ksk . (4)

The kernel −(q2 −2Re[s]q +‖s‖2)−1(q − s̄) is denoted in [6] by S−1(s, q); it is defined
outside the set of zeros of q2 −2s0q +‖s‖2 which will be described below. Since this kernel
corresponds to the s-regular reciprocal of the function S(s, q) = s − q, in this paper we
will denote it by (s −q)−∗ where, by this notation, we mean that we are taking the s-regular
reciprocal with respect to the variable q.

As a corollary of Theorem 2.3, we immediately have that polynomials of the form
p(q) = ∑n

k=0 qkak , ak ∈ H, when considered as functions, are s-regular. Unilateral
polynomials with quaternionic coefficients have been widely studied in the literature and, as
it is well known, they can be multiplied with the ∗-product defined in (1). The ∗-product of
two polynomials can be rewritten in terms of the pointwise product, see [4, Proposition 16.3,
p.263]. Similarly, the ∗-product of two s-regular functions can be expressed as pointwise
product, see [6, Proposition 4.3.22]:

Proposition 2.5 Let � ⊆ H be an axially symmetric s-domain and let f, g : � → H

be s-regular functions. Then if f (q) �= 0

f ∗ g(q) = f (q) g( f (q)−1q f (q)), (5)

for q ∈ �. If f (q) = 0 then f ∗ g(q) = 0.

Let us now turn the attention to unilateral polynomials in the quaternionic setting and
their zeros, see [4]. In the sequel, we will denote by H[q] the quaternionic right linear
space of polynomials with quaternionic coefficients on the right. To describe the zeros of
polynomials in H[q], it is necessary to introduce an equivalence relation for quaternions:
two elements α, α′ ∈ H are equivalent and we write α ∼ α′ if and only if Re(α) = Re(α′)
and ‖Im(α)‖ = ‖Im(α′)‖. It is immediate that α ∼ α′ if and only if there exists q �= 0
such that q−1αq = α′ or, in other words, if α′ can be obtained from α by a rotation. The set
[α] is a sphere in H of the form Re(α) + I‖Im(α)‖ where I ∈ S. When α ∈ R, the sphere
reduces to the point α, i.e. it has radius equal to 0. We have the following well-known results,
see [4,10], that we collect in form of a Theorem for the reader’s convenience:

Theorem 2.6

(1) A quaternion α is a zero of a (nonzero) polynomial p ∈ H[q] if and only if the
polynomial q − α is a left divisor of p(q).

(2) If p(q) = (q − α1) ∗ · · · ∗ (q − αn) ∈ H[q], where α1, . . . , αn ∈ H, then α1 is a
zero of p and every other zero of p is in the equivalence class of αi , i = 2, . . . , n.



(3) If p has two distinct zeros in an equivalence class [α], then all the elements in [α]
are zeros of p.

When all the elements in [α] are zeros of p, we will say that [α] is a spherical zero of p.
It is easy to verify that the elements belonging to the equivalence class [α] are roots of the
following polynomial (sometimes called the minimal polynomial or companion polynomial
of the equivalence class [α]):

Qα(q) = (q − α) ∗ (q − ᾱ) = q2 − 2Re(α)q + ‖α‖2.

We also have (see [3,11]):

Proposition 2.7 We have Qα(q) = Qα′(q) if and only if [α] = [α′]. If Qα divides a
polynomial p(q) then p(λ) = 0 for every λ ∈ [α]. Otherwise, at most one element in [α] is
a zero of p.

From this discussion, we immediately have:

Proposition 2.8 The quaternionic equation qn − 1 = 0 has the real zero q = 1 and k
spherical zeros if n = 2k + 1, while it has the real zeros q = ±1 and k − 1 spherical zeros
if n = 2k.

Proof To solve the equation qn − 1 = 0 over the quaternions, we first solve zn − 1 = 0
in the complex field. This amounts to look for the solutions of the quaternionic equations
belonging to a complex plane CI . As it is well known, the complex equation has the real
zero +1 and pairs of conjugate roots if n = 2k + 1; it has zeros ±1 and k − 1 pairs of
conjugate zeros if n = 2k. By Theorem 2.6, each pair of conjugate roots corresponds to a
spherical zero. �

From this proposition, it follows that qn − 1 has an infinite number of zeros so, in
principle, we have an infinite number of points where to interpolate. However, the zeros
belong to a finite number of spheres and this will be enough to guarantee that we can
interpolate at a finite number of points. In fact, we have the following result (see [6, Corollary
4.3.6]):

Proposition 2.9 The values of an s-regular function f and, in particular, of a polynomial
at two points belonging to a same equivalence class [α] determine the values of f at all the
other points in [α].

2.1. The interpolation problem

Let us now come to the problem of interpolating the values of a s-regular function f at the
roots of the unity qn − 1 = 0 over the quaternions. From Proposition 2.9, we deduce that
it will mean to assign the n values of the function f at n points corresponding to:

• the real root +1 of the equation qn − 1 and k pairs of points (not necessarily
conjugated) belonging to a sphere of roots [α j ], j = 1, . . . , k, if n = 2k + 1;



• the real roots ±1 of the equation qn − 1 and k − 1 pairs of points (not necessarily
conjugated) belonging to a sphere of roots [α j ], j = 1, . . . , k − 1, if n = 2k.

As in the complex case, to look for the polynomial of degree p(q) = ∑n−1
j=0 q j a j

interpolating (qi , wi ), i = 1, . . . , n leads to the system:

a0 + q1a1+ · · · + qn−1
1 an−1 = w1

. . .

a0 + qna1+ · · · + qn−1
n an−1 = wn

which can be written as
V (q1, . . . , qn)a = w, (6)

where a = [a0, . . . , an−1]T , w = [w0, . . . , wn]T and whose matrix of coefficients is the
Vandermonde matrix:

V (q1, . . . , qn) =
⎡
⎣1 q1 · · · qn−1

1
. . .

1 qn · · · qn−1
n

⎤
⎦

The Vandermonde matrix in division rings has been studied in [12] and [13] in which
a sufficient condition in order to have the invertibility of V (q1, . . . , qn) and the unique
solution to the interpolation problem f (qi ) = wi , i = 1, . . . , n is given, see [12, Corollary
24]. The condition, in our case, can be expressed as follows:

Theorem 2.10 Given q1, . . . , qn ∈ H such that no three of them belong to the same equiv-
alence class, the Vandermonde matrix V (q1, . . . , qn) is invertible and for any w1, . . . , wn

there exists a unique solution to the interpolation problem (6).

In the paper [7], the authors have studied the specific case of quaternions reobtaining
the result in [12, Corollary 24] with a different method. In the language of [7], the so-called
double determinant of the Vandermonde matrix V (q1, . . . , qn) is nonzero if and only if no
three of the q j ’s are in the same equivalence class, see [7, Theorem 4.1]. This is the necessary
and sufficient condition in order to have a unique solution of (6) by virtue of the analogue
of Cramer’s rule proven in [8, Theorem 2.3]. In recent times, the Vandermonde matrix and
the interpolation problem have been considered also in [14], while an interpolation problem
in the Hardy space of the unit ball has been considered in [15].

Remark 2.11 Thus, we have that, in the case of interpolation at the roots of unity, the
interpolation problem admits unique solution if we assign the values at the real root(s) of
qn −1 = 0 and at two elements in each equivalence class [α] which is a root of the equation
(recall that, by Proposition 2.9, the obtained interpolation polynomial will have uniquely
determined values at all points of [α]).

3. Walsh equiconvergence theorem in quaternionic setting

Let us start by giving a definition which, as we shall see, will correspond to the analogue
of the Lagrange interpolation polynomial at the roots of the unity over the quaternions:



Definition 3.1 Let f : B(0; ρ) → H be (left) s-regular and let �R,I = {u ∈ H,

u = x + I y; ‖u‖ = R}, 1 < R < ρ, in other words, �R,I is the intersection of the
ball with centre at the origin and radius R with the complex plane CI . We define

Ln−1( f )(q)= 1

2π

∫
�R,I

(ξ−q)−∗∗(ξn−qn)(ξn−1)−1dξI f (ξ), q ∈ B(0; R), dξI = dξ/I,

(7)

where the ∗-product is taken with respect to q. Note that formula (7) seems to depend
on the plane on which the integral is computed. However this is not the case by virtue of
the following result:

Proposition 3.2 The definition of Ln−1( f )(q) does not depend on the choice of I ∈ S.

Proof Let I arbitrary in S and let J ∈ S be such that I ⊥ J . Then by the Splitting Lemma
for s-regular functions, see [9] or [6], the restriction of the s-regular function f to CI can be
written as f|CI (ξ) = F(ξ) + G(ξ)J where F, G : B(0, ρ) ∩ CI → CI are holomorphic
functions of the complex variable ξ . For the holomorphic function F (resp. G) the Lagrange
polynomials can be obtained as

Ln−1(F)(z) = 1

2π

∫
�R,I

(ξ − z)−1(ξn − zn)(ξn − 1)−1dξI F(ξ),

so we get

Ln−1(F + G J )(z) = 1

2π

∫
�R,I

(ξ − z)−1(ξn − zn)(ξn − 1)−1dξI (F(ξ) + G(ξ)J ),

i.e.
Ln−1( f|CI )(z) = 1

2π

∫
�R,I

(ξ − z)−1(ξn − zn)(ξn − 1)−1dξI ( f|CI (ξ)),

where z ∈ B(0; R) ∩ CI , dξI = dξ/I . By the Representation Formula, see
[6, Theorem 4.3.2], the value of the (s-regular) polynomial Ln−1( f|CI )(z) at any other
point of q = x + J y ∈ B(0; R) can be computed as

Ln−1( f )(q) = 1

2

[
Ln−1((1 + J I ) f|CI )(z) + (1 − J I )Ln−1( f|CI )(z)

]
and since

1

2

[
(1 + J I )(ξ − z)−1(ξn − zn) + (1 − J I )(ξ − z)−1(ξn − zn)

]
= (ξ −q)−∗ ∗ (ξn −qn)

we get formula (7). �

Remark 3.3 Another way to justify that the integral (7) does not depend on I ∈ S is the
fact that Ln−1( f )(q) is a polynomial of degree n −1 and its uniqueness, see Theorem 2.10,
guarantees that the definition does not depend on the choice made.

We now show that Ln−1( f ) is a polynomial of degree n − 1 interpolating f on the
roots of qn − 1 = 0. As we discussed in Section 2.1, a polynomial interpolating n roots of
the unity, not three of them on the same equivalence class, in reality interpolates f at all



the possible solutions to the equation qn − 1 = 0. To state next result, we denote the roots
of qn − 1 = 0 at which we are interpolating as qk,n = cos(2kπ/n) + Jn,k sin(2kπ/n),
k = 0, 1, . . . , n − 1, Jn,k ∈ S.

Proposition 3.4 Given the s-regular function f : B(0; ρ) → H, then Ln−1( f ) as in (7)
is a polynomial of degree n − 1 in the variable q and

Ln−1( f )(qk,n) = f (qk,n), for all k = 0, 1, . . . , n − 1,

where qk,n = cos(2kπ/n) + Jn,k sin(2kπ/n), for all Jn,k ∈ S i.e. Ln−1( f ) interpolates f
at the roots of the unity.

Proof First of all, we note that the polynomial (ξn − qn) vanishes when ξ = q, thus
(ξ −q) is a left factor and we can write (ξn −qn) = (ξ −q)∗ Pn−1(ξ, q) where Pn−1(ξ, q)

has degree n − 1 in q. So we have

Ln−1( f )(q) = 1

2π

∫
�R,I

(ξ − q)−∗ ∗ (ξ − q) ∗ Pn−1(ξ, q)(ξn − 1)−1dξI f (ξ)

= 1

2π

∫
�R,I

Pn−1(ξ, q)(ξn − 1)−1dξI f (ξ)

and Ln−1( f )(q) is an s-regular polynomial of degree n − 1 in q because so is Pn−1(ξ, q).
Let us consider now the root of the unity qk,n = cos(2kπ/n) + Jn,k sin(2kπ/n) and let us
compute Ln−1( f )(qk,n). Recalling that the evaluation is not a homomorphism with respect
to the∗-product, we cannot substitute qn,k in place of q in the expression (ξ−q)−∗∗(ξn−qn).
However, (5) gives

(ξ − q)−∗ ∗ (ξn − qn) = (ξ − q)−∗(ξn − q̃n),

where q̃ = f (q)−1q f (q) with f (q) = (ξ − q)−∗ . Then q̃n = f (q)−1qn f (q) and and so
(q̃n)|qk,n = 1, thus we have:(

(ξ − q)−∗ ∗ (ξn − qn)
) |q=qk,n (ξ − qk,n)−∗(ξn − 1).

Note that, in this case, the result follows also by direct computation in fact:

(ξ − q)−∗ ∗ (ξn − qn) = (q2 − 2Re(ξ)q + ‖ξ‖2)−1(ξ̄ − q) ∗ (ξn − qn)

= (q2 − 2Re(ξ)q + ‖ξ‖2)−1(ξ̄ ξn − qξn − qn ξ̄ + qn+1)

thus (
(ξ − q)−∗ ∗ (ξn − qn)

) |q=qk,n

= (q2
k,n − 2Re(ξ)qk,n + ‖ξ‖2)−1(ξ̄ ξn − qk,nξn − qn

k,n ξ̄ + qn+1
k,n )

= (q2
k,n − 2Re(ξ)qk,n + ‖ξ‖2)−1(ξ̄ ξn − qk,nξn − ξ̄ + qk,n)

= (q2
k,n − 2Re(ξ)qk,n + ‖ξ‖2)−1(ξ̄ − qk,n)(ξn − 1)

= (ξ − qk,n)−∗(ξn − 1).



Using these calculations, and recalling that Ln−1( f ) does not depend on the plane on which
we integrate, we finally have:

Ln−1( f )(qk,n) = 1

2π

∫
�R,Jn,k

(
(ξ − q)−∗ ∗ (ξn − qn)

) |q=qk,n (ξ
n − 1)−1dξJn,k f (ξ)

= 1

2π

∫
�R,Jn,k

(ξ − qk,n)−∗(ξn − 1)(ξn − 1)−1dξJn,k f (ξ)

= 1

2π

∫
�R,Jn,k

(ξ − qk,n)−∗dξJn,k f (ξ) = f (qk,n)

where the last equality follows from the Cauchy formula (3).

We point out that in the special case in which the function f s-regular on B(ρ, 0) is
quaternionic intrinsic, i.e. f (q̄) = f (q), then by the Splitting Lemma we have that its
restriction to a complex plane CI is of the form f|CI (ζ ) = F(ζ ) where F is a holomorphic
function on B(ρ, 0) ∩ CI . Reasoning as in the proof of Proposition 3.2, we have that the
Lagrange polynomial Ln−1( f|CI )(ζ ) = Ln−1(F)(ζ ) of the holomorphic function F is of
the form (2) where zk are the roots of the unity belonging to the complex plane CI . By
the representation formula, this polynomial extends to a quaternionic polynomial of the
form (2).

To our purposes, we also need an integral representation for the partial sum sn−1( f )(q)

of the Taylor series at the origin of function s-regular in a ball centred at the origin. If
f (q) =∑∞

k=0 qkak , we set sn−1( f )(q) :=∑n−1
k=0 qkak where ak = 1

k!∂
k
s f (0). We have the

following result:

Proposition 3.5 Let f : B(0; ρ) → H be s-regular and let �R,I = {u ∈ H, u =
x + I y; ‖u‖ = R}, R < ρ. We can write

sn−1( f )(q) = 1

2π

∫
�R,I

(ξ − q)−∗ ∗ (ξn − qn)ξ−ndξI f (ξ), (8)

where the integral does not depend on the choice of I ∈ S.

Proof When ‖q‖ < ‖ξ‖, we can write, see [6] p.53:

(ξ − q)−∗ =
∞∑

n=0

qnξ−n−1 =
(

n−1∑
k=0

qkξ−k +
∞∑

k=n

qkξ−k

)
ξ−1

=
(

n−1∑
k=0

qkξ−k + qn

( ∞∑
k=0

qkξ−k−1

)
ξ−n+1

)
ξ−1

=
(

n−1∑
k=0

qkξ−k + qn(ξ − q)−∗ξ−n+1

)
ξ−1. (9)

Note that (9) is valid outside the singularities of (ξ−q)−∗ and not only in the ball ‖q‖ < ‖ξ‖.



By using the Cauchy integral formula, which is independent of the choice of I ∈ S, and
(9) we get

f (q) = 1

2π

∫
�R,I

(ξ − q)−∗dξI f (ξ)

=
n−1∑
k=0

qk

(
1

2π

∫
�R,I

ξ−k−1dξI f (ξ)

)
+ 1

2π

∫
�R,I

qn(ξ − q)−∗ξ−ndξI f (ξ)

= sn−1( f )(z) + 1

2π

∫
�R,I

qn(ξ − q)−∗ξ−ndξI f (ξ), (10)

where we used the fact that (see Theorem 2.4):

1

k!∂
k
s f (0) = 1

2π

∫
�R,I

ξ−k−1dξI f (ξ). (11)

The equality (10) yields

sn−1( f )(q) = 1

2π

∫
�R,I

(ξ − q)−∗dξI f (ξ) − 1

2π

∫
�R,I

qn(ξ − q)−∗ξ−ndξI f (ξ).

The function (ξ − q)−∗ − qn(ξ − q)−∗ξ−n , which is s-regular in the variable q, can be
written as

(ξ − q)−∗ − qn(ξ − q)−∗ξ−n = (ξ − q)−∗ − (ξ − q)−∗ ∗ qnξ−n

= (ξ − q)−∗ ∗ (1 − qnξ−n)

= (ξ − q)−∗ ∗ (ξn − qn)ξ−n,

and so we obtain the statement.

We are now ready to prove the Walsh equiconvergence theorem in the quaternionic
setting.

Theorem 3.6 (Walsh equiconvergence) Let ρ > 1 and f : B(0; ρ) → H be s-regular,
i.e. f (q) =∑∞

k=0 qkak with ak ∈ H. Then

(i) Ln−1( f ) given by (7) converges uniformly and geometrically to f in any closed
ball B(0; R) with 1 < R < ρ;

(ii) limn→∞[sn−1( f )(q) − Ln−1( f )(q)] = 0, for all ‖q‖ < ρ2,

the convergence being again uniform and with geometric rate of convergence in
any B(0; R) with 1 < R < ρ2;

(iii) the result is the best possible, in the sense that for the s-regular function g :
B(0; ρ) → H, given by g(q) = (q−ρ)−1, for q = ρ2 we have limn→∞[sn−1(g)(q)−
Ln−1(g)(q)] �= 0.



Proof (i) Taking into account the Cauchy integral formula, see Theorem 2.4, we get

f (q) − Ln−1( f )(q) = 1

2π

∫
�R,I

(ξ − q)−∗ ∗ [1 − (ξn − qn)(ξn − 1)−1] dξI f (ξ),

q ∈ B(0; R).

Denoting A := 1 − (ξn − qn)(ξn − 1)−1, we get 1 − A = (ξn − qn)(ξn − 1)−1, which
implies (1 − A)(ξn − 1) = ξn − qn . A simple calculation implies A = (qn − 1)(ξn − 1)−1,
which replaced in the integral above gives

f (q) − Ln−1( f )(q) = 1

2π

∫
�R,Iq

(ξ − q)−∗ ∗ (qn − 1)(ξn − 1)−1dξI f (ξ).

Denote M = max{‖ f (ξ)‖; ξ ∈ ∂ B(0; R)} < ∞ (see the maximum modulus principle [9])
and take an arbitrary 1 < μ < R. For all ‖ξ‖ = R and ‖q‖ ≤ μ we immediately get
‖ξn − 1‖ ≥ Rn − 1 and ‖qn − 1‖ ≤ μn + 1. Recalling (5) we obtain that ‖(ξ − q)−∗‖ =
‖(ξ − q̃)−1‖ ≥ | ‖ξ‖ − ‖q‖ | = R − ‖q‖ ≥ R − μ which implies∥∥∥(ξ − q)−∗ ∗ (qn − 1)(ξn − 1)−1

∥∥∥ =
∥∥∥(ξ − q̃)−1

∥∥∥ ∥∥q̂n − 1
∥∥ ∥∥∥(ξn − 1)−1

∥∥∥
where q̃, q̂ are elements in the sphere defined by q according to (5) thus ‖q̃‖ = ‖q̂‖ = ‖q‖
and so

‖(ξ − q̃)−1‖ ‖q̂n − 1‖ ‖(ξn − 1)−1‖ ≤ μn + 1

(Rn − 1)(R − μ)
≤ 4

R − μ
·
(μ

R

)n
.

Therefore

‖ f (q) − Ln−1( f )(q)‖ ≤ M R · μn + 1

(Rn − 1)(R − μ)
≤ C

(μ

R

)n
, for all |q| ≤ μ < R,

with C = 4M R
R−μ

independent of n and q.
As 1 < R < ρ was arbitrary chosen, it follows the uniform convergence with geometric

rate
(

μ
R

)n , of Ln−1( f ) to f in any closed disc included in Dρ , which proves the first part
of the theorem.

(ii) For the second part of the theorem, we consider for any q ∈ B(0, R) the difference

Ln−1( f )(q) − sn−1( f )(q)

= 1

2π

∫
�R,I

(ξ − q)−∗ ∗ (ξn − qn)[(ξn − 1)−1 − ξ−n]dξI f (ξ)

= 1

2π

∫
�R,I

(ξ − q)−∗ ∗ (ξn − qn)(ξn − 1)−1ξ−ndξI f (ξ). (12)

Since (ξ − q) is a left factor of ξn − qn , the integrand at the right-hand side is s-regular for
all (finite) values of q and in particular for ‖q‖ = μ < ρ2. The estimate

‖(ξ − q)−∗ ∗ (ξn − qn)(ξn − 1)−1ξ−n‖ ≤ Rn + μn

(R − μ)(Rn − 1)Rn



implies

‖Ln−1( f )(q) − sn−1( f )(q)‖ ≤ M R(Rn + μn)

Rn(Rn − 1)(R − μ)
≤ 2M R

R − μ
·
(

Rn + μn

R2n

)

= C

(
1

Rn
+
( μ

R2

)n
)

,

with C = 2M R
R−μ

and the last term in the above inequality tending to zero (as n → ∞) for
any μ < R2, which proves the second part of the theorem too.

(iii) For the the third part of the theorem, let g(q) = (q−ρ)−∗ = (q−ρ)−1, q ∈ B(0; 1).
In this case, for ‖q‖ < ρ, by [6], p.53 (see also the proof of Proposition 3.4), we can write

g(q) = −(ρ − q)−1 = − 1

ρ
·

∞∑
k=0

(
q

ρ

)k

and obviously that the partial sum sn−1(g)(q) for this f will be

sn−1(g)(q) = − 1

ρ
·

n−1∑
k=0

(
q

ρ

)k

,

which immediately implies that

f (q) − sn−1(g)(q)

= − 1

ρ
·

+∞∑
k=n

(
q

ρ

)k

=
+∞∑
j=0

(
q

ρ

) j

· − 1

ρ
· qn

ρn
=
(

1 − q

ρ

)−1

· −qn

ρn+1
= (q − ρ)−1 · qn

ρn
.

On the other hand, by the above formula, we get

g(q) − Ln−1(g)(q) = 1

2π

∫
�R,I

(ξ − q)−∗(qn − 1)(ξn − 1)−1(−I )dξ · (ξ − ρ)−1.

Since the integral formula does not depend on the choice of the complex plane CI , we can
choose to integrate on the plane CIq . The integrand at the right-hand side can be viewed
as an integral in the complex plane CIq and therefore formally calculated exactly as in the
complex case (note that this is true because ρ ∈ R). Consequently, taking into account the
computations in the complex case (see [5], p.154), we get

g(q) − Ln−1(g)(q) = (q − ρ)−1(qn − 1)(ρn − 1)−1.

Collecting the results, it follows

Ln−1(g)(q) − sn−1(g)(q) = (q − ρ)−1 · ρn − qn

(ρn − 1)ρn
.

Now, taking q = ρ2, we easily get Ln−1(g)(q) − sn−1(g)(q) = 1
ρ−ρ2 , which obviously

does not approach zero. �

As in the complex case, many extensions of the Walsh’s theorem could be given. The
result below is a generalization of [16, Theorem 1] (for the points (i) and (ii)) and of
[2, Theorem 1] (for the point (iii)).



Theorem 3.7 Let ρ > 1 and f : B(0; ρ) → H be s-regular, i.e. of the form f (q) =∑∞
k=0 qkak, with ak ∈ H. For l ∈ N and j = 0, 1, . . . , l − 1, let us define the polynomials

Pn−1, j ( f )(q) =∑n−1
k=0 qkak+ jn and Sn−1,l( f )(q) =∑l−1

j=0 Pn−1, j ( f )(q).

(i) We have

lim
n→∞[Ln−1( f )(q) − Sn−1,l( f )(q)] = 0, for all ‖q‖ < ρl+1,

the convergence being uniform and with geometric rate of convergence in any closed
ball B(0; R) with 1 < R < ρl+1;

(ii) the convergence is the best possible, in the sense that for g(q) = (q −ρ)−1 and for
q = ρl+1, we have limn→∞[Ln−1(g)(q) − Sn−1,l(g)(q)] �= 0;

(iii) if f has a singularity on‖q‖ = ρ, then the sequence (Ln−1( f )(q)−Sn−1,l( f )(q))n∈N

can be bounded in at most l distinct points qk, k = 1, . . . , l, such that any three of
them do not belong to the same sphere and satisfy ‖qk‖ > ρl+1, k = 1, . . . , l.

Proof (i) Taking into account formula (11), by simple calculation (similar to those in the
complex case, see the proof of Theorem 1 in [16]), we easily arrive at the formula

Pn−1, j ( f )(q) = 1

2π

∫
�R,Iq

(ξ − q)−∗ ∗ (ξn − qn)
(
ξn( j+1)

)−1
dξIq f (ξ),

j = 0, 1, . . . , .

Therefore, taking into account the formula in Definition 3.1, for each integer l ≥ 1, we
obtain

Ln−1( f )(q) − Sn−1,l( f )(q)

= 1

2π

∫
�R,Iq

(ξ − q)−∗(ξn − qn)(ξn − 1)−1dξIq f (ξ)

− 1

2π

∫
�R,Iq

(ξ − q)−∗ ∗ (ξn − qn)

l−1∑
j=0

(ξn( j+1))−1dξIq f (ξ)

= 1

2π

∫
�R,Iq

(ξ − q)−∗ ∗ (ξn − qn)

⎡
⎣(ξn − 1)−1 −

l−1∑
j=0

(ξn( j+1))−1

⎤
⎦ dξIq f (ξ).

By simple properties of the powers of quaternions, we get

(ξn − 1)−1 −
l−1∑
j=0

(ξn( j+1))−1 = (ξn − 1)−1(ξnl)−1

and therefore

Ln−1( f )(q) − Sn−1,l( f )(q)

= 1

2π

∫
�R,Iq

(ξ − q)−∗ ∗ (ξn − qn)(ξn − 1)−1(ξnl)−1dξIq f (ξ).



Let 1 < μ < R, ‖t‖ = R, ‖q‖ ≤ μ and denote M = max{‖ f (q)‖; ‖q‖ = R}. Reasoning
exactly as in the proof of Theorem 3.6, we get∥∥∥(ξ − q)−∗ ∗ (ξn − qn)(ξn − 1)−1(ξnl)−1 f (ξ)

∥∥∥ ≤ M(Rn + μn)

Rnl(Rn − 1)(R − μ)
,

which implies

‖Ln−1( f )(q) − Sn−1,l( f )(q)‖ ≤ M R(Rn + μn)

Rnl(Rn − 1)(R − μ)
≤ 2M R

R − μ
·
(

Rn + μn

Rn(l+1)

)

= C

(
1

Rnl
+
( μ

Rl+1

)n
)

,

with C = 2M R
R−μ

and the last term in the above inequality tending to zero (as n → ∞) for
any μ < Rl+1, which proves (i).

(ii) By reasoning as in the proof of Theorem 3.6, (iii) (but see also [16], or the book
[1] at p.9) we get that the choices g(q) = (q − ρ)−1 and q = ρl+1 again gives that
limn→∞[Ln−1(g)(q) − Sn−1,l(g)(q)] �= 0.

(iii) The proof is by reduction to absurdum, that is we suppose that there would exist
l + 1 distinct points qk with ‖qk‖ > ρl+1, k = 1, . . . , l + 1, such that any three of them do
not belong to the same sphere and

‖Ln−1( f )(qk) − Sn−1,l( f )(qk)‖ ≤ M, for all k = 1, . . . , l + 1 and n ≥ 1. (13)

Since f is s-regular in B(0; ρ) with a singularity on ‖q‖ = ρ, by [17], p.115, we get

lim sup
n→∞

‖an‖1/n = 1

ρ
. (14)

We now have a part of the proof which follows exactly the lines in the proof of
Theorem 1 in [2] with some suitable adaptations. We repeat this part of the computation
for the reader’s convenience. For any ε > 0 such that ρ − ε > 1 and (ρ − ε)l+2 > ρl+1

there exists N ∈ N, N depending on ε, such that ‖an‖ ≤ 1/(ρ − ε)n , for all n ≥ N . By
our hypothesis, ‖qk‖ > ρl+1, k = 1, . . . , l + 1 and so we can set σ1 = minl+1

k=1 ‖qk‖ and
σ2 = minl+1

k=1 ‖qk‖ where

ρl+1 < σ1 ≤ σ2 < ρm+1, (15)

where m be the least integer for which the inequality holds. From point (ii) and (15), there
exists M1 such that∥∥∥∥∥∥Ln−1( f )(qk) −

m−1∑
j=0

Pn−1, j ( f )(qk)

∥∥∥∥∥∥ ≤ M1, n ≥ 1, k = 1, . . . , l + 1

which, by (13), implies∥∥∥∥∥∥
m−1∑
j=0

Pn−1, j ( f )(qk)

∥∥∥∥∥∥ ≤ M2, n ≥ 1, k = 1, . . . , l + 1. (16)



Using ‖an‖ ≤ 1/(ρ − ε)n , we get

‖Pn−1, j ( f )(q)‖ ≤ n‖q‖n

(ρ − ε)( j+1)n
, ∀n ≥ N , ‖q‖ > ρ, j ≥ 1.

Thus, for l + 1 ≤ m − 1, we have∥∥∥∥∥∥
m−1∑

j=l+1

Pn−1, j ( f )(q)

∥∥∥∥∥∥ ≤ (m − l − 1)n‖q‖n

(ρ − ε)(l+2)n
, ∀n ≥ N , ‖q‖ > ρ.

From this inequality and (16), we get

‖Pn−1, j ( f )(qk)‖ ≤ M2 + (m − l − 1)n‖qk‖n

(ρ − ε)(l+2)n
, ∀n ≥ N , k = 1, . . . , l + 1.

Note that, for any polynomial p(q)we have q∗p(q) = qp(q) and (q∗p(q))|q=qk = qk p(qk)

and so from the previous inequality it follows that

‖ql
k Pn,l(qk) − Pn−1,l(qk)‖ ≤ M3 + M4n‖qk‖n

(ρ − ε)(l+2)n
, ∀n ≥ N , k = 1, . . . , l + 1, (17)

and that

ql Pn,l( f )(q) − Pn−1,l( f )(q) =
l+n∑
j=n

q j aln+ j −
l−1∑
j=0

q j aln+ j . (18)

The last summand in (18) is bounded at the points qk , while the first summand evaluated at
qk satisfies ∥∥∥∥∥∥

l+n∑
j=n

q j
k aln+ j

∥∥∥∥∥∥ ≤ M5 + M4n‖qk‖n

(ρ − ε)(l+2)n
.

Dividing by ‖qk‖n and using the definition of σ1 we have∥∥∥∥∥∥
l∑

j=0

q j
k a(l+1)n+ j

∥∥∥∥∥∥ ≤ M5

σ n
1

+ M4n

(ρ − ε)(l+2)n
, ∀n ≥ N , k = 1, . . . , l + 1.

Now set τ := max{1/σ1; 1/(ρ − ε)l+2)}. Then by (15) we have τ < 1/ρl+1. We now
consider the system of l + 1 linear equations where the unknowns are the coefficients
a(l+1)n+ j ∈ H, i.e. we consider

l∑
j=0

q j
k a(l+1)n+ j := wk,n, k = 1, 2, . . . , l + 1,

where
‖wk,n‖ ≤ M6nτ n, ∀n ≥ N , k = 1, . . . , l + 1. (19)

Consequently, we can write the system in the form (6) whose matrix of coefficients is a
Vandermonde matrix of the distinct quaternions qk, k = 1, . . . , l + 1, such that any three of
them do not belong to the same sphere. Therefore, according to Theorem 2.10, the above



system has a unique solution for a(l+1)n+ j , j = 0, . . . , l, given by an analogous of the
Cramer’s method, see [8, Theorem 2.3]. Thus, each a(l+1)n+ j is a linear combination (with
coefficients depending only on qk, k = 1, . . . , l + 1) of wk,n .

Taking into account (19), this immediately implies that

‖a(l+1)n+ j‖ ≤ M7nτ n, n ≥ N , k = 1, . . . , l + 1.

This last inequality implies that lim sup‖an‖1/n ≤ τ 1/(l+1) < 1
ρ

, which contradicts (14). 

Remark 3.8 Note that for l = 1 we recapture Theorem 3.6.

In the case of complex variable, a converse of the Walsh’s result was obtained in [18].
The converse result in the quaternionic setting can be stated as follows.

Theorem 3.9 Let ρ > 1, l a positive integer, f : B(0; 1) → H be an s-regular function
on B(0; 1), i.e. f (q) = ∑∞

k=0 qkak, for all q ∈ B(0; 1) and continuous in B(0; 1). If the
sequence (Ln−1( f )(q) − Sn−1,l( f )(q))n∈N, considered in the statement of Theorem 3.7
is uniformly bounded in every closed subset of B(0; ρl+1), then f can be slice regularly
prolonged to B(0; ρ), i.e f : B(0; ρ) → H is an s-regular function on B(0; ρ).

Exactly as in the complex case in [18], the proof of this result requires the following
two lemmas.

Lemma 3.10 Let f : B(0; 1) → H be s-regular on B(0; 1), i.e. f (q) = ∑∞
k=0 qkak for

all q ∈ B(0; 1), and continuous in B(0; 1). Then we have

Ln−1( f )(q) − Sn−1,l( f )(q) = Ln−1

( ∞∑
k=ln

qkak

)
(q), l, n ∈ N, q ∈ B(0; 1).

Proof The proof is by induction. Indeed, for l = 1 we get Sn−1,1( f )(q) = Pn−1,0( f )(q) =∑n−1
k=0 qkak . According to Proposition 2.9 and Theorem 2.10, Ln−1( f )(q) is the unique

polynomial of degree ≤ n −1 coinciding with f on the n roots of unity, which immediately
implies that Ln−1(P)(q) = P(q), for any polynomial P of degree ≤ n − 1 and therefore
Sn−1,1( f )(q) = ∑n−1

k=0 qkak = Ln−1(
∑n−1

k=0 qkak)(q). The linearity of Ln−1 follows from
its definition and this immediately proves the case l = 1.

Now, suppose that the relationship is valid for l − 1. Since Ln−1(g)(q) depends only
on the n roots of unity and on the values of g taken on the n roots of unity , it is obvious
that Ln−1(g)(q) = Ln−1(enm g)(q), for all m, n ∈ N (here enm(q) = qnm). So, again by
the linearity of Ln−1, we have

Ln−1( f )(q) − Sn−1,l( f )(q) = Ln−1( f )(q) − Sn−1,l−1( f )(q) − Pn−1,l−1( f )(q)

= Ln−1

⎛
⎝ ∞∑

k=(l−1)n

qkak

⎞
⎠ (q) −

n−1∑
k=0

qkak+(l−1)n



= Ln−1

⎛
⎝ ∞∑

k=(l−1)n

qkak

⎞
⎠ (q) − Ln−1

⎛
⎝ ln−1∑

k=(l−1)n

qkak

⎞
⎠ (q)

= Ln−1

( ∞∑
k=ln

qkak

)
(q).

Lemma 3.11 If ak ∈ H, k = 0, 1, . . . , then the following relation hold:

a(3�2+1)m+p − a(6�2+1)m+p =
2�−1∑
j=�

a(3 j�+1)m+p +
2�−1∑

s=�+1

2�−1∑
j=�

a(3 js+2�+s+1)m+p

−
2�−1∑
s=�

2�−1∑
j=�

a(3 js+2�+ j+1)m+p (20)

for � = 2, 3, . . ., p = 0, 1, . . ., m = 1, 2, . . ..

Proof Since it is only simple manipulation of algebraic sums of the coefficients ak , it is
identical to the proof in the complex case, see [18]. �

Proof of theorem 3.9 A very careful examination of the proof in the complex case of
Theorem 1 in [18], shows that it is not difficult to see that replacing everywhere the modulus
| · | with the norm ‖·‖, from the above Lemmas 3.10, 3.11, the properties of the interpolating
polynomials Ln−1 and the representations under Cauchy integral forms of the coefficients
of a s-regular function (including the polynomials) and by following exactly the lines in the
proof of Theorem 1 in [18], p.272–276, we arrive at the conclusion that

lim sup
n→∞

‖an‖1/n ≤ r−1/(3l2+1).

This means that there exists ρ′ > 1 such that f can be prolonged analytically in B(0; ρ ′) and
has a singularity on {‖q‖ = ρ′}. Then, by Theorem 3.7, (iii), the sequence (Ln−1( f )(q) −
Sn−1,l( f )(q))n∈N can be bounded in at most l points qk, k = 1, . . . , l, such that any three of
them do not belong to the same sphere and satisfy ‖qk‖ > ρl+1, k = 1, . . . , l. Comparing
this with the hypothesis of Theorem 3.9, it necessarily implies that ρ ≤ ρ′, that is f is
s-regular on B(0; ρ).
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