
Continuous Program Optimization
via Advanced Dynamic Compilation Techniques

Marco Festa, Nicole Gervasoni, Stefano Cherubin, Giovanni Agosta
Politecnico di Milano, DEIB

{marco2.festa,nicoleannamaria.gervasoni}@mail.polimi.it,stefano.cherubin@polimi.it,agosta@acm.org

ABSTRACT

In High Performance Computing, it is often useful to fine tune an
application code via recompilation of specific computational inten-
sive code fragments to leverage runtime knowledge. Traditional
compilers rarely provide such capabilities, but solutions such as
libVC exist to allow C/C++ code to employ dynamic compilation.
We evaluate the impact of the introduction of Just-in-Time compila-
tion in a framework supporting partial dynamic (re-)compilation of
functions to provide continuous optimization in high performance
environments. We show that Just-In-Time solutions can have com-
parable performance in terms of code quality with respect to the
libVC alternatives, and it can provide smaller compilation over-
head. We further demonstrate the strength of our approach against
another interpreter-based dynamic evaluation solution from the
state-of-the-art.

KEYWORDS

Dynamic Compilation, JIT, Continuous Program Optimization
ACM Reference Format:

Marco Festa, Nicole Gervasoni, Stefano Cherubin, Giovanni Agosta. 2019.
Continuous Program Optimization via Advanced Dynamic Compilation
Techniques. In Proceedings of PARMA-DITAM Workshop (PARMA-DITAM
2019). ACM, New York, NY, USA, 6 pages. https://doi.org/00.001/000_1

1 INTRODUCTION

The trend towards the democratisation of access to High Perfor-
mance Computing (HPC) infrastructures [1; 2] is leading a wider
spectrum of developers to work on applications that will run on
complex, potentially heterogeneous architectures. Yet, the design
and the implementation of HPC applications are difficult tasks for
which several tools and languages are used [3; 4]. Typically, each
HPC center has its own set of tools, which collect the expertise and
work of many experts across the years. Such tools can go from ex-
tensive frameworks, such as the OmpSs/Nanos++/Mercurium tool
set from Barcelona Supercomputing Center1, to simpler collections
of scripts, which are nonetheless critical to achieve the expected
performance [5]. Thus, specialised help is often needed in the form
of HPC center staff, developers who are accustomed to the practices
of HPC systems and can provide expert knowledge to support the
application domain expert. Still, the same democratisation trend,

1https://pm.bsc.es

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
PARMA-DITAM 2019, January 2019, Valencia, ES
© 2018 Copyright held by the owner/author(s).
ACM ISBN 123-4567-24-567/08/06.
https://doi.org/00.001/000_1

together with the growth of HPC infrastructures toward the Ex-
ascale, will strain the ability of HPC centers to provide sufficient
personnel for these activities, due to the increased number of users.

To ease this strain, practices such as autotuning and continuous
optimisation [6–8] can be successfully applied to make the appli-
cation itself more aware of its performance and able to cope with
platform heterogeneity and workload changes which are not pre-
dictable at compile-time, and for which traditional techniques such
as profile-guided optimisation may fail due to the difficulty of find-
ing small profile data sets that are representative of the large ones
actually used in the HPC runs. In these cases, which are becoming
more and more common [9], dynamic approaches can prove more
effective.

The operation of such a dynamic approach chiefly consists in
generating more than one version of the code of compute-intensive
kernel, and then selecting the best version at each invocation of
the kernel. The selection can be performed as part of an autotuning
algorithm, which can be used both to tune software parameters
and to search the space of compiler optimizations for optimal so-
lutions [10]. Autotuning frameworks can select one of a set of
different versions of the same computational kernel to best fit the
HPC system runtime conditions, such as system resource partition-
ing, as long as such versions are generated at compile time. Some
frameworks are actually able to perform continuous optimization,
generally through specific versions of a dynamic compiler [11; 12],
or through cloud-based platforms [13], or by leveraging an external
compiler through a dedicated API [14].

In this paper, we introduce an extension of a state-of-the-art
dynamic compilation library to support the Just In Time (JIT) com-
pilation paradigm. We discuss the implementation of easy-to-use
APIs to realize the continuous optimization approach. Finally, we
compare the dynamic compilation overhead due to this kind of
compilation technique with other dynamic compilation techniques
in the state-of-the art.

The rest of this paper is organized as follows. Section 2 described
the Just In Time paradigm, and the implementation of the related
APIs within a C++ library. Section 3 discusses the experimental
results. Section 4 provides an overview of the related works and a
comparative analysis with them. Finally, we draw some conclusions
in section 5.

2 A JUST-IN-TIME SOLUTION

Continuous optimization requires the program to re-shape portions
of its own executable code to adapt them to runtime conditions.
This capability is very common among interpreted programming
languages, as the instructions are usually parsed and issued at run-
time. In the context of compiled programming languages, instead,
it is more complex to achieve this behaviour, as it requires to defer
the full compilation process at runtime. Although interpreted lan-
guages provide greater flexibility, they typically have throughput

https://doi.org/00.001/000_1
https://pm.bsc.es
https://doi.org/00.001/000_1


PARMA-DITAM 2019, January 2019, Valencia, ES Festa et al.

which is much lower with respect to compiled ones. Thus, in HPC
systems it is preferable to have a reconfiguration time span to opti-
mize the software rather than having a constant overhead on each
instruction.

2.1 Continuous Optimization via Dynamic

Compilation

Dynamic compilation techniques allow to compile source code
into executable code after the software itself has been deployed.
Whenever important runtime conditions or checkpoints are met,
a dynamic re-configuration of the software system may entail a
dynamic (re-)compilation of its source code to apply a different set
of optimization which better fit the incoming workload. Dynamic
compilation can be performed via ad-hoc software hypervisors, via
dynamic generation and loading of software libraries, or via the
integration of a compiler stack within the adaptive software system
itself.

The former approach suffers from the difficulty of maintaining
both the hypervisor and the code to use it. This approach requires
a deep knowledge of the hypervisor system, and an accurate con-
figuration over the software system.

The dynamic generation and loading of software libraries is
a platform-dependent solution which requires fine tuning of the
compiler configuration at deploy time. Moreover, this approach
requires to access and to manage additional persistent memory
space to handle the dynamically-generated shared objects. This
problem has a non-trivial impact on HPC infrastructures, as such
systems usually aims at minimizing the access to persistent memory
due to its intrinsic high-latency. Although recent proposals have
been made to simplify the configuration of compiler settings [14],
the limitation given by the memory access still persists. The JIT
paradigm removes the problems of the abovementioned approaches,
as it does not create any persistent object and it integrates the full
compiler functionalities within the adaptive application.

2.2 Principles of Just-in-Time Compilation

In JIT compilation, a fragment of code (usually a function ormethod)
is only compiled when it is first executed. The main issue with JIT
compilation is that at each new function encountered, a compilation
latency is incurred, leading to potentially large start-up times.

JIT compilers are mainly interesting to combine some properties
of static compilation, typically the performance of the generated
code, with other properties which are typical of interpreters, such
as the ability to leverage runtime knowledge about the program
(runtime constant, control flow) or portability. In the context of
continuous optimization, JIT compilation is a key enabler, since
recompiling the entire program while it is running does not help
the running instance, whereas a JIT compiler can replace compiled
code fragments with new versions tuned to different parameters.
It is worth noting that, while a JIT generally does not preserve
the compiler code, this is not a limitation in the context of HPC
systems, where a given application may run over a long time, but
may be invoked only a few times, thus making the persistance of
the optimized code less relevant.

2.3 Providing JIT APIs via LLVM

In this work, we leverage the libVC framework, which provides
APIs to enable dynamic compilation and re-use of code versions. It

libVC

LLVM
 

 

clang

gcc

JITCompiler

save / load

optional

.cpp

.cpp
.hpp

.cpp

kernel.cpp c
o
m
p
il
e
r=

g
c
c

source
file

-D
va
rP
i=
3.1

4

-D
p
iv
o
t=
5

-O3-fopenmp

setup

running program

compile

load function pointer

1

2

3

Figure 1: Continuous Program Optimization flow with

libVC infrastructure, including the proposed extension

features three different implementation of compiler APIs: System-
Compiler,SystemCompilerOptimizer, andClangLibCompiler.

The first two solutions require to be configured to properly inter-
act with external compilers already deployed on the host machine.
The latter implements the Compiler as a library paradigm, and
therefore needs llvm to be installed in the host machine. We extend
libVC with JITCompiler, an additional implementation for the
Compiler interface, with the aim of providing true JIT compilation
capabilities. Figure 1 shows the infrastructure of libVC when it is
used to perform continuous program optimization. We highlight
the new component with a red box under the other alternatives
provided by the framework.

To pursue continuity with the original implementation of libVC,
we base our implementation of JITCompiler on the llvm compiler
framework. In particular, we support the generation of llvm-ir bit-
code files, the optimization of such intermediate representation, and
the compilation of it into executable code. Whilst the bitcode gen-
eration and optimization are implemented similarly to the Clang as
a library paradigm, the generation of executable code is extremely
different and it represents the core of the JITCompiler approach.
To achieve such improvement we leverage llvm’s On-Request-
Compilation (ORC) APIs. Our new libVC compiler implementation
allows us to parse the bitcode files and to elevate them to their in-
memory representation. The freshly imported llvmModule objects
are later passed as arguments to the core llvm ORC API handle
addModule, which actually starts the JIT compilation process. Sim-
ilar APIs allow us to fetch one or more symbols from the jitted code
and use them in the same way libVC provides function pointers to
the host code, so they will be able to access the dynamically com-
piled version of the code via indirect function calls. Like the other
compiler implementations defined in libVC, we provide a mecha-
nism to control the memory footprint of the dynamic compilation
framework by exposing knobs to offload and to reload from the
memory the dynamically compiled modules. This approach is fully
compliant with the state-of-the-art libVC paradigma to perform
continuous optimization.

3 EXPERIMENTAL EVALUATION

We evaluate our implementation of the llvm-based JIT compiler by
comparing its capabilities with the alternatives which are already
available within libVC [14]. Our solution exposes the same APIs
as the other compiler implementations within libVC. Thus, the



Continuous Program Optimization via Advanced Dynamic... PARMA-DITAM 2019, January 2019, Valencia, ES

Total compilation time using libVC alternatives

sys sysopt libclang jit
0

0.5

1

1.5

2

2.5

Ti
m

e
 (

m
s)

#104

Figure 2: Compilation time of the whole PolyBench/C

benchmark suite with different implementation alterna-

tives from libVC.

usability of this compiler, and its fitness to continuous optimization
use cases are the same as of its alternatives. In this section, we focus
on two main performance indicators, namely code quality and
compilation time. To this end, we compare our solution against
the other libVC compiler implementations over the well-known
PolyBench/C benchmark suite [15]. We use this benchmark suite
as a proxy to validate the effectiveness of our approach as it is
particularly representative of the typical HPC workload. In fact, it
contains kernels from several application domain, such as linear
algebra, data mining, and image processing, which are the core
emerging areas in the HPC world.

The platform used to run the experiments is representative of
modern supercomputer nodes. The selected hardware is a NUMA
node with two Intel Xeon E5-2630 V3 CPUs (@3.2 GHz) for a total
of 16 cores, with hyper threading enabled and 128 GB of DDR4
memory (@1866MHz) on a dual channel memory configuration.
The operating system is Ubuntu 16.04 with version 4.4.0 of the
Linux kernel. The experiments run with the machine completely
unloaded from other user processes.

We based our tests on the official libVC testing setup for Poly-
Bench/C2. We configured libVC to use the following compilers:
SystemCompiler default host compiler (gcc version 5.4.0)
SystemCompilerOptimizer clang and opt, version 6.0.1
ClangLib libclang version 6.0.1
JITCompiler our solution, based on llvm version 6.0.1
We configured each compiler to run with the same set of compiler
options, i.e. we specify only the optimization level -O3. We rely on
the MEDIUM dataset size, and on the default initialization routines
which are defined by the PolyBench/C benchmark suite for each
kernel. All kernels use the IEEE-754 floating point double precision
data type for the computation.

3.1 Code Quality

We expect to have the same code quality given by the same com-
piler with the same compiler options. To verify this assertion we
compiled and run the PolyBench/C benchmarks and we report in
Figure 3 runtime and compilation time for each benchmark. The run

2https://github.com/skeru/polybench_libVC

time of the different code versions generated using libVC compilers
is not significantly influenced by the chosen compiler alternative.
On the contrary, this choice becomes relevant for the compilation
time. Figure 2 bar chart highlights how the JITCompiler compiler
performance outstands the other clang-based alternatives. This is
confirmed by every benchmark in the polybench suite on IEEE-754
double precision type data. Thus, the code quality is not signifi-
cantly influenced by the compiler choice.

3.2 Compilation Time

The main overhead that applies to continous program optimization
via dynamic compilation is given by the compilation time. As the
code quality is not influenced by the chosen compiler, the conditions
that trigger a re-compilation task do not change. The compilation
time of the single kernel is not enough significative per se. Thus,
we compare the compilation time of each compiler implementa-
tion when it is asked to compile the whole set of PolyBench/C
benchmarks. Figure 2 underlines the improved performance of the
JITCompiler when compared with other clang-based compilers.
The SystemCompiler is based instead on the gcc compiler tech-
nology, which performs better in terms of compilation time. Figure 3
confirms that this trend holds for each kernel.

4 RELATEDWORKS

The history of JIT compilation is almost as old as computer science.
Aycook summarizes early works on JIT compilation techniques
starting from the 1960s in his survey [16]. In modern times, the
Sun Microsystems Java HotSpot Virtual Machine [17] started to
extensively use JIT technologies by running both an interpreter
and a compiler, the latter invoked on hot-spots [18].

More recently, the Graal Project3 aims at leveraging the JIT tech-
nologies to improve performance of several interpreted, bitcode-
interpreted, and compiled languages. In particular, the GraalVM4 is
the most relevant outcome of this project. It embraces JIT com-
pilation as the key-stone of the framework in order to enable
several speculative optimizations [19]. GraalVM has been used
to provide JIT support to a wide range of programming languages,
from domain specific languages [20] to popular languages, such
as JavaScript and C/C++ [21]. However, it relies on llvm-based
solutions to dynamically compile C/C++ source code to llvm-ir
(clang front end), and to interpret llvm-ir (lli interpreter). Thus,
GraalVM can be considered technologically equivalent to the llvm
compiler toolchain we evaluated via libVC.

Another effort to enable dynamic compilation over C/C++ code is
represented byCling [22] — the clang-based C++ interpreter. Since
this project implements the Read-Eval-Print-Loop (REPL) paradigm
over C++ source code, it is the closest effort to a pure C++ JIT
compiler in the state-of-the-art. In the rest of this section we further
discuss Cling and its usage. Finally, we provide a comparative
analysis between our proposed solution and Cling.

4.1 Cling

Cling originates from the need to process vast amount of data with
the capabilities of a compiled language with a strong focus on code
efficiency, such as C++. It was developed as a part of CERN’s data

3Oracle Graal project https://openjdk.java.net/projects/graal/
4GraalVM https://www.graalvm.org

https://github.com/skeru/polybench_libVC
https://openjdk.java.net/projects/graal/
https://www.graalvm.org


PARMA-DITAM 2019, January 2019, Valencia, ES Festa et al.

d
m

 c
o
rr

e
la

ti
o
n

d
m

 c
o
v
a
ri

a
n
ce

la
 b

la
s/

g
e
m

m

la
 b

la
s/

g
e
m

v
e
r

la
 b

la
s/

g
e
su

m
m

v

la
 b

la
s/

sy
r2

k

la
 b

la
s/

sy
rk

la
 b

la
s/

tr
m

m

la
 k

e
r/

2
m

m

la
 k

e
r/

3
m

m

la
 k

e
r/

a
ta

x

la
 k

e
r/

b
ic

g

la
 k

e
r/

d
o
it

g
e
n

la
 k

e
r/

m
v
t

la
 s

o
lv

/c
h

o
le

sk
y

la
 s

o
lv

/d
u
rb

in

la
 s

o
lv

/g
ra

m
sc

h
m

id
t

la
 s

o
lv

/l
u

la
 s

o
lv

/l
u
d

cm
p

la
 s

o
lv

/t
ri

so
lv

m
e
d

 d
e
ri

ch
e

m
e
d

 fl
-w

a
r

m
e
d

 n
u

ss
in

o
v

st
e
n
 a

d
i

st
e
n
 f

d
td

-2
d

st
e
n
 h

e
a
t-

3
d

st
e
n
 j
a
co

b
i-

1
d

st
e
n
 j
a
co

b
i-

2
d

st
e
n
 s

e
id

e
l-

2
d

0

500

1000

1500

Ti
m

e
 (

m
s)

Compilation and run time of each kernel
System execution time
System compilation time
SystemOptimizer execution time
SystemOptimizer compilation time
LibClang execution time
LibClang compilation time
JIT execution time
JIT compilation time

Figure 3: Compile time and run time of each kernel of the PolyBench/C benchmark suite with different implementation

alternatives from libVC.

processing framework ROOT. Cling’s core objective is to provide
a fast and interactive way to run applications able to access ex-
perimental results generated by the high-energy-physics research
community. A structural analysis of Cling highlights the 3 funda-
mental parts it is composed of:

Interpreter which implements the parsing, JIT compilation, and
evaluation of native C++ capabilities

Meta Processor which provides a command line interface to send
commands to the interpreter

User Interface providing the interactive prompt, and an excep-
tion handling mechanism

Cling’s interpreter is based on the version 5.0.0. of llvm, and on
its C++ frontend Clang. While our JITCompiler leverages the IR-
CompileLayer class to provide jitting, Cling uses the LazyEmit-
Layer one. In the former case the behaviour of the class is to im-
mediately JIT the llvm Module as soon as this is passed to the
addModule API, the latter instead explicitly waits the symbol to
be called to begin compiling.

Given Cling’s intrinsic REPL-based implementation, to measure
its performance we exploited the bash’s ‘time‘ utility to extract the
precise execution time lapse of the evaluation of a single kernel. To
exclude the overhead due to otherCling’s components initialization
(such as the User Interface) we run the Interpreter several times
with no instructions but the .q (exit) directive. In this way, we

collected the average time lapse of the setup and the tear down
routines of Cling.

Moreover, we separate compilation and execution times, which
are indistinguishable due to the lazyness of Cling’s jitting strategy,
by running the interpreter multiple times. This procedure allows
us to infer the single compilation-only time lapse for each kernel.

4.2 Comparative Analysis

We compare Cling with our JIT implementation within libVC by
scheduling the run of each kernel from the PolyBench/C benchmark
suite. We rely on the same hardware and software setup described
in Section 3. We measured execution time and the (re-)compilation
overhead. SinceCling does not support any code optimization level,
we slightly modified the previously-described experimental setup
to allow a fair comparison between Cling and JITCompiler. In
particular, we disabled any optimization in our JITCompiler via
the -O0 compiler option. We collected data using the MEDIUM
dataset size preset and the IEEE-754 floating point single precision
data type for the computation.

In Figure 4 we compare JITCompiler from libVC with the
external tool Cling. As expected, the compiling phase is generally
a more time requesting task with respect to the execution one
for the PolyBench/C benchmark suite with the MEDIUM data set.
Figure 4 clearly shows that the compiling plus execution time of



Continuous Program Optimization via Advanced Dynamic... PARMA-DITAM 2019, January 2019, Valencia, ES

d
m

 c
o
rr

e
la

ti
o
n

d
m

 c
o
v
a
ri

a
n
ce

la
 b

la
s/

g
e
m

m

la
 b

la
s/

g
e
m

v
e
r

la
 b

la
s/

g
e
su

m
m

v

la
 b

la
s/

sy
r2

k

la
 b

la
s/

sy
rk

la
 b

la
s/

tr
m

m

la
 k

e
r/

2
m

m

la
 k

e
r/

3
m

m

la
 k

e
r/

a
ta

x

la
 k

e
r/

b
ic

g

la
 k

e
r/

d
o
it

g
e
n

la
 k

e
r/

m
v
t

la
 s

o
lv

/c
h

o
le

sk
y

la
 s

o
lv

/d
u
rb

in

la
 s

o
lv

/g
ra

m
sc

h
m

id
t

la
 s

o
lv

/l
u

la
 s

o
lv

/l
u
d

cm
p

la
 s

o
lv

/t
ri

so
lv

m
e
d

 d
e
ri

ch
e

m
e
d

 fl
-w

a
r

m
e
d

 n
u

ss
in

o
v

st
e
n
 a

d
i

st
e
n
 f

d
td

-2
d

st
e
n
 h

e
a
t-

3
d

st
e
n
 j
a
co

b
i-

1
d

st
e
n
 j
a
co

b
i-

2
d

st
e
n
 s

e
id

e
l-

2
d

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Ti
m

e
 (

m
s)

Compilation and run time of each kernel
JIT execution time
JIT compilation time
Cling execution time
Cling compilation time

Figure 4: Compilation and execution time of the overall PolyBench/C benchmark suite with Cling and with JITCompiler.

Figure 5: Compilation and execution time of the overall

PolyBench/C benchmark suitewithCling andwith JITCom-
piler.

the JITCompiler outperforms the Cling interpreter even when
the former does not schedule any optimization, i.e. it runs with -O0
optimization level.

Figure 5 better highlights the saving coming from the use of
JITCompiler instead of the lazy interpretation of C++ code given
by Cling, as it shows the overall amount of time spent compiling
and running once the full PolyBench/C benchmark suite.

Figure 6 shows the compilation time plus the execution time of
Cling compared with the equivant of the JITCompiler when the
latter is using the -O3 optimization level. Running the compiled
code several times allows us to analyze the actual speedup given by
the JICompiler. Although the total compilation time, as seen in
Figure 5, does not show astonishing differences, with an increased
number of invocation of the same kernel the JITCompiler opti-
mization capabilities — which are paid by longer compilation times
— allows the system to reach better performance.

5 CONCLUSIONS

We extended the libVC framework with JIT compilation capabil-
ities, leveraging the llvm compiler framework. We compare the
resulting dynamic compiler with the pre-existing compilation op-
tions provided by libVC, which are based on standard compilers
(Clang as a library, gcc, clang + opt). We show how the JIT integra-
tion improves the performance of code compiled with libVC on
the PolyBench/C suite.

Regardless the different approaches to dynamically run C++ code
(REPL VS APIs), libVC’s JITCompiler outperforms Cling when
it is invoked from an host application, as in the case of continuous
program optimization via dynamic compilation.

ACKNOWLEDGMENTS

This work is supported by the European Union’s Horizon 2020
research and innovation programme, under grant agreement No
671623, FET-HPC ANTAREX.



PARMA-DITAM 2019, January 2019, Valencia, ES Festa et al.

Compilation time speedup
JITCompiler vs Cling

d
m

 c
o
rr

e
la

ti
o
n

d
m

 c
o
v
a
ri

a
n
ce

la
 b

la
s/

g
e
m

m

la
 b

la
s/

g
e
m

v
e
r

la
 b

la
s/

g
e
su

m
m

v

la
 b

la
s/

sy
r2

k

la
 b

la
s/

sy
rk

la
 b

la
s/

tr
m

m

la
 k

e
r/

2
m

m

la
 k

e
r/

3
m

m

la
 k

e
r/

a
ta

x

la
 k

e
r/

b
ic

g

la
 k

e
r/

d
o
it

g
e
n

la
 k

e
r/

m
v
t

la
 s

o
lv

/c
h

o
le

sk
y

la
 s

o
lv

/d
u
rb

in

la
 s

o
lv

/g
ra

m
sc

h
m

id
t

la
 s

o
lv

/l
u

la
 s

o
lv

/l
u
d
cm

p

la
 s

o
lv

/t
ri

so
lv

m
e
d
 d

e
ri

ch
e

m
e
d
 fl

-w
a
r

m
e
d
 n

u
ss

in
o
v

st
e
n
 a

d
i

st
e
n
 f

d
td

-2
d

st
e
n
 h

e
a
t-

3
d

st
e
n
 j
a
co

b
i-

1
d

st
e
n
 j
a
co

b
i-

2
d

st
e
n
 s

e
id

e
l-

2
d

100

101

102

S
p

e
e
d

u
p

1 compilation + 10 execution
1 compilation + 100 executions
1 compilation + 1000 execution

Figure 6: Speedup achieved by using JITCompiler instead of Cling with 10, 100, and 1000 invocations of the kernel.

REFERENCES

[1] W. Ziegler, R. D’Ippolito, M. D’Auria, J. Berends, M. Nelissen, and R. Diaz. Im-
plementing a “one-stop-shop” providing smes with integrated hpc simulation
resources using fortissimo resources. In eChallenges e-2014 Conf. Proceedings,
pages 1–11, Oct 2014.

[2] Bastian Koller, Nico Struckmann, Jochen Buchholz, andMichael Gienger. Towards
an environment to deliver high performance computing to small and medium
enterprises. In Sustained Simulation Performance 2015, pages 41–50, 2015.

[3] Cristina Silvano et al. The ANTAREX approach to autotuning and adaptivity for
energy efficient hpc systems. In Proc. of the ACM Internat. Conf. on Computing
Frontiers, pages 288–293, 2016.

[4] Cristina Silvano et al. The ANTAREX tool flow for monitoring and autotuning
energy efficient HPC systems. In Internat. Conf. on Embedded Computer Systems:
Architectures, Modeling, and Simulation (SAMOS), pages 308–316, July 2017.

[5] Cristina Silvano et al. ANTAREX: ADSL-based approach to adaptively optimizing
and enforcing extra-functional properties in high performance computing. In
21st Euromicro Conf. on Digital System Design (DSD), pages 600–607, Aug 2018.

[6] Thomas Kistler and Michael Franz. Continuous program optimization: A case
study. ACM Trans. Program. Lang. Syst., 25(4):500–548, jul 2003.

[7] Dorit Nuzman, Revital Eres, Sergei Dyshel, Marcel Zalmanovici, and Jose Cas-
tanos. Jit technology with c/c++: Feedback-directed dynamic recompilation for
statically compiled languages. ACM Trans. Archit. Code Optim., 10(4):59:1–59:25,
dec 2013.

[8] Brian Fahs, Todd Rafacz, Sanjay J. Patel, and Steven S. Lumetta. Continuous
optimization. In Proceedings of the 32Nd Annual International Symposium on
Computer Architecture, ISCA ’05, pages 86–97, 2005.

[9] Daniel A. Reed and Jack Dongarra. Exascale computing and big data. Communi-
cations of the ACM, 58(7):56–68, jun 2015.

[10] Siegfried Benkner, Franz Franchetti, Hans Michael Gerndt, and Jeffrey K
Hollingsworth. Automatic Application Tuning for HPC Architectures (Dagstuhl
Seminar 13401). Dagstuhl Reports, 3(9):214–244, 2014.

[11] Howard Chen, Jiwei Lu, Wei-Chung Hsu, and Pen-Chung Yew. Continuous
adaptive object-code re-optimization framework. In Pen-Chung Yew and Jingling
Xue, editors, Advances in Computer Systems Architecture, pages 241–255, 2004.

[12] Protonu Basu et al. Compiler-based code generation and autotuning for geometric
multigrid on gpu-accelerated supercomputers. Parallel Computing, 64(Supple-
ment C):50 – 64, 2017.

[13] Jeremy Cohen, Thierry Rayna, and John Darlington. Understanding resource
selection requirements for computationally intensive tasks on heterogeneous
computing infrastructure. In José Ángel Bañares, Konstantinos Tserpes, and
Jörn Altmann, editors, Economics of Grids, Clouds, Systems, and Services, pages
250–262, 2017.

[14] Stefano Cherubin and Giovanni Agosta. libVersioningCompiler: An easy-to-
use library for dynamic generation and invocation of multiple code versions.
SoftwareX, 7:95 – 100, 2018.

[15] Tomofumi Yuki. Understanding PolyBench/C 3.2 kernels. In International work-
shop on Polyhedral Compilation Techniques (IMPACT), 2014.

[16] John Aycock. A brief history of just-in-time. ACM Comput. Surv., 35(2):97–113,
jun 2003.

[17] Sun Microsystems Java team. The Java HotSpot Virtual Machine, v1.4.1.
[18] Michael Paleczny, Christopher Vick, and Cliff Click. The java hotspottm server

compiler. In Proc. of the 2001 Symposium on JavaTM Virtual Machine Research
and Technology Symposium - Volume 1, JVM’01, pages 1–1, 2001.

[19] Gilles Duboscq, Thomas Würthinger, and Hanspeter Mössenböck. Speculation
without regret: Reducing deoptimization meta-data in the graal compiler. In Proc.
of the 2014 International Conf. on Principles and Practices of Programming on the
Java Platform: Virtual Machines, Languages, and Tools, pages 187–193, 2014.

[20] Vlad Vergu and Eelco Visser. Specializing a Meta-Interpreter: JIT compilation of
DynSem specifications on the graal vm. In Proceedings of the 15th International
Conf. on Managed Languages & Runtimes, ManLang ’18, pages 16:1–16:14, 2018.

[21] Matthias Grimmer, Manuel Rigger, Roland Schatz, Lukas Stadler, and Hanspeter
Mössenböck. Trufflec: Dynamic execution of c on a java virtual machine. In Proc.
of the 2014 Internat. Conf. on Principles and Practices of Programming on the Java
Platform: Virtual Machines, Languages, and Tools, PPPJ ’14, pages 17–26, 2014.

[22] V Vasilev, Ph Canal, A Naumann, and P Russo. Cling – the new interactive
interpreter for root 6. Journal of Physics: Conf. Series, 396(5):052071, 2012.


	Abstract
	1 Introduction
	2 A Just-in-Time Solution
	2.1 Continuous Optimization via Dynamic Compilation
	2.2 Principles of Just-in-Time Compilation
	2.3 Providing JIT APIs via LLVM

	3 Experimental Evaluation
	3.1 Code Quality
	3.2 Compilation Time

	4 Related Works
	4.1 Cling
	4.2 Comparative Analysis

	5 Conclusions
	References

