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Abstract: We establish two new characterizations of magnetic Sobolev spaces for Lipschitz magnetic fields
in terms of nonlocal functionals. The first one is related to the BBM formula, due to Bourgain, Brezis and
Mironescu. The second one is related to the work of the first author on the classical Sobolev spaces. We also
study the convergence almost everywhere and the convergence in L1 appearing naturally in these contexts.
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1 Introduction
In electromagnetism, a relevant role in the study of particles which interact with a magnetic field B = ∇ × A,
A : ℝ3 → ℝ3, is played by the magnetic Laplacian (∇ − iA)2 (see [2, 16, 27]). This yields to nonlinear
Schrödinger equations of the type −(∇ − iA)2u + u = f(u), which have been studied extensively (see e.g.
[1, 13, 15, 17] and the references therein). The linear operator −(∇ − iA)2u is defined weakly as the differen-
tial of the energy functional

H1
A(ℝ

N) ∋ u → ∫ℝN |∇u − iA(x)u|2 dx
over complex-valued functions u on ℝN . Here i denotes the imaginary unit and | ⋅ | the standard Euclidean
norm ofℂN . Given ameasurable function A : ℝN → ℝN and given an open subsetΩ ofℝN , one definesH1

A(Ω)
as the space of complex-valued functions u ∈ L2(Ω) such that ‖u‖H1

A(Ω) <∞ for the norm

‖u‖H1
A(Ω) := (‖u‖2L2(Ω) + [u]2H1

A(Ω)) 12 , [u]H1
A(Ω) := (∫

Ω

|∇u − iA(x)u|2 dx)
1
2

.

In [14], some physically motivated nonlocal versions of the local magnetic energy were introduced. In
particular, the operator (−∆)sA is defined as the gradient of the nonlocal energy functional

Hs
A(ℝ

N) ∋ u → (1 − s)∬ℝ2N |u(x) − e
i(x−y)⋅A( x+y2 )u(y)|2
|x − y|N+2s dx dy,
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where s ∈ (0, 1). Recently, the existence of ground stated of (−∆)sAu + u = f(u) was investigated in [11] via
Lions concentration compactness arguments. In [28] a connection between the local and nonlocal notions
was obtained on bounded domains; precisely, ifΩ ⊂ ℝN is a bounded Lipschitz domain and A ∈ C2(ℝN), then
for every u ∈ H1

A(Ω) it holds

lim
s↗1(1 − s)∫

Ω

∫
Ω

|u(x) − ei(x−y)⋅A( x+y2 )u(y)|2
|x − y|N+2s dx dy = QN ∫

Ω

|∇u − iA(x)u|2 dx, (1.1)

where
QN := 12 ∫𝕊N−1 |ω ⋅ σ|2 dσ (1.2)

being 𝕊N−1 the unit sphere in ℝN and ω an arbitrary unit vector of ℝN . See also [23] for the general case of
the p-norm with 1 ≤ p < +∞ as well as [24], where the limit as s ↘ 0 is covered. This provides a new char-
acterization of the H1

A norm in terms of nonlocal functionals extending the results by Bourgain, Brezis and
Mironescu [3, 4] (see also [12, 25]) to the magnetic setting. Let {sn}n∈ℕ be a sequence of positive numbers
converging to 1 and less than 1 and set

ρn(r) :=
{
{
{

2(1 − sn)diam(Ω)2sn−2r2−2sn−N for 0 < r ≤ diam(Ω),
0 for r > diam(Ω),

where diam(Ω) denotes the diameter of Ω. We have ∫∞0 ρn(r)rN−1 dr = 1 and, for all δ > 0,
lim

n→+∞ ∞∫
δ

ρn(r)rN−1 dr = 0.
Given u : Ω → ℂ a measurable complex-valued function, we denote

Ψu(x, y) := ei(x−y)⋅A( x+y2 )u(y), x, y ∈ Ω.

The function Ψu( ⋅ , ⋅ ) also depends on A but for notational ease, we ignore it. Assertion (1.1) can be then
written as

lim
n→+∞∫

Ω

∫
Ω

|Ψu(x, y) − Ψu(x, x)|2

|x − y|2
ρn(|x − y|) dx dy = 2QN ∫

Ω

|∇u − iA(x)u|2 dx. (1.3)

This paper is concerned with the whole space setting. Our first goal is to obtain formula (1.3) for Ω = ℝN

and to provide a characterization of H1
A(ℝ

N) in terms of the left-hand side of (1.3) in the spirit of the work of
Bourgain, Brezis and Mironescu.

Here and in what follows, a sequence of nonnegative radial functions {ρn}n∈ℕ is called a sequence of
mollifiers if it satisfies the conditions∞

∫
0

ρn(r)rN−1 dr = 1 and lim
n→+∞ ∞∫

δ

ρn(r)rN−1 dr = 0 for all δ > 0. (1.4)

In this direction, we have the following:

Theorem 1.1. Let A : ℝN → ℝN be Lipschitz and let {ρn}n∈ℕ be a sequence of nonnegative radial mollifiers.
Then u ∈ H1

A(ℝ
N) if and only if u ∈ L2(ℝN) and

sup
n∈ℕ∬ℝ2N |Ψu(x, y) − Ψu(x, x)|2

|x − y|2
ρn(|x − y|) dx dy < +∞. (1.5)

Moreover, for u ∈ H1
A(ℝ

N), we have

lim
n→+∞∬ℝ2N |Ψu(x, y) − Ψu(x, x)|2

|x − y|2
ρn(|x − y|) dx dy = 2QN ∫ℝN |∇u − iA(x)u|2 dx, (1.6)
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and

∬ℝ2N |Ψu(x, y) − Ψu(x, x)|2

|x − y|2
ρn(|x − y|) dx dy

≤ 2|𝕊N−1| ∫ℝN |∇u − iA(x)u|2 dx + 2|𝕊N−1|(2 + ‖∇A‖2L∞(ℝN )) ∫ℝN |u|2 dx. (1.7)

In this paper, |𝕊N−1| denotes the (N − 1)-Hausdorff measure of the unit sphere 𝕊N−1 inℝN .
The proof of Theorem 1.1 is given in Section 2.

Remark 1.1. Similar results as in Theorem 1.1 hold for more general mollifiers {ρn}n∈ℕ with slight changes
in the constants. See Remark 2.1 for details.

The second goal of this paper is to characterize H1
A(ℝ

N) in term of Jδ( ⋅ ), where, for δ > 0,

Jδ(u) := ∬{|Ψu(x,y)−Ψu(x,x)|>δ} δ2

|x − y|N+2 dx dy for u ∈ L1loc(ℝ
N).

This is motivated by the characterization of the Sobolev space H1(ℝN) provided in [5] and [18] (see also
[6–10, 19–22]) in terms of the family of nonlocal functionals Iδ which is defined by, for δ > 0,

Iδ(u) := ∬{|u(y)−u(x)|>δ} δ2

|x − y|N+2 dx dy for u ∈ L1loc(ℝ
N).

It was showed in [5, 18] that if u ∈ L2(ℝN), then u ∈ H1(ℝN) if and only if sup0<δ<1 Iδ(u) <∞; moreover,

lim
δ↘0 Iδ(u) = QN ∫

Ω

|∇u|2 dx for u ∈ H1(ℝN).

Concerning this direction, we establish the following:

Theorem 1.2. Let A : ℝN → ℝN be Lipschitz. Then u ∈ H1
A(ℝ

N) if and only if u ∈ L2(ℝN) and

sup
0<δ<1 Jδ(u) < +∞. (1.8)

Moreover, we have, for u ∈ H1
A(ℝ

N),

lim
δ↘0 Jδ(u) = QN ∫ℝN |∇u − iA(x)u|2 dx

and
sup
δ>0 Jδ(u) ≤ CN( ∫ℝN |∇u − iA(x)u|2 dx + (‖∇A‖2L∞(ℝN ) + 1) ∫ℝN |u|2 dx). (1.9)

Throughout the paper, we shall denote by CN a generic positive constant depending only on N and possibly
changing from line to line.

The proof of Theorem 1.2 is given in Section 3.
As pointed out in [13], a physically meaning example of magnetic potential in the space is

A(x, y, z) = 12 (−y, x, 0), (x, y, z) ∈ ℝ
3,

which in fact fulfills the requirement of Theorems 1.1 and 1.2 that A is Lipschitz. Furthermore, in the spirit
of [10], as a byproduct of Theorems 1.1 and 1.2, for u ∈ L2(ℝN), if we have

lim
n→+∞∬ℝ2N |Ψu(x, y) − Ψu(x, x)|2

|x − y|2
ρn(|x − y|) dx dy = 0 or lim

δ↘0 Jδ(u) = 0,
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then
∇ℜu = −Aℑu, ∇ℑu = Aℜu,

namely the direction of∇ℜu, ∇ℑu is that of themagnetic potential A. In the particular case A = 0, this implies
that u is a constant function.

The Lp versions of the abovementioned results are given in Sections 2 and 3. In addition to these results,
we also discuss the convergence almost everywhere and the convergence in L1 of the quantities appearing in
Theorems 1.1 and 1.2 in Section 4.

The paper is organized as follows. The proof of Theorems 1.1 and 1.2 are given in Sections 2 and 3,
respectively. The convergence almost everywhere and the convergence in L1 are investigated in Section 4.

2 Proof of Theorem 1.1 and its Lp version
The proof of Theorem 1.1 can be derived from a few lemmaswhich we present below. The first one is on (1.7).

Lemma 2.1 (Upper bound). Let A : ℝN → ℝN be Lipschitz and let {ρn}n∈ℕ be a sequence of nonnegative radial
mollifiers. We have, for all u ∈ H1

A(ℝ
N),

∬ℝ2N |Ψu(x, y) − Ψu(x, x)|2

|x − y|2
ρn(|x − y|) dx dy

≤ 2|𝕊N−1| ∫ℝN |∇u − iA(x)u|2 dx + 2|𝕊N−1|(2 + ‖∇A‖2L∞(ℝN )) ∫ℝN |u|2 dx.
Proof. Since C∞c (ℝN) is dense in H1

A(ℝ
N) (cf. [16, Theorem 7.22]), using Fatou’s lemma, without loss of gen-

erality, one might assume that u ∈ C1c (ℝN). Recall that

∫ℝN ρn(|z|) dz = |𝕊N−1|
∞
∫
0

ρn(r)rN−1 dr = |𝕊N−1|. (2.1)

Since

∬ℝ2N{|x−y|≥1}
|Ψu(x, y) − Ψu(x, x)|2

|x − y|2
ρn(|x − y|) dx dy

≤ 2∬ℝ2N (|u(y)|2 + |u(x)|2)ρn(|x − y|) dx dy ≤ 4|𝕊N−1| ∫ℝN |u|2 dx,
it suffices to prove that

∬ℝ2N{|x−y|<1}
|Ψu(x, y) − Ψu(x, x)|2

|x − y|2
ρn(|x − y|) dx dy

≤ 2|𝕊N−1|( ∫ℝN |∇u − iA(x)u|2 dx + ‖∇A‖2L∞(ℝN ) ∫ℝN |u|2 dx). (2.2)

For a.e. x, y ∈ ℝN , we have
∂Ψu(x, y)

∂y
= ei(x−y)⋅A( x+y2 )∇u(y) − i{A( x + y2 ) +

1
2 (y − x) ⋅ ∇A(

x + y
2 )}e

i(x−y)⋅A( x+y2 )u(y).
It follows that


∂Ψu(x, y)

∂y

≤ |∇u(y) − iA(y)u(y)| +


A( x + y2 ) − A(y)


|u(y)| + 12 |y − x|


∇A( x + y2 )


|u(y)|. (2.3)

This implies

∂Ψu(x, y)

∂y

≤ |∇u(y) − iA(y)u(y)| + ‖∇A‖L∞(ℝN )|x − y||u(y)|,
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which yields, for x, y ∈ ℝN with |x − y| < 1,

|Ψu(x, y) − Ψu(x, x)|2

|x − y|2
≤2

1

∫
0

|∇u(ty + (1 − t)x) − iA(ty + (1 − t)x)u(ty + (1 − t)x)|2 dt

+ 2‖∇A‖2L∞(ℝN ) 1∫
0

|u(ty + (1 − t)x)|2 dt. (2.4)

Since, for f ∈ L2(ℝN), in light of (1.4) and (2.1), we get

∫ℝN ∫ℝN
1

∫
0

|f(ty + (1 − t)x)|2ρn(|x − y|) dt dx dy = ∫ℝN |f(x)|2 dx ∫ℝN ρn(|z|) dz = |𝕊N−1| ∫ℝN |f(x)|2 dx,
we then derive from (2.4) that

∬ℝ2N{|x−y|<1}
|Ψu(x, y) − Ψu(x, x)|2

|x − y|2
ρn(|x − y|) dx dy

≤ 2|𝕊N−1| ∫ℝN |∇u(y) − iA(y)u(y)|2 dy + 2|𝕊N−1|‖∇A‖2L∞(ℝN ) ∫ℝN |u(y)|2 dy,
which is (2.2).

We next establish the following result which is used in the proof of (1.6) and in the proof of Theorem 1.2.

Lemma 2.2. Let u ∈ C2(ℝN), A : ℝN → ℝN be Lipschitz, and let {ρn}n∈ℕ be a sequence of nonnegative radial
mollifiers. Then

lim inf
n→+∞ ∬ℝ2N |Ψu(x, y) − Ψu(x, x)|2

|x − y|2
ρn(|x − y|) dx dy ≥ 2QN ∫ℝN |∇u − iA(x)u|2 dx. (2.5)

Moreover, for any (εn) ↘ 0, there holds

lim inf
n→+∞ ∬ℝ2N |Ψu(x, y) − Ψu(x, x)|2+εn

|x − y|2+εn ρn(|x − y|) dx dy ≥ 2QN ∫ℝN |∇u − iA(x)u|2 dx. (2.6)

Throughout this paper, for R > 0, let BR denote the open ball inℝN centered at the origin and of radius R.

Proof. Fix R > 1 (arbitrary). Using the fact

|eit − (1 + it)| ≤ Ct2 for t ∈ ℝ,

we have, for x, y ∈ BR,

|Ψu(x, y) − (1 + i(x − y) ⋅ A(y))u(y)| ≤

Ψu(x, y) − (1 + i(x − y) ⋅ A(

x + y
2 ))u(y)



+ |x − y|

A( x + y2 ) − A(y)


|u(y)|

≤ C‖u‖C2(BR)(1 + ‖A‖W1,∞(BR))2|x − y|2.
Here and in what follows, C denotes a positive constant. On the other hand, we obtain, for x, y ∈ BR,

|u(x) − u(y) − ∇u(y) ⋅ (x − y)| ≤ C‖u‖C2(BR)|x − y|2.
It follows that

|[Ψu(x, y) − Ψu(x, x)] − (∇u(y) − iA(y)u(y)) ⋅ (y − x)| ≤ C‖u‖C2(BR)(1 + ‖A‖W1,∞(BR))2|x − y|2. (2.7)

Since
lim

n→+∞ ∬
BR×BR{|x−y|<1}
|x − y|2ρn(|x − y|) dx dy = 0, (2.8)
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it follows from (2.7) that

lim inf
n→+∞ ∬

BR×BR{|x−y|<1}
|Ψu(x, y) − Ψu(x, x)|2

|x − y|2
ρn(|x − y|) dx dy

≥ lim inf
n→+∞ ∬

BR×BR{|x−y|<1}
|(∇u(y) − iA(y)u(y)) ⋅ (x − y)|2

|x − y|2
ρn(|x − y|) dx dy.

We have, by the definition of QN ,

lim inf
n→+∞ ∬

BR×BR{|x−y|<1}
|(∇u(y) − iA(y)u(y)) ⋅ (x − y)|2

|x − y|2
ρn(|x − y|) dx dy ≥ 2QN ∫

BR−1

|∇u(y) − iA(y)u(y)|2 dy. (2.9)

By the arbitrariness of R > 1 we get

lim inf
n→+∞ ∬ℝ2N{|x−y|<1}

|Ψu(x, y) − Ψu(x, x)|2

|x − y|2
ρn(|x − y|) dx dy ≥ 2QN ∫ℝN |∇u − iA(x)u|2 dx,

which implies (2.5).
Assertion (2.6) can be derived as follows. We have, by Hölder’s inequality,

∬
BR×BR{|x−y|<1}
|Ψu(x, y) − Ψu(x, x)|2

|x − y|2
ρn(|x − y|) dx dy

≤ ( ∬
BR×BR{|x−y|<1}
|Ψu(x, y) − Ψu(x, x)|2+εn
|x − y|2+εn ρn(|x − y|) dx dy)

2
2+εn

( ∬
BR×BR{|x−y|<1}

ρn(|x − y|) dx dy)
εn

2+εn

.

Since, for every R > 0, there holds

lim
n→+∞( ∬

BR×BR{|x−y|≤1}
ρn(|x − y|) dx dy)

εn
2+εn

= 1,

we get (2.6) from (2.9) and the arbitrariness of R > 1.

We are ready to prove (1.6).

Lemma 2.3 (Limit formula). Let A : ℝN → ℝN be Lipschitz and let {ρn}n∈ℕ be a sequence of nonnegative radial
mollifiers. Then, for u ∈ H1

A(ℝ
N),

lim
n→+∞∬ℝ2N |Ψu(x, y) − Ψu(x, x)|2

|x − y|2
ρn(|x − y|) dx dy = 2QN ∫ℝN |∇u − iA(x)u|2 dx.

Proof. By Lemma 2.1 and the density of C∞c (ℝN) in H1
A(ℝ

N), one might assume that u ∈ C2c (ℝN). From
Lemma 2.2, it suffices to prove that, for u ∈ C2c (ℝN),

lim sup
n→+∞ ∬ℝ2N |Ψu(x, y) − Ψu(x, x)|2

|x − y|2
ρn(|x − y|) dx dy ≤ 2QN ∫ℝN |∇u − iA(x)u|2 dx. (2.10)

Fix R > 4 such that supp u ⊂ BR/2. Using (2.7) and (2.8), one derives that
lim sup
n→+∞ ∬

BR×BR{|x−y|<1}
|Ψu(x, y) − Ψu(x, x)|2

|x − y|2
ρn(|x − y|) dx dy

≤ lim sup
n→+∞ ∬

BR×BR{|x−y|<1}
|(∇u(y) − iA(y)u(y)) ⋅ (x − y)|2

|x − y|2
ρn(|x − y|) dx dy,
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which yields

lim sup
n→+∞ ∬

BR×BR{|x−y|<1}
|Ψu(x, y) − Ψu(x, x)|2

|x − y|2
ρn(|x − y|) dx dy ≤ 2QN ∫ℝN |∇u(y) − iA(y)u(y)|2 dy. (2.11)

On the other hand, we have

lim sup
n→+∞ ∬ℝ2N{|x−y|≥1}

|Ψu(x, y) − Ψu(x, x)|2

|x − y|2
ρn(|x − y|) dx dy

≤ lim sup
n→+∞ ∬ℝ2N{|x−y|≥1}

2(|u(x)|2 + |u(y)|2)ρn(|x − y|) dx dy = 0, (2.12)

and the fact that
if (x, y) ̸∈ BR × BR and |x − y| < 1, then |Ψu(x, y) − Ψu(x, x)| = 0, (2.13)

by the choice of R. Combining (2.11), (2.12) and (2.13) yields (2.10).

The following result is about uniform bounds for the integrals in (1.5).

Lemma 2.4. Let A : ℝN → ℝN be Lipschitz and let {ρn}n∈ℕ be a sequence of nonnegative radial mollifiers. Then
u ∈ H1

A(ℝ
N) if u ∈ L2(ℝN) and

sup
n∈ℕ∬ℝ2N |Ψu(x, y) − Ψu(x, x)|2

|x − y|2
ρn(|x − y|) dx dy < +∞. (2.14)

Proof. Let {τm} be a sequence of nonnegative mollifiers with supp τm ⊂ B1 which is normalized by the con-
dition ∫ℝN τm(x) dx = 1. Set

um = u ∗ τm .

We estimate
∬ℝ2N |Ψum (x, y) − Ψum (x, x)|2

|x − y|2
ρn(|x − y|) dx dy.

We have

∬ℝ2N |e
i(x−y)⋅A( x+y2 )um(y) − um(x)|2

|x − y|2
ρn(|x − y|) dx dy

= ∬ℝ2N
∫ℝN (ei(x−y)⋅A( x+y2 )u(y − z) − u(x − z))τm(z) dz2

|x − y|2
ρn(|x − y|) dx dy.

By the change of variables y = y − z and x = x − z and using the inequality |a + b|2 ≤ 2(|a|2 + |b|2) for all
a, b ∈ ℂ and applying Jensen’s inequality, we deduce that

∬ℝ2N |Ψum (x, y) − Ψum (x, x)|2

|x − y|2
ρn(|x − y|) dx dy

≤ 2∬ℝ2N |Ψu(x, y) − Ψu(x, x)|2

|x − y|2
ρn(|x − y|) dx dy

+ 2 ∫ℝN ∫ℝN ∫ℝN |e
i(x−y)⋅A( x+y2 +z) − ei(x−y)⋅A( x+y2 )|2|u(y)|2

|x − y|2
τm(z)ρn(|x − y|) dz dx dy. (2.15)

Since, for t ∈ ℝ,
|eit − 1| ≤ C|t|,
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it follows that, for all x, y, z ∈ ℝN ,

e
i(x−y)⋅A( x+y2 +z) − ei(x−y)⋅A( x+y2 ) = ei(x−y)⋅(A( x+y2 +z)−A( x+y2 )) − 1 ≤ C‖∇A‖L∞(ℝN )|x − y||z| ≤ C|x − y||z|.

Here and inwhat follows in this proof, C denotes some positive constant independent ofm and n. Taking into
account the fact that supp τm ⊂ B1, we obtain

∫ℝN ∫ℝN ∫ℝN |e
i(x−y)⋅A( x+y2 +z) − ei(x−y)⋅A( x+y2 )|2|u(y)|2

|x − y|2
τm(z)ρn(|x − y|) dz dx dy

≤ ∫ℝN ∫ℝN ∫ℝN C|u(y)|2τm(z)ρn(|x − y|) dz dx dy ≤ C. (2.16)

Combining (2.14), (2.15) and (2.16) yields

∬ℝ2N |Ψum (x, y) − Ψum (x, x)|2

|x − y|2
ρn(|x − y|) dx dy ≤ C. (2.17)

On the other hand, by Lemma 2.2 we have

lim inf
n→∞ ∬ℝ2N |Ψum (x, y) − Ψum (x, x)|2

|x − y|2
ρn(|x − y|) dx dy ≥ 2QN ∫ℝN |∇um − iA(x)um|2 dx. (2.18)

The conclusion now immediately follows from (2.17) and (2.18) after letting m → +∞.

We are ready to give the proof of Theorem 1.1.

Proof of Theorem 1.1. Theorem 1.1 is a direct consequence of Lemmas 2.1, 2.3 and 2.4.

Remark 2.1. Let {ρn}n∈ℕ be a sequence of nonnegative radial functions such that
1

∫
0

ρn(r)rN−1 dr = 1, lim
n→+∞ 1

∫
δ

ρn(r)rN−1 dr = 0 for every δ > 0,

and

lim
n→+∞ ∞∫

1

ρn(r)rN−3 dr = 0.
Theorem 1.1 then holds for such a sequence {ρn}n∈ℕ provided that the constant 2 in (1.7) is replaced by
an appropriate positive constant C independent of u. This follows by taking into account the fact that,
for u ∈ L2(ℝN),

lim sup
n→+∞ ∬ℝ2N{|x−y|≥1}

|Ψu(x, y) − Ψu(x, x)|2

|x − y|2
ρn(|x − y|) dx dy

≤ 2 lim sup
n→+∞ ∬ℝ2N{|x−y|≥1}

(|u(x)|2 + |u(y)|2)ρn(|x − y|)|x − y|−2 dx dy = 0.
For example, this applies to the radial sequence

ρn(r) = 2(1 − sn)r2−2sn−N for r > 0,

which provides a characterization of H1
A(ℝ

N) and yields

lim
n→+∞(1 − sn)∬ℝ2N |u(x) − e

i(x−y)⋅A( x+y2 )u(y)|2
|x − y|N+2sn dx dy = 2QN ∫ℝN |∇u − iA(x)u|2 dx.
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Consider now the space (ℂn , | ⋅ |p) (n ≥ 1), endowed with the norm

|z|p := (|(ℜz1, . . . ,ℜzn)|p + |(ℑz1, . . . , ℑzn)|p)
1
p ,

where | ⋅ | is the Euclidean norm ofℝn andℜa, ℑa denote the real and imaginary parts of a ∈ ℂ, respectively.
We emphasize that this is not related to the p-norm in ℝn. In what follows, we use this notation with n = N
and n = 1. Notice that |z|p = |z| whenever z ∈ ℝn, which makes our next statements consistent with the case
A = 0 and u being a real valued function. Also | ⋅ |2 = | ⋅ |, consistently with the previous definition. Define,
for some ω ∈ 𝕊N−1,

QN,p :=
1
p ∫𝕊N−1 |ω ⋅ σ|pp dσ. (2.19)

We have, for z ∈ ℂN , (see [3, 23])

∫𝕊N−1 |z ⋅ σ|pp dσ = ∫𝕊N−1 |ℜz ⋅ σ|p dσ + ∫𝕊N−1 |ℑz ⋅ σ|p dσ = |ℜz|ppQN,p + |ℑz|ppQN,p = |z|
p
ppQN,p . (2.20)

Using the same approach and technique, one can prove the following Lp version of Theorem 1.1.

Theorem 2.1. Let p ∈ (1, +∞), A : ℝN → ℝN be Lipschitz, and let {ρn}n∈ℕ be a sequence of nonnegative radial
mollifiers. Then u ∈ W1,p

A (ℝ
N) if and only if u ∈ Lp(ℝN) and

sup
n∈ℕ∬ℝ2N |Ψu(x, y) − Ψu(x, x)|pp

|x − y|p
ρn(|x − y|) dx dy < +∞.

Moreover, for u ∈ W1,p
A (ℝ

N), we have

lim
n→+∞∬ℝ2N |Ψu(x, y) − Ψu(x, x)|pp

|x − y|p
ρn(|x − y|) dx dy = pQN,p ∫ℝN |∇u − iA(x)u|pp dx

and

∬ℝ2N |Ψu(x, y) − Ψu(x, x)|pp
|x − y|p

ρn(|x − y|) dx dy

≤ CN,p ∫ℝN |∇u − iA(x)u|pp dx + CN,p(2 + ‖∇A‖pL∞(ℝN )) ∫ℝN |u|pp dx (2.21)

for some positive constant CN,p depending only on N and p.

Remark 2.2. Assume that C is a positive constant such that, for all a, b ∈ ℂ,

|a + b|pp ≤ C(|a|
p
p + |b|

p
p).

Then assertion (2.21) of Theorem 2.1 holds with CN,p = |𝕊N−1|C.
3 Proof of Theorem 1.2 and its Lp version
Let us set, for σ ∈ 𝕊N−1,

Mσ(g, x) := sup
t>0 1

t

t

∫
0

|g(x + sσ)| ds.

and denote MeN by MN , eN := (0, . . . , 0, 1). We have the following result which is a direct consequence of
the theory of maximal functions, see e.g. [29, Theorem 1, p. 5].
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Lemma 3.1 (Maximal function estimate). There exists a universal constant C > 0 such that, for all σ ∈ 𝕊N−1,
∫ℝN |Mσ(g, x)|2 dx ≤ C ∫ℝN |g|2 dx for all g ∈ L2(ℝN).

The following lemma yields an upper bound of Jδ(u) in terms of the norm of u in H1
A(ℝ

N).

Lemma 3.2 (Uniform upper bound). Let A : ℝN → ℝN be Lipschitz and u ∈ H1
A(ℝ

N). We have

sup
δ>0 Jδ(u) ≤ CN( ∫ℝN |∇u − iA(x)u|2 dx + (‖∇A‖2L∞(ℝN ) + 1) ∫ℝN |u|2 dx).

Proof. By the density of C∞c (ℝN) in H1
A(ℝ

N), using Fatou’s lemma, we can assume that u ∈ C1c (ℝN). For each
δ > 0, let us define

Aδ := {(x, y) ∈ ℝ2N : |Ψu(x, y) − Ψu(x, x)| > δ, |x − y| < 1}

and
Bδ := {(x, y) ∈ ℝ2N : |Ψu(x, y) − Ψu(x, x)| > δ, |x − y| ≥ 1}.

We have
∬ℝ2N δ2

|x − y|N+2 1Bδ dx dy ≤ ∬ℝ2N |Ψu(x, y) − Ψu(x, x)|2

|x − y|N+2 1{|x−y|≥1} dx dy.
Since |Ψu(x, y) − Ψu(x, x)| ≤ |u(x)| + |u(y)| and

∬ℝ2N{|x−y|≥1}
|u(x)|2

|x − y|N+2 dx dy ≤ CN ∫ℝN |u(x)|2 dx,
it follows that

∬ℝ2N δ2

|x − y|N+2 1Bδ dx dy ≤ CN ∫ℝN |u(x)|2 dx.
We are therefore interested in estimating the integral

∬
Aδ

δ2

|x − y|N+2 dx dy.
Let us now define

Xδ := {(x, h, σ) ∈ ℝN × (0, 1) × 𝕊N−1 : |Ψu(x, x + hσ) − Ψu(x, x)| > δ}.

Performing the change of variables y = x + hσ, for h ∈ (0, 1) and σ ∈ 𝕊N−1, yields
∬
Aδ

δ2

|x − y|N+2 dx dy =∭
Xδ

δ2

h3
dh dx dσ = ∫𝕊N−1∬Cσ

δ2

h3
dh dx dσ,

where Cσ denotes the set

Cσ := {(x, h) ∈ ℝN × (0, 1) : |Ψu(x, x + hσ) − Ψu(x, x)| > δ}, σ ∈ 𝕊N−1.
Without loss of generality it suffices to prove that, for σ = eN = (0, . . . , 0, 1) ∈ 𝕊N−1,

∬
CeN

δ2

h3
dh dx ≤ CN( ∫ℝN |∇u − iA(x)u|2 dx + ‖∇A‖2L∞(ℝN ) ∫ℝN |u|2 dx). (3.1)

We have, by virtue of (2.3),

|Ψ(x, x + heN) − Ψ(x, x)| ≤ hMN(|∇u − iAu|, x) + h2‖∇A‖L∞(ℝN )MN(|u|, x). (3.2)
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Using the fact that if a + b > δ, then either a > δ
2 or b >

δ
2 , we derive that

∬
CeN

δ2

h3
dh dx ≤ ∬{hMN (|∇u−iAu|,x)> δ2 }

δ2

h3
dh dx + ∬{h2‖∇A‖L∞(ℝN )MN (|u|,x)> δ2 }

δ2

h3
dh dx

≤ ∬{hMN (|∇u−iAu|,x)> δ2 }
δ2

h3
dh dx + ∬{h‖∇A‖L∞(ℝN )MN (|u|,x)> δ2 }

δ2

h3
dh dx,

where the last inequality follows recalling that since (x, h) ∈ CeN then h ∈ (0, 1). As usual, by using the theory
of maximal functions stated in Lemma 3.1, we have

∬{hMN (|∇u−iAu|,x)> δ2 }
δ2

h3
dh dx ≤ CN ∫ℝN |∇u − iA(x)u|2 dx (3.3)

and
∬{h‖∇A‖L∞(ℝN )MN (|u|,x)> δ2 }

δ2

h3
dh dx ≤ CN‖∇A‖2L∞ ∫ℝN |u|2 dx. (3.4)

Assertion (3.1) follows from (3.3) and (3.4). The proof is complete.

We next establish the following lemma.

Lemma 3.3 (Limit formula). Let A : ℝN → ℝN be Lipschitz and u ∈ H1
A(ℝ

N). Then

lim
δ↘0 Jδ(u) = QN ∫ℝN |∇u − iA(x)u|2 dx,

where QN is the constant defined in (1.2).

Proof. By virtue of Lemma 3.2, for every δ > 0 and all w ∈ H1
A(ℝ

N), we have

Jδ(w) ≤ CN( ∫ℝN |∇w − iA(x)w|2 dx + (‖∇A‖2L∞(ℝN ) + 1) ∫ℝN |w|2 dx). (3.5)

Since
|Ψu(x, y) − Ψu(x, x)| ≤ |Ψv(x, y) − Ψv(x, x)| + |Ψu−v(x, y) − Ψu−v(x, x)|,

it follows that, for every ε ∈ (0, 1),

Jδ(u) ≤ ∬{|Ψv(x,y)−Ψv(x,x)|>(1−ε)δ} δ2

|x − y|N+2 dx dy + ∬{|Ψu−v(x,y)−Ψu−v(x,x)|>εδ} δ2

|x − y|N+2 dx dy.
This implies, for ε ∈ (0, 1) and u, v ∈ H1

A(ℝ
N),

Jδ(u) ≤ (1 − ε)−2J(1−ε)δ(v) + ε−2Jεδ(u − v). (3.6)

From (3.5) and (3.6), we derive that, for u, un ∈ H1
A(ℝ

N) and ε ∈ (0, 1),

Jδ(u)−(1−ε)−2J(1−ε)δ(un) ≤ ε−2CN( ∫ℝN |∇(u−un)− iA(x)(u−un)|2 dx+(‖∇A‖2L∞(ℝN )+1) ∫ℝN |u−un|2 dx) (3.7)

and

(1−ε)2Jδ/(1−ε)(un)− Jδ(u) ≤ ε−2CN( ∫ℝN |∇(u−un)−iA(x)(u−un)|2 dx+(‖∇A‖2L∞(ℝN )+1) ∫ℝN |u−un|2 dx). (3.8)
Since C1c (ℝN) is dense in H1

A(ℝ
N), from (3.7) and (3.8), it suffices to prove the assertion for u ∈ C1c (ℝN). This

fact is assumed from now on.
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Let R > 0 be such that supp u ⊂ BR/2. We claim that, for every σ ∈ 𝕊N−1, there holds
lim
δ↘0 ∬

{(x,h)∈BR×(0,∞) :  Ψu (x,x+δhσ)−Ψu (x,x)δh
h>1}

1
h3

dh dx = 12 ∫ℝN |(∇u − iAu) ⋅ σ|2 dx. (3.9)

Without loss of generality, we can assume σ = eN ∈ 𝕊N−1. Then, we aim to prove that

lim
δ↘0 ∬

{(x,h)∈BR×(0,∞) :  Ψu (x,x+δheN )−Ψu (x,x)
δh

h>1}
1
h3

dh dx = 12 ∫ℝN

∂u
∂yN
(x) − iAN(x)u(x)



2
dx,

where AN denotes the N-th component of A. To this end, we consider the sets

CeN (x, δ) := {(xN , h) ∈ ℝ × (0,∞) : Ψu(x, x + δheN) − Ψu(x, x)
δh


h > 1},

E(x) := {(xN , h) ∈ ℝ × (0,∞) : ∂Ψu
∂yN
(x, x)

h > 1},

F(x) := {(xN , h) ∈ ℝ × (0,∞) : hMN(|∇u − iAu|, x) + h2‖∇A‖L∞(ℝN )MN(|u|, x) > 1}.

Therefore, we obtain χCeN (x ,δ)(xN , h) ≤ χF(x)(xN , h) for a.e. (x, h) ∈ BR × (0,∞) (by (3.2) in the proof of
Lemma 3.2) and

∫
BR

∞
∫
0

1
h3

χF(x)(xN , h) dh dx ≤ I1 + I2,
where we have set

I1 := ∬{(x,h)∈BR×(0,∞) :MN (|∇u−iAu|,x)h> 12 }
1
h3

dh dx,

I2 := ∬{(x,h)∈BR×(0,∞) : h2‖∇A‖L∞(ℝN )MN (|u|,x)> 12 }
1
h3

dh dx,

and we have denoted χ the characteristic function. We have, by the theory of maximal functions,

I1 ≤ C ∫ℝN |∇u − iA(x)u|2 dx,
and, by a straightforward computation,

I2 ≤ C‖∇A‖L∞(ℝN )‖u‖L∞(ℝN )|BR|.

The validity of claim (3.9) with σ = eN now follows from Dominated Convergence theorem since

lim
δ↘0 χCeN (x ,δ)(xN , h) = χE(x)(xN , h) for a.e. (x, h) ∈ BR × (0,∞),

and, by a direct computation,

∫
BR

∞
∫
0

χE(x)(xN , h) 1h3 dh dx = 12 ∫
BR


∂u
∂yN
(x) − iAN(x)u(x)



2
dx.

Now, performing a change of variables we get

∬{|Ψu(x,y)−Ψu(x,x)|>δ, x∈BR} δ2

|x − y|N+2 dx dy = ∫
BR

∫𝕊N−1
∞
∫
0

χCσ(δ)(x, h) 1h3 dh dσ dx,
where

Cσ(δ) := {(x, h) ∈ BR × (0,∞) :

Ψu(x, x + δhσ) − Ψu(x, x)

δh

h > 1}.

Exploiting (3.9), we obtain

lim
δ↘0 ∬{|Ψu(x,y)−Ψu(x,x)|>δ, x∈BR} δ2

|x − y|N+2 dx dy = 12 ∫𝕊N−1 ∫BR

|(∇u − iAu) ⋅ σ|2 dx dσ. (3.10)
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On the other hand, since supp u ⊂ BR/2, we have
lim
δ↘0 ∬{|Ψu(x,y)−Ψu(x,x)|>δ, x∈ℝN\BR} δ2

|x − y|N+2 dx dy = limδ↘0 ∬{x∈ℝN\BR , y∈BR/2} δ2

|x − y|N+2 dx dy = 0. (3.11)

Combining (3.10) and (3.11) yields

lim
δ↘0 ∬{|Ψu(x,y)−Ψu(x,x)|>δ} δ2

|x − y|N+2 dx dy = 12 ∫𝕊N−1 ∫ℝN |(∇u − iAu) ⋅ σ|2 dx dσ.
In order to conclude, we notice the following, see (2.20):

∫𝕊N−1 |V ⋅ σ|2 dσ = 2QN |V|2 for any V ∈ ℂN ,

where QN is the constant defined in (1.2).

We next deal with (1.8).

Lemma 3.4. Let u ∈ L2(ℝN) and let A : ℝN → ℝN be Lipschitz. Then u ∈ H1
A(ℝ

N) if

sup
δ∈(0,1) Jδ(u) < +∞. (3.12)

Proof. The proof is divided into two steps.

Step 1. We assume that u ∈ L2(ℝN) ∩ L∞(ℝN). Set
L := sup

x,y∈ℝN |Ψu(x, y) − Ψu(x, x)|.

In light of (3.12), we obtain
L

∫
0

εδε−1Jδ(u) dδ ≤ C
for some positive constant C independent of ε ∈ (0, 1). By Fubini’s theorem and by the definition of L, we
have

L

∫
0

εδε−1Jδ(u) dδ = ∫ℝ2N 1
|x − y|N+2 |Ψu(x,y)−Ψu(x,x)|

∫
0

εδε+1 dδ dx dy.
It follows that

1
2 + ε ∬ℝ2N |Ψu(x, y) − Ψu(x, x)|2+ε

|x − y|2+ε ε
|x − y|N−ε dx dy ≤ C.

By virtue of inequality (2.6) of Lemma 2.4, we have

lim inf
ε→0 ∬ℝ2N |Ψu(x, y) − Ψu(x, x)|2+ε

|x − y|2+ε ε
|x − y|N−ε dx dy ≥ 2QN ∫ℝN |∇u − iA(x)u|2 dx,

which implies u ∈ H1
A(ℝ

N).

Step 2. We consider the general case. For M > 1, define TM : ℂ→ ℂ by setting

TM(z) :=
{
{
{

z if |z| ≤ M,
Mz|z| otherwise,

and denote
uM := TM(u).

Then we have
|TM(z1) − TM(z2)| ≤ |z1 − z2| for all z1, z2 ∈ ℂ.
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It follows that
|ΨuM (x, y) − ΨuM (x, x)| ≤ |Ψu(x, y) − Ψu(x, x)| for all x, y ∈ ℝN .

Hence we obtain
Jδ(uM) ≤ Jδ(u). (3.13)

Applying the result in Step 1, we have uM ∈ H1
A(ℝ

N) and hence by Lemma 3.3,

lim
δ→0 Jδ(uM) = 2QN ∫ℝN |∇uM(x) − iA(x)uM(x)|2 dx. (3.14)

Combining (3.13) and (3.14) and letting M → +∞, we derive that u ∈ H1
A(ℝ

N). The proof is complete.

Remark 3.1. Similar approach used for H1(ℝN) is given in [18].

Proof of Theorem 1.2. The limit formula stated in Theorem 1.2 follows by Lemma 3.3. Now, if u ∈ H1
A(ℝ

N),
then (1.9) follows from Lemma 3.2. On the contrary, if u ∈ L2(ℝN) and (1.8) holds, it follows from Lemma 3.4
that u ∈ H1

A(ℝ
N).

Given u a measurable complex-valued function, define, for 1 < p < +∞,

Jδ,p(u) := ∬{|Ψu(x,y)−Ψu(x,x)|p>δ} δp

|x − y|N+p dx dy for δ > 0.

We have the following Lp-version of Theorem 1.2.

Theorem 3.1. Let p ∈ (1, +∞) and let A : ℝN → ℝN be Lipschitz. Then u ∈ W1,p
A (ℝ

N) if and only if u ∈ Lp(ℝN)
and

sup
0<δ<1 Jδ,p(u) <∞.

Moreover, we have, for u ∈ W1,p
A (ℝ

N),

lim
δ↘0 Jδ,p(u) = QN,p ∫ℝN |∇u − iA(x)u|pp dx

and
Jδ,p(u) ≤ CN,p( ∫ℝN |∇u − iA(x)u|pp dx + (‖∇A‖pL∞(ℝN ) + 1) ∫ℝN |u|pp dx)

for some positive constant CN,p depending only on N and p.

Recall that QN,p is defined by (2.19).

Proof. We have the maximal function estimates in the form

∫ℝN |Mσ(g, x)|pp dx ≤ Cp ∫ℝN |g|pp dx for all g ∈ Lp(ℝN)

for all σ ∈ 𝕊N−1 and g ∈ Lp(ℝN), either complex or real valued. It is readily checked (repeat the proof
of [16, Theorem 7.22] with straightforward adaptations) that C∞c (ℝN) is dense in W1,p

A (ℝ
N). Lemma 3.2

holds in the modified form

Jδ,p(u) ≤ CN,p( ∫ℝN |∇u − iA(x)u|pp dx + (‖∇A‖pL∞(ℝN ) + 1) ∫ℝN |u|pp dx)
for all u ∈ W1,p

A (ℝ
N) and δ > 0. To achieve this conclusion, it is sufficient to observe that, see (3.2),

|Ψ(x, x + heN) − Ψ(x, x)|p ≤ hMN(|∇u − iAu|p , x) + h2‖∇A‖L∞(ℝN )MN(|u|p , x).
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The rest of the proof follows verbatim. Lemma 3.3 holds in the form

lim
δ↘0 Jδ,p(u) = QN,p ∫ℝN |∇u − iA(x)u|pp dx

for every u ∈ W1,p
A (ℝ

N). In fact, mimicking the proof of Lemma 3.3, one obtains

lim
δ↘0 ∬{|Ψu(x,y)−Ψu(x,x)|p>δ} δp

|x − y|N+p dx dy = 1
p ∫𝕊N−1 ∫ℝN |(∇u − iAu) ⋅ σ|p dx dσ.

The final conclusion follows from (2.20). Lemma 3.4 can be modified accordingly with minor modifications,
replacing | ⋅ | with | ⋅ |p.

4 Convergence almost everywhere and convergence in L1

Motivated by the work in [8] (see also [26]), we are interested in other modes of convergence in the context
of Theorems 1.1 and 1.2. We only consider the case p = 2. Similar results hold for p ∈ (1, +∞) with similar
proofs. We begin with the corresponding results related to Theorem 1.1. For u ∈ L1loc(ℝ

N), set

Dn(u, x) := ∫ℝN |Ψu(x, y) − Ψu(x, x)|2

|x − y|2
ρn(|x − y|) dy for x ∈ ℝN .

Proposition 4.1. Let A : ℝN → ℝN be Lipschitz, u ∈ H1
A(ℝ

N), and let (ρn) be a sequence of radial mollifiers
such that

sup
t>1 sup

n
t−2ρn(t) < +∞.

We have
lim

n→+∞Dn(u, x) = 2QN |∇u(x) − iA(x)u(x)|2 for a.e. x ∈ ℝN ,

and
lim

n→+∞Dn(u, ⋅ ) = 2QN |∇u( ⋅ ) − iA( ⋅ )u( ⋅ )|2 in L1(ℝN).

Before giving the proof of Proposition 4.1, we recall the following result established in [9, Lemma 1] (see also
[8, Lemma 2] for a more general version).

Lemma 4.1. Let r > 0, x ∈ ℝN and f ∈ L1loc(ℝ
N). We have

∫𝕊N−1
r

∫
0

|f(x + sσ)| ds dσ ≤ CN rM(f)(x).

Here and in what follows, for x ∈ ℝN and r > 0, let Bx(r) denote the open ball in ℝN centered at x and of
radius r. Moreover, M(f) denotes the maximal function of f ,

M(f)(x) := sup
r>0 1
|Bx(r)|

∫
Bx(r) |f(y)| dy, x ∈ ℝN .

As a consequence of Lemma 4.1, we have:

Corollary 4.1. Let f ∈ L1loc(ℝ
N) and let ρ be a nonnegative radial function such that∞

∫
0

ρ(r)rN−1 dr = 1. (4.1)

Then, for a.e. x ∈ ℝN ,

∫
Bx(r)

1

∫
0

|f(t(y − x) + x)|ρ(|y − x|) dt dy ≤ CNM(f)(x).
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Proof. Using polar coordinates, we have

∫
Bx(r)

1

∫
0

|f(t(y − x) + x)|ρ(|y − x|) dt dy =
r

∫
0

∫𝕊N−1
1

∫
0

|f(x + tsσ)|sN−1ρ(s) dt dσ ds.
Applying Lemma 4.1, we obtain, for a.e. x ∈ ℝN ,

∫𝕊N−1
1

∫
0

|f(x + tsσ)| dt dσ ≤ CNM(f)(x).

It follows from (4.1) that, for a.e. x ∈ ℝN ,

∫
Bx(r)

1

∫
0

|f(t(y − x) + x)|ρ(|y − x|) dt dy ≤ CNM(f)(x),

which is the conclusion.

We are ready to give the proof of Proposition 4.1.

Proof of Proposition 4.1. We first establish that, for a.e. x ∈ ℝN ,

|Dn(u, x)| ≤ C(M(|∇u − iAu|2)(x) +M(|u|2)(x)) + m ∫ℝN\Bx(1) |u(y)|2 dy, (4.2)

where
m := 2 sup

t>1 sup
n

t−2ρn(t).
Here and in what follows in this proof, C denotes a positive constant independent of x. Indeed, we have, as
in (2.4), for a.e. x, y ∈ ℝN with |y − x| < 1,

|Ψu(x, y) − Ψu(x, x)|2

|x − y|2
≤ 2

1

∫
0

|∇u(t(y − x) + x) − iA(t(y − x) + x)u(t(y − x) + x)|2 dt

+ 2‖∇A‖2L∞(ℝN ) 1∫
0

|u(t(y − x) + x)|2 dt.

This implies, for a.e. x ∈ ℝN ,

∫
Bx(1) |Ψu(x, y) − Ψu(x, x)|2

|x − y|2
ρn(|y − x|) dy

≤ 2 ∫
Bx(1)

1

∫
0

|∇u(t(y − x) + x) − iA(t(y − x) + x)u(t(y − x) + x)|2ρn(|y − x|) dt dy

+ 2‖∇A‖2L∞(ℝN ) ∫
Bx(1)

1

∫
0

|u(t(y − x) + x)|2ρn(|y − x|) dt dy.

Applying Corollary 4.1, we have, for a.e. x ∈ ℝN ,

∫
Bx(1) |Ψu(x, y) − Ψu(x, x)|2

|x − y|2
ρn(|y − x|) dy ≤ CM(|∇u − iAu|2)(x) + CM(|u|2)(x). (4.3)

On the other hand, we get

∫ℝN\Bx(1) |Ψu(x, y) − Ψu(x, x)|2

|x − y|2
ρn(|y − x|) dy ≤ 2|u(x)|2 + 2 ∫ℝN\Bx(1) |u(y)|2ρn(|y − x|)|x − y|−2 dy

≤ 2|u(x)|2 + m ∫ℝN\Bx(1) |u(y)|2 dy. (4.4)
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A combination of (4.3) and (4.4) yields (4.2). Set, for v ∈ H1
A(ℝ

N) and ε ≥ 0,

Ωε(v) := {x ∈ ℝN : lim sup
n→+∞ |Dn(v, x) − 2QN |∇v(x) − iA(x)v(x)|2| > ε}.

By (2.7), one has, for v ∈ C2c (ℝN) and ε ≥ 0,
|Ωε(v)| = 0.

Using the theory of maximal functions, see e.g. [29, Theorem 1, p. 5], we derive from (4.2) that, for any ε > 0
and for any w ∈ H1

A(ℝ
N) with m ∫ℝN |w(y)|2 dy ≤ ε

2 ,

|Ωε(w)| ≤
C
ε ∫ℝN (|∇w(x) − iA(x)w(x)|2 + |w(x)|2) dx. (4.5)

Fix ε > 0 and let v ∈ C2c (ℝN) with max{1,m}‖v − u‖H1
A(ℝN ) ≤ ε

2 . We derive from (4.5) that

|Ωε(u)| ≤ |Ωε(u − v)| ≤
C
ε
‖v − u‖2H1

A(ℝN ) ≤ Cε.
Since ε > 0 is arbitrary, one reaches the conclusion that |Ω0(u)| = 0. The proof is complete.

We next discuss the corresponding results related to Theorem 1.2. Given u ∈ L1loc(ℝ
N), set, for x ∈ ℝN ,

Jδ(u, x) = ∫{|Ψu(x,y)−Ψu(x,x)|>δ} δ2

|x − y|N+2 dy.
We have:

Proposition 4.2. Let A : ℝN → ℝN be Lipschitz and let u ∈ H1
A(ℝ

N). We have

lim
δ↘0 Jδ(u, x) = QN |∇u(x) − iA(x)u(x)|2 for a.e. x ∈ ℝN (4.6)

and
lim
δ↘0 Jδ(u, ⋅ ) = QN |∇u( ⋅ ) − iA( ⋅ )u( ⋅ )|2 in L1(ℝN). (4.7)

Proof. For v ∈ H1
A(ℝ

N), set

M (v, x) = ∫𝕊N−1 (|Mσ(|∇v − iAv|, x)|2 + ‖∇A‖2L∞(ℝN )|Mσ(|v|, x)|2) dσ for x ∈ ℝN ,

and denote
̂Jδ(u, x) = ∫{|Ψu(x,y)−Ψu(x,x)|>δ : |y−x|<1} δ2

|x − y|N+2 dy for x ∈ ℝN .

We first establish a variant of (4.6) and (4.7) in which Jδ is replaced by ̂Jδ. Using (3.2), as in the proof of
Lemma 3.2, we have, for any v ∈ H1

A(ℝ
N),

̂Jδ(v, x) ≤ CNM (v, x) for all δ > 0.

We derive that, for u, un ∈ H1
A(ℝ

N), and ε ∈ (0, 1),

̂Jδ(u, x) − (1 − ε)−2 ̂J(1−ε)δ(un , x) ≤ ε−2CNM (u − un , x) (4.8)

and
(1 − ε)2 ̂Jδ/(1−ε)(un , x) − ̂Jδ(u, x) ≤ ε−2CNM (u − un , x). (4.9)

On the other hand, one can check that, as in the proof of Lemma 3.3, for un ∈ C2c (ℝN),

lim
δ↘0 ̂Jδ(un , x) = QN |∇un(x) − iA(x)un(x)|2 for x ∈ ℝN . (4.10)

Brought to you by | provisional account
Unauthenticated

Download Date | 12/31/19 4:04 PM



244 | H.-M. Nguyen et al., New characterizations of magnetic Sobolev spaces

We derive from (4.8), (4.9) and (4.10) that, for u ∈ H1
A(ℝ

N),

lim
δ↘0 ̂Jδ(u, x) = QN |∇u(x) − iA(x)u(x)|2 for a.e. x ∈ ℝN , (4.11)

and, we hence obtain, by the Dominated Convergence Theorem,

lim
δ↘0 ̂Jδ(u, ⋅ ) = QN |∇u( ⋅ ) − iA( ⋅ )u( ⋅ )|2 in L1(ℝN), (4.12)

since M (u, x) ∈ L1(ℝN). A straightforward computation yields

lim
δ↘0 ∫{|y−x|≥1} δ2

|x − y|N+2 dy = 0.
It follows that

lim
δ↘0[ ̂Jδ(u, x) − Jδ(u, x)] = 0 for a.e. x ∈ ℝN . (4.13)

We also have, for w ∈ C2c (ℝN),

lim
δ↘0 ∬{|Ψw(x,y)−Ψw(x,x)|>δ : |y−x|≥1} δ2

|x − y|N+2 dx dy ≤ limδ↘0 ∬{(BR×ℝN )∪(ℝN×BR) : |y−x|≥1} δ2

|x − y|N+2 dx dy = 0,
where R > 0 is such that suppw ⊂ BR. Using Lemma 3.2 and the density of C2c (ℝN) in H1

A(ℝ
N), we derive that

lim
δ↘0[ ̂Jδ(u, ⋅ ) − Jδ(u, ⋅ )] = 0 in L1(ℝN). (4.14)

The conclusion now follows from (4.11), (4.12), (4.13) and (4.14).
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