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Abstract: We establish two new characterizations of magnetic Sobolev spaces for Lipschitz magnetic fields
in terms of nonlocal functionals. The first one is related to the BBM formula, due to Bourgain, Brezis and
Mironescu. The second one is related to the work of the first author on the classical Sobolev spaces. We also
study the convergence almost everywhere and the convergence in L! appearing naturally in these contexts.
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1 Introduction

In electromagnetism, a relevant role in the study of particles which interact with a magnetic field B = V x A,
A :R? - R3, is played by the magnetic Laplacian (V —iA)? (see [2, 16, 27]). This yields to nonlinear
Schrédinger equations of the type —(V —iA)?u + u = f(u), which have been studied extensively (see e.g.
[1, 13, 15, 17] and the references therein). The linear operator —(V — iA)?u is defined weakly as the differen-
tial of the energy functional
Hy(RY) > u v J [Vu - 1A(x)ul? dx
IRN

over complex-valued functions u on R". Here i denotes the imaginary unit and | - | the standard Euclidean
norm of CV. Given a measurable function A : R¥ — RV and given an open subset Q of R¥, one defines H} (Q)
as the space of complex-valued functions u € L*(Q) such that [u| Hi(Q) <0 for the norm

1

2

1 .
"u"H}q(Q) = (”u'l%Z(Q) + [u]i]ﬁ(ﬂ))z s [u]H}q(Q) = ( J’ [Vu - lA(X)l,ll2 dX) .
Q

In [14], some physically motivated nonlocal versions of the local magnetic energy were introduced. In
particular, the operator (-A)j is defined as the gradient of the nonlocal energy functional

lu(x) - A u(y)|?

|X_y|N+25 dx dy’

s N N
HS®RY) 5 u o (1 s)R[jv
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where s € (0, 1). Recently, the existence of ground stated of (-A)ju + u = f(u) was investigated in [11] via
Lions concentration compactness arguments. In [28] a connection between the local and nonlocal notions
was obtained on bounded domains; precisely, if Q c RY is a bounded Lipschitz domain and 4 € C2(RN), then
for every u € H;(Q) it holds

_ pl=y)-ACFE) 2
lim(1 - 5) J J uo - e YOI 4 dy = J Vu — iAGul? dx, (1.1)
s 1 |x — y|N+25
Q0 Q
where 1
Qy := 5 I lw - o|* do (1.2)
SN—l

being $N~! the unit sphere in RN and w an arbitrary unit vector of RV, See also [23] for the general case of
the p-norm with 1 < p < +oo as well as [24], where the limit as s \, O is covered. This provides a new char-
acterization of the H; norm in terms of nonlocal functionals extending the results by Bourgain, Brezis and
Mironescu [3, 4] (see also [12, 25]) to the magnetic setting. Let {s,,}nen be a sequence of positive numbers
converging to 1 and less than 1 and set

") = 2(1 — s,)diam(Q)25n~2r2-25-N  for 0 < r < diam(Q),
Pl for r > diam(Q),

where diam(Q) denotes the diameter of Q. We have fooo pn(MrN"1dr =1and, forall 6§ > 0,

(o0}

lim Jpn(r)rN‘1 dr=0.
n—+oo

5

Given u : Q — C a measurable complex-valued function, we denote
Wy (x, y) = eOAy(y), x,y e Q.

The function W,(-, -) also depends on A but for notational ease, we ignore it. Assertion (1.1) can be then
written as

. IWu(x,y) - Wulx, x)|? ~ . 2
lim JJ )12 pn(x —yl)dxdy = ZQNJWu iA(x)u|” dx. (1.3)

QQ Q

n—+oo

This paper is concerned with the whole space setting. Our first goal is to obtain formula (1.3) for Q = RY
and to provide a characterization of H}l(]RN ) in terms of the left-hand side of (1.3) in the spirit of the work of
Bourgain, Brezis and Mironescu.

Here and in what follows, a sequence of nonnegative radial functions {p,}nen is called a sequence of
mollifiers if it satisfies the conditions

o0 (oe]
J‘pn(r)rN’1 dr=1 and lim_ I pn(N™1dr=0 forall§ > 0. (1.4)
0 5

In this direction, we have the following:

Theorem 1.1. Let A : RY — RN be Lipschitz and let {pninen be a sequence of nonnegative radial mollifiers.
Then u € H; (RN) if and only if u € L>(RN) and

” [Pu(x,y) - Yulx, x)|?
Ix —yl?

sup
nelN

pn(Ix —y|) dx dy < +oo. (1.5)

R2N

Moreover, for u € H} (RY), we have

lim
n—+oo

\Pu ’ _\Iju ’ 2 .
” Pu(x }&_yp(x Xl pn(Ix —yl)dxdy = 2Qn J |Vu — iA(xX)ul? dx, (1.6)

R2N RN
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and

\I’u ’ _\Ilu ’ 2
[ Frele )= Sule 0 -y axay

x - yl?
R2N
< 218" [ 1V - 1400uP dx-+ 218" + VAR ) | Il dx. (1.7)
RN RN

In this paper, |$¥~1| denotes the (N — 1)-Hausdorff measure of the unit sphere $¥~1 in RV.
The proof of Theorem 1.1 is given in Section 2.

Remark 1.1. Similar results as in Theorem 1.1 hold for more general mollifiers {p,},en With slight changes
in the constants. See Remark 2.1 for details.

The second goal of this paper is to characterize H}‘(]RN ) in term of Js(- ), where, for 6 > O,
2

|X _ y|N+2
{I¥u ()Y (x,x)|>6}

Js(u) := dxdy forue Ly (RV).

This is motivated by the characterization of the Sobolev space H*(R") provided in [5] and [18] (see also
[6-10, 19-22]) in terms of the family of nonlocal functionals Is which is defined by, for 6 > 0,
52
o= Xy
{lu()-uCol>6}

dxdy forue Ly (RV).

It was showed in [5, 18] that if u € L2(RY), then u ¢ H'(RY) if and only if SUPgs<1 Is(U) < co; moreover,

lim I5() = Qu I Vul2dx foru € HY(RY).
N
Q

Concerning this direction, we establish the following:

Theorem 1.2. Let A : RN — RY be Lipschitz. Then u € H;(R") if and only if u € L*>(RN) and

sup Js(u) < +oo. (1.8)
0<6<1

Moreover, we have, for u € Hj (RY),

lim Js(u) = Qn j |Vu — iA(x)u|* dx
6N\0
IRN

and

supJs(u) < CN< I IVu —1ACOul* dx + (IVAI ey + 1) j ul? dx). (1.9)
6>0 BN B
Throughout the paper, we shall denote by Cy a generic positive constant depending only on N and possibly
changing from line to line.

The proof of Theorem 1.2 is given in Section 3.

As pointed out in [13], a physically meaning example of magnetic potential in the space is
1
A(X’y,Z)ZE(_y’X,O)9 (X,Y,Z)EIRB,

which in fact fulfills the requirement of Theorems 1.1 and 1.2 that A is Lipschitz. Furthermore, in the spirit
of [10], as a byproduct of Theorems 1.1 and 1.2, for u € L?(RYN), if we have

lim
n—+oo

”‘ [Wu(x, y) = Pulx, x)|?

Ix - yI? pnllx -y dxdy =0 or limJs(u)=0,

R2N

Brought to you by | provisional account
Unauthenticated
Download Date | 12/31/19 4:04 PM



230 —— H.-M.Nguyen et al., New characterizations of magnetic Sobolev spaces DE GRUYTER

then
VRu =-AJu, VJIu=ARu,

namely the direction of VR u, VJu is that of the magnetic potential A. In the particular case A = 0, this implies
that u is a constant function.

The LP versions of the above mentioned results are given in Sections 2 and 3. In addition to these results,
we also discuss the convergence almost everywhere and the convergence in L! of the quantities appearing in
Theorems 1.1 and 1.2 in Section 4.

The paper is organized as follows. The proof of Theorems 1.1 and 1.2 are given in Sections 2 and 3,
respectively. The convergence almost everywhere and the convergence in L! are investigated in Section 4.

2 Proof of Theorem 1.1 and its L”? version

The proof of Theorem 1.1 can be derived from a few lemmas which we present below. The first one is on (1.7).

Lemma 2.1 (Upper bound). Let A : R¥N — RN be Lipschitz and let {Pn}nen be a sequence of nonnegative radial
mollifiers. We have, for allu € H}(RY),

” IWu(X, y) - Yulx, x)|

Xy pn(lx —yl) dx dy

]RZN
< 2|s"Y| J IV —iAGOul® dx + 2ISV (2 + VAo ) j |ul? dx.
RN RN
Proof. Since C®(RYN) is dense in H}l(IRN ) (cf. [16, Theorem 7.22]), using Fatou’s lemma, without loss of gen-
erality, one might assume that u € C %(IRN ). Recall that

(o0}

[ patizhdz =171 [ putr -t dr = 15%1. 2.1)
RN 0
Since
Y, (x,y) - ¥u(x, x)|?
J| B Oy -y axay
]RZN y
{lx=yl=1}

<2 ﬂuu(yn2 FUOP)pa(x - y1) dx dy < 4|5V j lul? dx,
]RZN ]RN

it suffices to prove that

” IWu(x,y) - Yulx, x)|?

oy Pa(x-yDdxay

R2N
{lx-yl<1}

< 2|$N—1|( J IV —1ACOUI* dX + VAN oo gy J |u|2dx). (2.2)
RN RN

For a.e. x, y € RN, we have

oV (x,y) _ ei(x_y).A(%)Vu(y)_i{A(X+y) _(y X) - VA(X }/)} i(x-y)-A(E )u(y)
2

oy 2
It follows that
oV, (x, : X+
[FR 2 < wun - gl + 4 (*52) - a0 o+ 3y -xfea(FE o @3)
This implies

}a\yu(xy )/)

3y | < [Vuly) —1AY)U)| + IVA| Lo ry X = yllu)l,
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which yields, for x, y € RN with [x - y| < 1,

|\Iju(x’ }/) - \Iju(xa X)|2
Ix - yl?

1
<2 J [Vu(ty + (1 - t)x) —iA(ty + (1 - t)x)u(ty + (1 — 6)x)|? dt

1
+2IVAR 0 g, J u(ty + (1 - )12 dt. (2.4)
0
Since, for f € L2(RY), in light of (1.4) and (2.1), we get

1
j j j If(ty + (1 - 0x)Ppu(lx — y)) dt dx dy = j 012 dx j pullzl) dz = SV j FOOI? dx,
RN RN O RN RN RN
we then derive from (2.4) that
I Wu(x, y) - W, 0P
Ix -yl

pn(lx —yl) dx dy

R2N
{Ix-yl<1}

< 218" [ 1Vuty) - 1A0)uw) dy + 28V VAR, [ )P dy.
RN RN
which is (2.2). O

We next establish the following result which is used in the proof of (1.6) and in the proof of Theorem 1.2.

Lemma 2.2. Let u € C2(RN), A : RN — RN be Lipschitz, and let {pninen be a sequence of nonnegative radial
mollifiers. Then

_ 2
lim inf ” Wulx, ﬁ - ‘yyl;"" al pn(lx —yl)dxdy > 2Qy J |Vu - iA(oul? dx. (2.5)

R2N RN

n—+oo

Moreover, for any (e,) \ O, there holds

_ 2+&,
timinf [ A0y dxdy = 20 [ 19u-iAOuF d. 2.6)

R2N RN

n—+00

Throughout this paper, for R > 0, let Bz denote the open ball in RN centered at the origin and of radius R.
Proof. Fix R > 1 (arbitrary). Using the fact
lel — (1 +it)| < Ct> forteRR,

we have, for x, y € Bg,

[Wu(x,y) -1 +ilx-y)- A)uy)l <

Vatoy) - (1+ice-y)- 455 ) Juo)|

X+
+ix-yla(52) - A
< Cllullc2 gy (1 + I1Allwroo(s)) 2 1x — yI2.
Here and in what follows, C denotes a positive constant. On the other hand, we obtain, for x, y € Bg,

[u(x) - u(y) - vu@y) - (x - y)l < Cllullc2gpy1x - yI%.

It follows that
I[Wu(x, y) = Wulx, )] = (Vu(y) —1AQ)u)) - (v = 0| < Clullcaaey (1 + 1Allwreosg))1x = yI2. (2.7)
Since
Jim ” Ix = yI*pn(lx - y) dx dy =0, (2.8)
BrxBpg
{Ix-yl<1}
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it follows from (2.7) that
_ 2
lim inf H [Wu(x, y) = Pux, x)|

pa(lx —yl) dx dy

n—+0o Ix —yl?
BrxBg
{lx-yl<1}
. [(Vu(y) —1A()u®)) - (x - y)I?
= lim inf ” Xy pn(lx - yl) dx dy.

BrXxBgr
{lx-yl<1}

We have, by the definition of Qy,

—1 . _ 2
[| (ORI EIE ey dxdy > 200 [ 19U - AP dy. 29)

BrxBr Bg-1
{Ix-yl<1}

lim inf
n—+oo

By the arbitrariness of R > 1 we get

y -Vv 2
lim inf ” Fulx, ly)z - |;‘(X’ O (x - yly dxdy = 20y j Vi - iA(Oul? dx,
]RZN y ]RN
{Ix-yl<1}

which implies (2.5).
Assertion (2.6) can be derived as follows. We have, by Hélder’s inequality,

”‘ [Wu(x, y) = Pulx, x)|?

pn(lx = yl) dx dy

Ix - yl?
BgrxBgr
{lx-yl<1} 2 en
YL (x,y) — Pu(x, x)|2+en Toen Teen
s( [[ 5 ly)z_ﬂ;‘fg" ) pn(|x—y|)dxdy) ( | pn(|x—y|)dxdy)
BrxBg BrxBg
{lx-yl<1} {x-yl<1}

Since, for every R > 0, there holds

dim, ([ putwmaxar) -1,

BrXxBgr
{lx-yl<1}

we get (2.6) from (2.9) and the arbitrariness of R > 1. O
We are ready to prove (1.6).

Lemma 2.3 (Limit formula). Let A : RN — RN be Lipschitz and let {pn}nen be a sequence of nonnegative radial
mollifiers. Then, for u € H (RY),

B 2
lim ” Wulx, ﬁ - j’lg("’ O b1 yly dx dy = 20 j Vu —1ACoul? dx.

]RZN ]RN
Proof. By Lemma 2.1 and the density of C**(RY) in H}(RV), one might assume that u € C2(RV). From
Lemma 2.2, it suffices to prove that, for u € C2(RY),

\Pu ’ _\Pu ’ 2 .
” Wulx ’l’i_ylz(" O (Ix - yl) dx dy < 20 J IVu - iA(Oul? dx. (2.10)

R2N RN

n—+oo

lim sup
n—+oo

Fix R > 4 such that supp u ¢ Bg/>. Using (2.7) and (2.8), one derives that

_ 2
timsup || Wl y) = BuCG 1 ) 1y dxdy

n—-+0o Ix - yl?
BgrxBgr
{lx-yl<1}
— 1 . —_— 2
< lim sup ”‘ [(Vu(y) —iA(y)u(y)) - (x = y)| pnllx — yl) dx dy,
n—+co Ix - Y|2

BgrxBg
{lx-yl<1}
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which yields
. Y, (x,y) - Vu(x, x)|? .
timsup || PN = I (yyyaxay < 20w [ ug) - AP dy.  2.11)
n—+0o0 [x -yl
BrxBg RN
{lx=yl<1}

On the other hand, we have

. Y, (x,y) — Vyu(x, x)|?
lim sup ” Fu(x.y) ;'( L pn(lx =yl dx dy
n—-+oo |X — y|
]RZN
{lx=yl=1}
stimsup [ 20uGOP + luty)Ppa(be - yD dxdy o, (2.12)
n—+00 o
{Ix=yl=1}
and the fact that
if (x,y) ¢ Bg x Bgand |x - y| < 1, then |[¥,(x, y) - ¥y (x, x)| = 0, (2.13)
by the choice of R. Combining (2.11), (2.12) and (2.13) yields (2.10). O

The following result is about uniform bounds for the integrals in (1.5).

Lemma 2.4. Let A : RN — RN be Lipschitz and let {p,}nen be a sequence of nonnegative radial mollifiers. Then
u € Hy(RY)ifu € L*(RY) and

” IWu(x, y) = Wulx, )|

nem Ix - yl?

nelN

pn(Ix —yl) dx dy < +oo. (2.14)
]RZN

Proof. Let {14} be a sequence of nonnegative mollifiers with supp 7,, ¢ B; which is normalized by the con-
dition f]RN Tm(X) dx = 1. Set
Up = U * Tpy.

We estimate

” W, (6 ¥) = Pu, (X, )17

—-yl)dxdy.
e pn(ix - yl) dxdy

IRZN
We have

OVAED Y () — w01
” I m(Y) = Um (%) (X = y)) dx dy

Ix — y|?
]RZN

(@O ATy (y — 2) — u(x - 2))Ti(2) dz|?
_ ” 1N | p(lx = yl) dx dy.

Ix - yI?
]R2N

By the change of variables y’ = y — z and x' = x — z and using the inequality |a + b|? < 2(|a|? + |b|?) for all
a, b € C and applying Jensen’s inequality, we deduce that

Y, (x,y) - ¥, (x, x)|?
J| un (X, Y) i ( )] pullx = yI) dx dy

Ix -yl
IRZN

_ 2
<> ” IWu(x, y) - Vulx, X pon(lx = y1) dx dy

Ix - yI?
]RZN

ix-y)A(2L+z) _ Li(x-y)-A(%Y) 2 2
+zj J I le i CMOE  pn(x =y dzdxdy.  (2.15)

— V2
LA Ix -yl
Since, for t € R,
lel — 1| < C|t],
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it follows that, forall x, y, z € RY,
ix=y)-A(XY ix=y)-A(XY i(x=v)- Xty _A(Y
|l - lOAGT| - [l UGG - 1] < CIVAlLo X - Y112 < Clx - ylI21-

Here and in what follows in this proof, C denotes some positive constant independent of m and n. Taking into
account the fact that supp 7,, ¢ B1, we obtain

POYACE +2) _ iy} ACE) 12112
[ ] | MO @pn(ix - yD) dz dx dy

2
X_
o g Ix =yl

< [ | [ cumPen@patx-yndzaxay <c. (2.16)

RN RN RN

Combining (2.14), (2.15) and (2.16) yields

_ 2
” [V, (X, y) = Yy, (X, X)| pullx—yl)dxdy < C. (2.17)

Ix -yl
IRZN

On the other hand, by Lemma 2.2 we have

WV, (x,y) - ¥y (X, x)|?
lim inf ” W, (X, ) ;""(X O (x =yl dx dy = 20x j Vit — IAG)Um|? dx. (2.18)
ko Ix =yl o
The conclusion now immediately follows from (2.17) and (2.18) after letting m — +oo. O

We are ready to give the proof of Theorem 1.1.
Proof of Theorem 1.1. Theorem 1.1 is a direct consequence of Lemmas 2.1, 2.3 and 2.4. O

Remark 2.1. Let {p,}nen be a sequence of nonnegative radial functions such that

1 1
Jpn(i’)rl\"1 dr=1, lim Jpn(r)rN‘1 dr=0 foreveryé >0,
0 5

and

n—+oo

o0
lim jpn(r)rN‘3 dr =0.
1

Theorem 1.1 then holds for such a sequence {p,}nen provided that the constant 2 in (1.7) is replaced by
an appropriate positive constant C independent of u. This follows by taking into account the fact that,
for u e L2(RN),

_ 2
lim sup ” Wulx, y) = ¥ulx, X)| pn(lx —yl) dx dy
n—+00 |x — Y|2
IRZN
{Ix-yl=1}
< 2limsup ” (UG + [u@)*)pnllx = yDIx - yI? dx dy = 0.
n—+oco ROV
{Ix-yl=1}

For example, this applies to the radial sequence
pn(r) =21 —s,)r* 2N forr >0,

which provides a characterization of H}l(]RN ) and yields

lim (1-sy)
n—+oo

_ pll=y)-A(5Y) 2
” lu(x) - e U 4 dy = 200 J Vi - iA()ul? dx.
|X_y|N+Zs,,

R2N RN

Brought to you by | provisional account
Unauthenticated
Download Date | 12/31/19 4:04 PM
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Consider now the space (C", | - ) (n > 1), endowed with the norm
1
|Z|p = (|(]R21, s 'Rzn)lp + |(]Zl, ) ]Zn)lp)p ’

where | - | is the Euclidean norm of R" and Ra, Ja denote the real and imaginary parts of a € C, respectively.
We emphasize that this is not related to the p-norm in R". In what follows, we use this notation with n = N
and n = 1. Notice that |z|, = |z| whenever z € R", which makes our next statements consistent with the case
A =0 and u being a real valued function. Also | - | = | - |, consistently with the previous definition. Define,
for some w € $V1,

1
Qnyp = — J’ lw - ol do. (2.19)
p SN—l
We have, for z € CV, (see [3, 23])
J|z-m§da::_[|Rz-deo+ j |3z - 0P do = [Rz|PpQn,p + 1321’ pQn,p = |zIHpQn,p- (2.20)
§N-1 gN-1 gN-1

Using the same approach and technique, one can prove the following L? version of Theorem 1.1.

Theorem 2.1. Letp € (1, +00), A : RN — RN be Lipschitz, and let {pn}nen be a sequence of nonnegative radial
mollifiers. Then u € W}l’p (RN) if and only if u € LP(RN) and

sup ” [Wu(x,y) - Wulx, )l

nelN
R2N

1,
Moreover, for u € W ¥ (RN), we have

- W (x, y) - Wulx, X)lp ‘
lim ” u )I’X_ylz Ppn(|x—y|)dxdy =pQn,p J IVu—lA(x)u|§ dx

R2N RN

n—.+oo

and

\Pll ) _\Fu ) I
ﬂ' o) = Hubo Ny ) e~y dxdy

Ix =yl
R2N
sCMpj|Vu—uumugdx+CMpQ+mVAﬁmmm)J|u§dx (2.21)
RN RN

for some positive constant Cy,, depending only on N and p.
Remark 2.2. Assume that C is a positive constant such that, forall a, b € C,
la +blh < C(laly + |bI}).

Then assertion (2.21) of Theorem 2.1 holds with Cy,p = ISN-1|C.

3 Proof of Theorem 1.2 and its L? version

Let us set, for g € $N-1,
t

1
Ms(g, X) :=sup — J lg(x + so)| ds.
t>0 t o

and denote .#,, by .#n, en := (0, ..., 0, 1). We have the following result which is a direct consequence of
the theory of maximal functions, see e.g. [29, Theorem 1, p. 5].
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236 —— H.-M.Nguyen et al., New characterizations of magnetic Sobolev spaces DE GRUYTER

Lemma 3.1 (Maximal function estimate). There exists a universal constant C > 0 such that, for all o € $¥1,
J | (g, X)P2 dx < C j g2 dx forallg e L2(RY).
RN RN
The following lemma yields an upper bound of J5(u) in terms of the norm of u in H}X(IRN ).

Lemma 3.2 (Uniform upper bound). Let A : RN — RN be Lipschitz and u € H} (RY). We have

supJ5(u) < CN< [ 1vu=i400uP dx + (VAR gy + 1) [ 12 dx).
6>0 B BN
Proof. By the density of C2°(RY) in H} (RY), using Fatou’s lemma, we can assume that u € C(R"). For each

6 > 0, let us define
As = {x,y) e RN ¢ [y (x,y) - Yulx, x)| > 6, Ix -yl < 1}

and
Bs = {06, y) € RN : W, (6, y) - Wulx, X)| > 6, [x -yl = 1}.
We have 52 ,
Y, (x,y)-¥,0(x, x
JJ ez 1B dxdy < JJ ¥ulx.y) N]ig ) 1(x_y>1) dx dy.
Ix -yl Ix -yl
R2N R2N

Since ¥y (X, y) = Yu(x, X)| < [u(x)| + |u(y)| and

” OO ay<cn J (o2 dx,

Ix — y|N+2
{lx-yl=1} *

it follows that 52
” mlgﬁ dxdy < Cy J lu(x)|? dx.
RN RN

We are therefore interested in estimating the integral

” z
————dxdy.
_ y|N+2

X lx -yl

8

Let us now define
Xs :={(x, h,0) € RN x (0, 1) x $V1 : | ¥, (x, x + ho) — ¥y (x, x)| > 6}.
Performing the change of variables y = x + ho, for h € (0, 1) and o € $V-1, yields

52 52 52
” oy ey = m o dhdxdo = I ” o dhdxdo,
As Xs SN-1 G4

where G, denotes the set

Co:= {0, h) e RN x (0, 1) : [Wu(x, x + ho) - ¥y (x,x)| > 6}, oesV L

Without loss of generality it suffices to prove that, for 0 = ey = (0,...,0,1) e V1,
62 2 2 2
” B dhdx < CN< J [Vu —iA(x)u|” dx + ”VA"Loo(]RN) I |ul dx). (3.1)
Cey RN RN

We have, by virtue of (2.3),
[¥(x, x + hey) — ¥(x, x)| < ho#n(|Vu —iAu|, x) + hZIIVAIILoo(IRN)///N(IuI, X). (3.2)
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Using the fact thatif a + b > 8, then either a > g orb > g, we derive that

52 52 52
” rdhdx < H o dhdx + ” o dhdx
Cey {hn(IVu-iAul,x)>$} {h2(| VA oo vy A (1l 2)> 8}
62 52
< ” o dhdxr ” o dhdsx,
{h sty (IVu-iAul,x)>$} {RIVAl oo vy 2 (Il )> § }

where the last inequality follows recalling that since (x, h) € C,, then h € (0, 1). As usual, by using the theory
of maximal functions stated in Lemma 3.1, we have

” z—; dhdx < Cy J IVu — iA()ul? dx (3.3)
{hatn(IVu-iAul,x)> 3} RN
and .
” 53 dhdx < ChIVAIL J |uf? dx. (3.4)
{RIVAI oo ey #n (Il x)> 3} RN
Assertion (3.1) follows from (3.3) and (3.4). The proof is complete. 0

We next establish the following lemma.
Lemma 3.3 (Limit formula). Let A : RN — RY be Lipschitz and u € H}(RY). Then
limJs(u) = Qn I |Vu — iA(x)ul?® dx,
6\0
]RN
where Qy is the constant defined in (1.2).

Proof. By virtue of Lemma 3.2, for every § > 0 and all w € H}(RY), we have

Js(w) < CN( j IVw —1ACOWI® dx + (IVAl oo gy + 1) J lwl? dx). (3.5)

RN RN
Since
[Wu(x, y) = Yulx, )| < [¥y(x,y) = (X, )| + [Wuv (X, y) = Yuy(x, )1,

it follows that, for every € € (0, 1),

2 52
]5(11) < mdxd)/‘f' mdxdy.
{I¥y (x,y)=¥y (x,0)>(1-€) 8} {1Wu—y (6, Y) =¥y (x,)|>£8}
This implies, for € € (0, 1) and u, v € H; (RV),
Js) < (1 - &) Ja-e)s(v) + € *Jes(u = v). (3.6)

From (3.5) and (3.6), we derive that, for u, u, € H;(RY) and € € (0, 1),

Js()~(1-€)Ja-e)s(un) < g_ch( J |V (1= un) ~1ACO U= tn)|* AX+ (IVA] o oy + 1) J |1t =t |? dX) 3.7)

RN RN

and

(1-8)*T5/1-¢) (un) =T (W) < 3_2CN< j IV (1= ttn) 1A GO U= n)|? AX+ (VAN o gy +1) J Iu—unlde)- (3.8)
RV RV

Since CL(RY) is dense in Hy (RV), from (3.7) and (3.8), it suffices to prove the assertion for u € CL(RV). This

fact is assumed from now on.
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Let R > O be such that supp u c Bg/>. We claim that, for every o € $N-1 there holds

. 1 1 . )
151\1%1 ” Fdhdx— 5 J [(Vu —iAu) - o|* dx. (3.9)

{06 h)eBrx(0,00) : | Huttxt A ¥uten) |y | RY

Without loss of generality, we can assume o = ey € $N-1. Then, we aim to prove that

1 1 2
lim “ o5 dhdx= 5 j ;7”(;0 - iAN(x)u(x)| dx,
N N

{0c.n)eBrx(0,00) : | Tubextthen) ¥ulod) |y 1 } RY

where Ay denotes the N-th component of A. To this end, we consider the sets
Y, (x, x + 6h;;lv) - ¥, (x, x) ‘h . 1}’

e = {(xN, h) € R x (0, 0) : l%(x, lh > 1},

Fx' = {(xn, h) € Rx (0, 00) : ho#tn(IVu — iAul, x) + h2||VA||Lm(RN)//lN(|u|,x) > 1}.

Coy (X', 8) i= {(xN, h) € Rx (0, 00) : |

Therefore, we obtain XQEN(X’,(S)(XN, h) < xguy(xn, h) for a.e. (x, h) € Bg x (0, 00) (by (3.2) in the proof of
Lemma 3.2) and

1
J J FX?(X’)(XN, h)dhdx <J; + 93,
0

Br
where we have set
1
9, = ” = dhdsx,
{(x,h)eBgx(0,00) : .4 (|Vu-iAul,x)h>1}
1
Iy = B dh dx,

{(x,h)€Bgx(0,00) : R2|[VAIl oo (N #n (Il X)> 3 }
and we have denoted y the characteristic function. We have, by the theory of maximal functions,
J1<C j [Vu - iA(0ul? dx,
RN
and, by a straightforward computation,
J2 < CIVA| oy llull ooy BRI
The validity of claim (3.9) with ¢ = ey now follows from Dominated Convergence theorem since

%iigXGeN(x’,é)(XN, h) = xew)(xn, h) fora.e. (x, h) € Bg x (0, 00),

and, by a direct computation,

N 1 1 (] ou , 2
j JXg(xf)(XN, Moy dhdx = ”m(x) _ 1AN(x)u(x)| dx.
BR BR

Now, performing a change of variables we get

[ee]

82 1
oy dxdy = J j Jxea(ﬁ)(x, h) dhdodx,

{IWu(x,y) =¥y (x,x)|>6, x€BR} Br §N-1 0

where v sh v
Cy(8) 1= {(x, h) € Bg x (0, c0) : | ulX, X+ 5‘;1) ~Yulx, X)|h > 1}.

Exploiting (3.9), we obtain

lim ” 6 axay- L j j (Vu - iAw) - o dx do (3.10)

NG |x — y|N+2 y=3 ’ ’

{I¥, (x,y)-¥u (x,x)|>6, xeBg} §N-1 Bp
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On the other hand, since supp u c Bg/2, we have

52 52

lim ” —————dxdy =1lim ” ————dxdy =0. 3.11

5\0 |X — y|N+2 y 550 |X _ y|N+2 y ( )
{IWu ()= (x,X)|>8, xeRN\Bg} {xeRN\Bg, y€Bg,>}

Combining (3.10) and (3.11) yields
lim 8 axdy= L j j (Vi - iAu) - o2 dx do
5\0 |x — y|N+2 y=3 )
{1, 06y) = Wu(x,x)[>6} SN-1 RN

In order to conclude, we notice the following, see (2.20):
J |V-0|>do =2Qy|V|> foranyV e CV,
g1
where Qy is the constant defined in (1.2). O
We next deal with (1.8).
Lemma 3.4. Letu € L>(RV) and let A : RN — RY be Lipschitz. Then u € Hy(RN) if

sup Js(u) < +oo. (3.12)
6¢€(0,1)

Proof. The proof is divided into two steps.
Step 1. We assume that u € L2(RN) n L®(RY). Set

L:= sup [Yyu(x,y)-"Yulx, ).
X,yeRN

In light of (3.12), we obtain

L

Je&f-%(u) s < C

0
for some positive constant C independent of € € (0, 1). By Fubini’s theorem and by the definition of L, we
have

L 1 [ (X, y)=Fu (x,0)]
1868—1]5(11) ds = J - 86€+1 déd dXdy.
[x — y|N+2
0 ]RZN
It follows that -
1 ” Wy (x, y) = Pulx, x)| £ dxdy < C.
2+¢ x — y|>+ x — y[N-¢

R2N
By virtue of inequality (2.6) of Lemma 2.4, we have

£—0 |x — y|2te |x — y|N-
]RZN

_ 2+¢€
lim inf ” Wult,y) = Pulx, X)| f — dxdy>20y J Vu - iACQul? dx,
]RN

which implies u € Hy (RV).

Step 2. We consider the general case. For M > 1, define Ty : C — C by setting

z if|z] < M,
‘IM(Z) =

% otherwise,

and denote
uy = ‘TM(M).
Then we have
|[Tm(z1) = Tm(z2)| < |z1 — 22| forall zq,z; € C.
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It follows that
(W, (X, ¥) = Vo, (X, X)| < [¥yu(x,y) = Pulx,x)| forallx,y e RN,

Hence we obtain
Js(un) < Js(u). (3.13)

Applying the result in Step 1, we have uy; € H}l(IRN ) and hence by Lemma 3.3,

éig(l)la(um) =2Qy j [Vup(x) — iA)um()|* dx. (3.14)
IRN

Combining (3.13) and (3.14) and letting M — +c0, we derive that u € H}l (RM). The proof is complete. O
Remark 3.1. Similar approach used for H*(RN) is given in [18].

Proof of Theorem 1.2. The limit formula stated in Theorem 1.2 follows by Lemma 3.3. Now, if u € H}l(lRN ),
then (1.9) follows from Lemma 3.2. On the contrary, if u € L?(RY) and (1.8) holds, it follows from Lemma 3.4
that u € Hy(RM). O

Given u a measurable complex-valued function, define, for 1 < p < +oo,

]6,1)(”) = m dxdy foré > 0.

{1¥u 06y)=Wu(x,x)|p>6}
We have the following L?-version of Theorem 1.2.

Theorem 3.1. Letp € (1, +co) andlet A : RN — RN be Lipschitz. Thenu € Wj’p(lRN) ifand only ifu € LP(RN)
and

sup Js,p(u) < oo.
0<6<1

1,
Moreover, we have, for u € W, 7 (RV),

lim o, (W) = Qxp | 1Vu - i4COul dx
IRN

and
Ts.p(w) < CN,p< j Vi~ 1A dx + (VA gy + 1) j ulh dx)
]RN IRN
for some positive constant Cy,, depending only on N and p.
Recall that Qy,p, is defined by (2.19).
Proof. We have the maximal function estimates in the form
J | o8 ) dx < Cp j gl dx forallg ¢ LP(RY)
RN RN

for all 0 € $V-1 and g € LP(RY), either complex or real valued. It is readily checked (repeat the proof
of [16, Theorem 7.22] with straightforward adaptations) that C2°(RY) is dense in W}l’p (RM). Lemma 3.2
holds in the modified form

Js.p(u) < CN,,,< J IVu - iA(uly, dx + (||VA||‘L’OO(]RN) +1) J lulp dx)
]RN

]RN
forallu € W};’p (RM) and 6 > 0. To achieve this conclusion, it is sufficient to observe that, see (3.2),
[W(x, x + hey) - ¥(x, x)|p < hoatn(|Vu —iAulp, x) + hZIIVAlle(IRN)//N(Iulp, x).
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The rest of the proof follows verbatim. Lemma 3.3 holds in the form
lim 5,5 = Q| 1V~ iACOuE dx
N\
RN

foreveryu € W}l’p (RY). In fact, mimicking the proof of Lemma 3.3, one obtains
. oF 1 .
lim ” ————dxdy = — I J [(Vu —iAu) - 0P dx do.
5\0 |x — y|N+p p
{1Wu 06,) = Fu ()| > 6} $N-1 RN

The final conclusion follows from (2.20). Lemma 3.4 can be modified accordingly with minor modifications,
replacing | - | with | - . O

4 Convergence almost everywhere and convergence in L!

Motivated by the work in [8] (see also [26]), we are interested in other modes of convergence in the context
of Theorems 1.1 and 1.2. We only consider the case p = 2. Similar results hold for p € (1, +oco) with similar
proofs. We begin with the corresponding results related to Theorem 1.1. For u € L1 (RV), set

[Pu(x,y) - Yulx, x)|
Ix —yl?

1
loc

Dyn(u, x) := J pn(lx -y dy forxeRVN.

]RN
Proposition 4.1. Let A : RY - RY pe Lipschitz, u € H}l(]RN ), and let (py) be a sequence of radial mollifiers
such that

supsup t 2pu(t) < +c0.
t>1 n

We have
nEIPoo Dp(u, x) = 2Qn|Vu(x) —iA(x)u(x)|> forae.x e RV,
and
lim Dy(u,-) = 2QuIVu(-) 1A )u(-)?  in LRY).

Before giving the proof of Proposition 4.1, we recall the following result established in [9, Lemma 1] (see also
[8, Lemma 2] for a more general version).

Lemma 4.1. Letr>0,x e RN and f € L} (RN). We have
r

J j f(x + 50| ds do < CyrM(f)(x).

§N-1 0

Here and in what follows, for x € RY and r > 0, let B,(r) denote the open ball in RN centered at x and of
radius r. Moreover, M(f) denotes the maximal function of f,

. 1 N
M(H(x) := srt:(l)) |B"(r)|3!) lfy)ldy, xeR".

As a consequence of Lemma 4.1, we have:

Corollary 4.1. Letf € Llloc(]RN ) and let p be a nonnegative radial function such that
[ee]

Jp(r)rN‘1 dr=1. (4.1)
0

Then, for a.e. x € RN,

1
j j ity - %) + x)lp(ly - x)) dt dy < CyM()(x).
B.(r) 0
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Proof. Using polar coordinates, we have
1

j Aty - )+ 0)lp(ly - x1) dt dy = j
By(r) O 0

If(x + tso)|sN"1p(s) dt do ds.

!

O t—

S 1

Applying Lemma 4.1, we obtain, for a.e. x € RV,
1

J I If(x + tso)| dt do < CyM(f)(x).

§N-1 0

It follows from (4.1) that, for a.e. x ¢ RY,
1

j fity - x) + 0lp(ly - x) dt dy < CyM(P(0),
B.(r) O

which is the conclusion. O
We are ready to give the proof of Proposition 4.1.
Proof of Proposition 4.1. We first establish that, for a.e. x € RV,

IDy(u, )| < C(M(IVu - iAul?)(x) + M(Jul*)(x)) + m j lu(y)I? dy, (4.2)
RN\B,(1)
where

m := 2 supsup t 2pn(t).
t>1 1

Here and in what follows in this proof, C denotes a positive constant independent of x. Indeed, we have, as
in (2.4), fora.e. x,y € RN with |y - x| < 1,

[Py (x, y) - Pulx, x)|?
Ix —yl?

<2 J [Vu(t(y — x) + x) —iA(t(y — x) + x)u(t(y — x) + x)I2 dt
0

1
+ 2VAR gy [ ety =) 401 de.
0

This implies, for a.e. x € RN,
[Wu(x,y) - Yulx, x)|?
Ix —y|?

pnlly = x|) dy
B.(1)

1
<2 j j IVu(t(y - X) + X) — A - x) + 0ut(y - x) + ) 2pn(ly - x]) dt dy
By(1) O

1
+ 2y | [ Ity =20+ 0Rpuly - xb e dy.
B.(1) 0

Applying Corollary 4.1, we have, for a.e. x € RV,
IWu(x, y) = Wulx, )|

X— P2 pa(ly = xI) dy < CM(JVu - iAul*)(x) + CM(Ju|*)(x). (4.3)

By (1)
On the other hand, we get

v, (x,y) - Vu(x, x)|? _
[l ’l’i_ylg‘( Ity - xl) dy < 2uG0P + 2 j lu)I*pn(ly = xDlx - yI7* dy

RN\By(1) RN\B,(1)

< 2lu()|®> + m J lu(y)|? dy. (4.4)

RN\By(1)
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A combination of (4.3) and (4.4) yields (4.2). Set, for v € H}X(IRN) and e > 0,

Qe(v):={x e RY : lim sup [Dy(v, x) - 2Qn|Vv(x) — IA(X)v(x)|?| > e}.

n—+oo

By (2.7), one has, for v € C2(RV) and € > 0,
[Qe(v)] = 0.

Using the theory of maximal functions, see e.g. [29, Theorem 1, p. 5], we derive from (4.2) that, forany £ > 0
and for any w € H}(RY) with m f]RN lwy)|? dy < &,

1Qe(w)| < g J(IVW(X) —1A)WX)|? + [w(x)|?) dx. (4.5)

RN

Fix € > 0 and let v € C2(RN) with max{1, m}|v - Ul vy < 5. We derive from (4.5) that

o
1) < 1Qe(u - V) <~V = ullp ) < Ce.

2
H}(RY
Since € > 0 is arbitrary, one reaches the conclusion that [Qq(u)| = 0. The proof is complete. O

We next discuss the corresponding results related to Theorem 1.2. Given u € Llloc(]RN ), set, for x € RN,

52
Js(u, x) = =y dy.
{1Wu (6 y) =T u (x,0)[>6}
We have:

Proposition 4.2. Let A : RV — RY be Lipschitz and let u € H}(RN). We have

}Sin‘éfs(u, x) = Qn|Vu(x) — A u(x)|? fora.e. x € RN (4.6)
N

and
161{1516(11, ) = QuIVu(-) —iA(u()?  in LY (RY). (4.7)

Proof. Forv e Hj(RY), set

MV, X) = J (1 #6(1VV = 1AV], O + IVAI oo o |- 46 (IV], 0)17) do - for x € RY,

§N-1

and denote
R 52
Js(u, x) = —
6( ) |X _ y|N+2
{I¥u 06y)=Wu(x,0)1>6 : ly-x|<1}

dy forx e RV,

We first establish a variant of (4.6) and (4.7) in which Js is replaced by Js. Using (3.2), as in the proof of
Lemma 3.2, we have, for any v € H}(RY),

Js(v,x) < Cy.# (v, x) forall § > 0.
We derive that, for u, u, € Hy(RY), and € € (0, 1),
Js(u, x) = (1 - &) *J(1-e)5(Un, X) < € 2Cxn.l (U — Up, X) (4.8)

and
(1 - &) Ts/(1-e)(Un, X) = Js(u, X) < € 2CNAM (U ~ Un, X). (4.9)

On the other hand, one can check that, as in the proof of Lemma 3.3, for u, ¢ C%(]RN ),

}sir%jg(un, x) = Qn|Vun(x) — iAX)uy(x))> forx € RV. (4.10)
N
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We derive from (4.8), (4.9) and (4.10) that, for u € H}(RV),
151{3]5(”’ X) = Qn|Vu(x) - iAux)* fora.e. x e RY, (4.11)
and, we hence obtain, by the Dominated Convergence Theorem,
1513376(11,') = QuIVu(-) —iA(-)u()* inL'(RY), (4.12)

since . (u, x) € LY(RY). A straightforward computation yields

62
li J ———dy=0
N Ix — y[N+2 y
{ly-xI=1}
It follows that
}Sir%[j,s(u, x)-Js(u,x)] =0 fora.e.x e R, (4.13)
N
We also have, for w € C3(RN),
52 52
lim ” — % dxdy<lim ” — % dxdy-o,
5\0 |x — y|N+2 xdy 550 [x — y|N+2 xay
{I¥w (6y)=Ww (6, 0)[>6 : ly-x|>1} {(BRXRN)U(RN xBg) : [y-x|=1}

where R > 0 is such that supp w ¢ Bg. Using Lemma 3.2 and the density of C2(R") in H} (RY), we derive that
lim(Js(u, ) = Js(u, )] = 0 in L'(RY). (4.14)

N
The conclusion now follows from (4.11), (4.12), (4.13) and (4.14). O
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