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Abstract In this paper we consider functions f defined on an open set U of the 
Euclidean space Rn+1 and with values in the Clifford Algebra Rn . Slice monogenic 
functions f : U ⊆ R

n+1 → Rn belong to the kernel of the global differential 
operator with non constant coefficients given by G = |x |2 

∂
∂

0 
+ x 

∑
j=1 x j ∂

∂
x j .

n

Since the operator G is not elliptic and there is a degeneracy in x = 0, its kernel 
contains also less smooth functions that have to be interpreted as distributions. We 
study the distributional solutions of the differential equation G F(x0, x) = G(x0, x) 
and some of its variations. In particular, we focus our attention on the solutions of the 
differential equation (x ∂ − E)F(x0, x) = G(x0, x), where E = 

∑
j=1 x j ∂

∂
x j is

∂x0 
the Euler operator, from which we deduce properties of the solutions of the equation 
G F(x0, x) = G(x0, x).
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1 Introduction

The global operator G associated with slice monogenic functions has been recently 
introduced in [5]. This operator contains in its kernel the set of slice monogenic 
functions and, when n = 3 and x is the imaginary part of a quaternion, the set of 
slice regular functions which is the quaternionic version of this theory. Both classes of 
functions are called slice hyperholomorphic functions. There are several applications 
of slice hyperholomorphic functions in functional analysis and in operator theory, in 
particular to Schur analysis [1–3]. Moreover with these functions we can define the 
so called S-functional calculus, which is the non commutative version of the Riesz–
Dunford calculus for n-tuples of non necessarily commuting operators, see [6,9,10]. 
In this paper, we begin the study of the distributional solutions the equation G F = G, 
where F and G are Clifford algebra valued functions. The problem is non trivial 
since the operator G has non constant coefficients and is degenerate. In [12], it has 
been recently introduced a system of differential equations which generalize the 
system G F = 0 to the case of slice regular functions with values in an alternative 
real algebra.

Let us denote by Rn the real Clifford algebra over n imaginary units e1, . . . , en 
satisfying the relations ei e j + e j ei = −2δi j  . An element in the Clifford algebra Rn 
will be denoted by 

∑
A eAxA where A = i1 . . . ir , i� ∈ {1, 2, . . . , n}, i1 < · · ·  < ir is a 

multi-index, eA = ei1 ei2 . . .  eir and e∅ = 1, xA ∈ R. Some specific elements in Rn can 
be identified with vectors in the Euclidean space Rn : an element (x1, x2, . . . ,  xn) ∈ 
R

n can be identified with a so called 1-vector in the Clifford algebra through the map 
(x1, x2, . . . ,  xn) �→ x = x1e1 +  · · ·  +  xnen .

The element (x0, x1, . . . , xn) ∈ R
n+1 will be identified with x = x0 + x = x0 +∑n

j=1 x j e j , and is called paravector. The norm of x ∈ R
n+1 is defined as |x |2 =

x2
0 + x2

1 + · · · + x2
n . The real part x0 of x will be also written as Re(x). A function

f : U ⊆ R
n+1 → Rn is treated as a function f (x), or more explicitly f (x0, x), of

the paravector x . The symbol S will denote the sphere of unit 1-vectors in R
n , i.e.

S = {x = e1x1 + · · · + en xn : x2
1 + · · · + x2

n = 1}.

Note that S is an (n − 1)-dimensional sphere in R
n+1 lying on the hyperplane x0 = 0

that can be identified with the Euclidean space R
n .

The set of slice monogenic functions is defined as follows, see [8]:

Definition 1.1 Let U ⊆ R
n+1 be an open set and let f : U → Rn be a real

differentiable function. Let I ∈ S and let f I be the restriction of f to the complex
plane CI , where an element in CI is denoted by u + Iv, u, v ∈ R. We say that f is a
(left) slice monogenic function, or s-monogenic function, if for every I ∈ S, we have

1

2

(
∂

∂u
+ I

∂

∂v

)

f I (u + Iv) = 0.

We denote by SM(U ) the set of s-monogenic functions on U .



We note that in the literature there is another notion of monogenic functions which is 
already defined by a global operator, with constant coefficients, called Dirac 
operator, see [4,7,11].

In [5] it has been introduced the following operator

G = |x |2 ∂

∂x0
+ x

n∑

j=1

x j
∂

∂x j
(1)

which acts on functions f : U → Rn , which have a suitable regularity, where
U ⊆ R

n+1 is an open set. It has been shown that the set of slice monogenic functions
SM(U ) is contained in the kernel of G. But since the operator is non elliptic, we have
also solutions that are not necessarily slice monogenic functions but can be much
less smooth. Moreover there is a degeneracy for x = 0. If we denote by E the Euler
operator

E =
n∑

j=1

x j
∂

∂x j
,

from (1) we deduce that we can also consider, for any fixed n ∈ N, an operator which 
is less degenerate, that is

x
∂

∂x0
− E, (2)

but also operators that are more degenerate like

x p
(

x
∂

∂x0
− E

)

for p ∈ N, (3)

which coincide, for p = 1, with the operator G.
The case n = 1 is studied in Sect. 2, while in Sect. 3 and in Sect. 4 we show some

results in the higher dimensional case.

2 The 1-Dimensional Case

We recall two main facts on the theory of distributions that are very well known but
will be important for our formulation of the problem. For the theory of distributions
we refer the reader to [14, p. 52].

Theorem 2.1 Let � ⊆ R be an open set. A linear functional f on D(�) is a distri-
bution if and only if for every open set �′ ⊂ �, with �

′ ⊂ � and �
′

compact, there
exist two numbers K = K (�′) and m = m(�′) such that

|〈 f, ϕ〉| ≤ K‖ϕ‖Cm (�′). (4)



From the above theorem naturally arises the definition of the order of a distribution.

Definition 2.2 Suppose that f ∈ D′(�), where � ⊆ R, and suppose that we can
choose the integer number m independently of �′ such that (4) holds. We will say that
f is of finite order and the minimum integer m such that (4) holds is called the order
of the distribution f .

Theorem 2.3 (Distributions with support in a point) Let f ∈ D′(�), where � ⊆ R,
and suppose that supp f is the point 0. Then f is uniquely represented by the formula

f (x) =
m∑

k=0

ck Dkδ(x)

where m is the order of f, ck are constants, and D denotes the derivative with respect
to x.

Finally we recall that the equation x N f (x) = 0 in D′(R) has the solutions

f (x) =
N−1∑

k=0

ck Dkδ(x)

where ck are arbitrary constants.
For the case n = 1 we can study explicitly the kernel of the operator (x∂x0 − E).

With the positions x0 = x, x1 = y and e1 = i we have

y(∂x + i∂y) f (x, y) = 0. (5)

Theorem 2.4 In D′(R2) the general solution of (5) is locally given by

f (x, y) = h(x, y) + E ∗ c(x)δ(y)

where h is any holomorphic function and c(x) is an arbitrary distribution, with com-
pact support, in x and E is the fundamental solution of the Cauchy–Riemann operator.

Proof Solving the division problem for y(∂x + i∂y) f (x, y) = 0 we get

(∂x + i∂y) f (x, y) = c(x)δ(y)

where locally, e.g. for |x + iy| < R for a given R > 0, we may assume the support of
c(x)δ(y) to be compact.

As the solutions of the kernel of (∂x + i∂y) are the holomorphic functions, we
get the statement by standard arguments. In fact, let E be the fundamental solution
of the Cauchy–Riemann operator, (∂x + i∂y)E(z) = δ0 then the solution of (∂x +
i∂y)F(x, y) = c(x)δ(y) is given by

F(x, y) = E ∗ c(x)δ(y).



The convolution is well defined since c(x)δ(y) has compact support. So F plus the
solutions in the kernel of the Cauchy–Riemann operator gives the general solution.

Remark 2.5 Thanks to the above results, with the same technique, we can study the
homogeneous equation:

y p(∂x + i∂y) f (x, y) = 0, p = 2, 3, . . . .

In fact, it can be written as

(∂x + i∂y) f (x, y) =
p−1∑

k=0

ck(x)Dkδ(y)

since distributions with compact support on the real line, are represented by

q∑

k=0

ck(x)Dkδ(y)

for suitable q and where ck(x) have compact support as well.

Remark 2.6 For n = 1 the paravector variable x0 +x becomes the complex variable z,
and for m complex variables, denoted by z j = x j + iy j , x j , y j ∈ R, we can consider
a function f = f (z1, z2, . . . zm) defined in an open set in R

2m . So for the several
variables case the system to be considered becomes

y j (∂x j + i∂y j ) f (z1, z2, . . . , zm) = 0, j = 1, . . . , m and m ∈ N. (6)

It can be also studied by solving the division problem in the sense of distributions in
several variables.

3 The Higher Dimensional Case

We now consider the nonconstant coefficients differential operator

x∂x0 − E, (7)

where E is the Euler operator for n ≥ 2. In this case things are more complicated
as it can be seen explicitly by writing the equation (x∂x0 − E) f = 0 for n = 2 in
components. By setting f = f0 + f1e1 + f2e2 + f3e1e2 where f j : R

2 → R, j =
0, . . . , 3 we have the system

⎧
⎪⎪⎨

⎪⎪⎩

x1(∂0 f1 + ∂1 f0) + x2(∂0 f2 + ∂2 f0) = 0,

x1(∂0 f0 − ∂1 f1) + x2(∂0 f3 − ∂2 f1) = 0,

x1(∂0 f3 + ∂1 f1) − x2(∂0 f0 − ∂2 f2) = 0,

x1(∂0 f2 − ∂1 f3) − x2(∂0 f1 + ∂2 f3) = 0,

(8)



where we have set ∂ j = ∂x j , j = 0, . . . , 3. Thus we cannot use the division strategy
as in the 1-dimensional case.

Let us recall some properties of the Euler operator

E =
n∑

j=1

x j
∂

∂x j

in the setting of distributions. These results are in [11, p. 351].

Lemma 3.1 Let ∂x = ∑n
j=1 e j∂x j be the Dirac operator in dimension n ∈ N and let

� ∈ N. Then

E[∂�
xδ(x)] = −(n + �)∂�

xδ(x), (9)

where δ(x) denotes the delta distribution.

Proof It follows from the fact that δ(x) is homogeneous of degree −n and the fact
that the Euler operator measures the degree of homogeneity.

In the Clifford algebras setting the structure theorem of distributions supported at the
origin is given by:

Theorem 3.2 Let F ∈ D′(Rn+1) and suppose that suppF is compact and contained
in the real axis identified with {x ∈ R

n+1 : x = 0}. Then F is uniquely represented
by the formula

F(x0, x) =
∑

|α|≤N

Aα(x0)∂
α
x δ(x),

where N is the order of F and Aα are distributions, with compact support, depending
on x0.

We have the following result:

Theorem 3.3 Let G be a given distribution in D′(Rn+1) with compact support in the
real axis identified with {x ∈ R

n+1 : x = 0}. Suppose that the solution F(x0, x) to
the equation

(x∂x0 − E)F(x0, x) = G(x0, x), (10)

has compact support in R. Then F is unique.

Proof Since G is with compact support for the previous theorem we can write it as

G(x0, x) =
�∑

s=0

G−n−s(x0, x),



where

G−n−s(x0, x) =
∑

|α|=s

Gα(x0)∂
α
x δ(x).

Here each G−n−s(x0, x) is homogeneous of degree −(n + s), in the x variable. This
notation will be useful in the sequel. Since also F(x0, x) has compact support we can
write

F(x0, x) =
�∑

s=0

F−n−s(x0, x)

and each F−n−s(x0, x) is homogeneous of degree −(n + s) in the x variable. Thanks
to Lemma 3.1 we have

E F(x0, x) = −nF−n(x0, x) − (n + 1)F−n−1(x0, x) − · · ·
· · · − (n + � − 1)F−n−s+1(x0, x) − (n + �)F−n−�(x0, x).

Since

∂x0 x F(x0, x) = x∂x0 F(x0, x)

we have that ∂x0 x F(x0, x) can be decomposed as the sum of ∂x0 x Fs(x0, x) each term
being homogeneous of degree −(m + s − 1), in the x variable. By substituting in (10)
we obtain

∂x0 x
�∑

s=0

F−n−s(x0, x) −
�∑

s=0

E F−n−s(x0, x) =
�∑

s=0

G−n−s(x0, x).

By writing explicitly the terms in this equality we have

∂x0 x F−n(x0, x) + ∂x0 x F−n−1(x0, x)

+ · · · + ∂x0 x F−n−�+1(x0, x) + ∂x0 x F−n−�(x0, x)

−nF−n(x0, x) − (n + 1)F−n−1(x0, x) − · · ·
· · · − (n + � − 1)F−n−s+1(x0, x) − (n + �)F−n−�(x0, x)

= G−n(x0, x) + G−n−1(x0, x) + · · · + G−n−�+1(x0, x) + G−n−�(x0, x),

and we can write the equalities for the terms with the same degree of homogeneity. In
particular, for the degree −n − �, we have:

−(n + �)F−n−�(x0, x) = G−n−�(x0, x)



which gives

F−n−�(x0, x) = − 1

n + �
G−n−�(x0, x).

Now observe that the term ∂x0 x F−n−�(x0, x) has degree of homogeneity −n − � + 1.
So we deduce the equation for the term of degree of homogeneity −n − � + 1, that is

∂x0 x F−n−�(x0, x) − (n + � − 1)F−n−s+1(x0, x) = G−n−�+1(x0, x).

By replacing F−n−�(x0, x) = − 1
n+�

G−n−�(x0, x) on the left hand side we obtain

− 1

n + �
∂x0 xG−n−�(x0, x) − (n + � − 1)F−n−s+1(x0, x) = G−n−�+1(x0, x)

so we solve to get F−n−s+1(x0, x).
By iterating this procedure, in a finite number of steps, we determine all the terms

F−n−s(x0, x), for s ≤ �. Thus the uniqueness of the solution follows by construction.

Corollary 3.4 Let p ∈ N and suppose that in D′(Rn+1), the solution F(x0, x) to the
equation

x p(x∂x0 − E)F(x0, x) = 0, (11)

has compact support in R. Then F is unique.

Proof Let p ∈ N then, by solving the division problem in the distributions D′(Rn+1),
the equation

x p(x∂x0 − E)F(x0, x) = 0, (12)

becomes equivalent to

(x∂x0 − E)F(x0, x) =
p−1∑

s=0

G−n−s(x0, x), (13)

where

G−n−s(x0, x) =
∑

Gα(x0)∂
α
x δ(x).

|α|=s

From Theorem 3.3 we get the statement.

Remark 3.5 The proof of Theorem 3.3 cannot be adapted to the case hyperfunctions. In 
fact suppose to take an hyperfunction supported at the origin. Then (see [13, p. 156])



its representation is a series of the derivatives of the delta of Dirac in the Clifford
algebra case:

G(x0, x) =
∞∑

s=0

G−n−s(x0, x),

where

G−n−s(x0, x) =
∑

|α|=s

Gα(x0)∂
α
x δ(x).

Thus, in this case, we do not have the minimum degree of homogeneity to start with.
And so the procedure does not apply.

4 The Noncompact Support Case

Theorem 4.1 Let � be an open set in R
n+1. Consider in D′(�) the differential equa-

tion

(x∂x0 − E)F(x0, x) = G(x0, x), (14)

∼

G(x0, x)|�′ =

and assume that the distribution G is such that supp(G) ⊆ �∩{x ∈ Rn+1 | x = 0} = 
� ∩ R. Then there exists a unique distribution F with support in � ∩ R solving the
Eq. (14).

Proof Let � ⊂ Rn+1 be an open set and assume that �′ ⊂ � where �′ is open and
�

′ 
is compact. Then we may write like in the proof of Theorem 3.3

�∑

s=0

G−n−s(x0, x)

where � depends on �′ and G−n−s(x0, x) = ∑
|α|=s Gα(x0)∂

α
x δ(x). Here each

G−n−s(x0, x) is homogeneous of degree −(n + s) in the x variable. If F is a solution
to the Eq. (14) supported by R ∩ �, then

F(x0, x)|�′ =
�′

∑

s=0

F−n−s(x0, x)

for some �′ that depends on �′ where each F−n−s(x0, x) is homogeneous of degree
−(n + s) in the x variable. For �′ = � the functions F−n−s(x0, x) are uniquely
determined by G−n−s(x0, x). Hence F |�′ exists and is unique for all �′. Now observe
that for �′′ ⊂ �′, where �′ and �′′ are open sets with �

′
and �

′′
compact sets, by

uniqueness we have



F(x0, x)|�′′ = F(x0, x)|�′ |�′′ .

So F is well defined and unique on �.

Theorem 4.2 Let � be an open set in Rn+1. Suppose that there exists a solution F to 
the equation

(x∂x0 − E)F(x0, x) = 0, x ∈ �\R

and assume that the solution F extends to a distribution F̆ defined on all �. Then 
there exists a unique distributional extension F̃ of F to all � satisfying

(x∂x0 − E)F̃ (x0, x) = 0.

Proof By assumption we have the existence of a distribution F̆ extending F to �. 
Then, as

(x∂x0 − E)F̆ (x0, x) = 0, x ∈ �\R,

the function (x∂x0 − E)F̆ (x0, x) has support in � ∩ R. Set (x∂x0 − E)F̆ (x0, x) = 
G(x0, x) and consider now the equation

(x∂x0 − E)H(x0, x) = G(x0, x)

on � ∩ R. By Theorem 4.1 there exists a unique H supported in R that solves the 
equation. By setting F̃ (x0, x) = F̆ (x0, x) − H(x0, x) we get the result.

Corollary 4.3 Let us consider in � ⊆ Rn+1 the differential equation associated to 
the operator (1):

(|x |2∂x0 + x
n∑

j=1

x j∂x j )F(x0, x) = 0.

Then F is a distributional solution in � if and only if G defined by

G(x0, x) = (x∂x0 − E)F(x0, x)

is a distributional solution of xG(x0, x) = 0.

Proof It is a consequence of the previous results.

Remark 4.4 The above implies that suppG ⊆ �
⋂

R. Now

(x∂x0 − E)F(x0, x)|�\R = 0



and F(x0, x)|�\R extends to F . So Theorem 4.2 implies the existence and uniqueness 
of F̃ ∈ D′(�) with (x∂x0 − E)F̃ (x0, x) = 0 in D′(�). So  H(x0, x) = F(x0, x) −
F̃(x0, x) satisfies

(x∂x0 − E)H(x0, x) = G(x0, x)

and suppH ⊂ �
⋂

R. So we conclude that

F(x0, x) = F̃(x0, x) + H(x0, x)

with

(x∂x0 − E)F̃ (x0, x) ≡ 0

and suppH ⊂ �
⋂ 

R.

Example 4.5 If we consider (x0 + x)−�, �  ≤ n then it is locally integrable on Rn+1 

and so it is a distribution. By the Theorem 3.3, it solves the homogeneous equation 
associated to (14) identically.

Remark 4.6 For � > n, these functions (x0 + x)−�, are not regular distributions, but 
there exists the possibility to suitably “correct them ” in order to get a distribution still 
solution to the differential equation. For example in the case � = n + 1 we have that 
the distribution solution to the equation is of the form (x0 + x)−� + cδ where c has to 
be chosen in order to have a solution of homogeneous equation associated to (14).

Remark 4.7 It is then natural to ask when is it true that a function of the form

F(x0, x) = P(x0, x)/(x0
2 + |x |2)�

solves the homogeneous differential equation (x∂x0 − E)F(x0, x), where P(x0, x) is 
a suitable polynomial.
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11. Delanghe, R., Sommen, F., Souček, V.: Clifford Algebra and Spinor-valued Functions, Mathematics
and Its Applications, vol. 53. Kluwer Academic Publishers, Dordrecht (1992)

12. Ghiloni, R., Perotti, A.: Global differential equations for slice regular functions (2013, preprint)
13. Kaneko, A.: Introduction to Hyperfunctions. Kluwer Academic Publishers Group, Dordrecht (1988)
14. Vladimirov, V.: Distributions en physique mathématique. Translated from the Russian, “Mir”, Moscow

(1979)


	Distributions and the Global Operator of Slice Monogenic Functions
	Abstract
	1 Introduction
	2 The 1-Dimensional Case
	3 The Higher Dimensional Case
	4 The Noncompact Support Case
	References




