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1. Introduction. The Fueter mapping theorem has been proved in the thirties by
Fueter in [9] as a tool to generate functions in the kernel of the so called Cauchy-
Fueter operator. This theorem has been generalized to monogenic functions, that is
functions with values in a Clifford algebra and in the kernel of the Dirac operator (see
[1, 5, 8, 12, 10]), by several authors. Without claiming completeness we mention the
works [15, 16, 17, 18, 19, 20, 22, 23] and the references therein. This field is still very
active, in fact it turned out that the Fueter mapping theorem is a very deep result in
Clifford analysis. More recently the authors, using the theory of slice monogenic
functions, see e.g. the book [6], have given an integral version of the Fueter mapping
theorem which is useful to define the so called F -functional calculus see [2]. The
inversion of the Fueter mapping theorem is a brand new field of studies that started
in the papers [3, 4]. In order to illustrate the problems that we have tackled, we begin
by stating the first problem that we have solved in [3].

Let n be an odd number and let U be an axially symmetric open set in Rn+1, i.e. let U 
be an open set invariant under the action of SO(n). Suppose that f̆  is an axially 
monogenic function and f is a slice monogenic function such that

f̆(x) = ∆
n−1
2 f(x).



Our problem is to find an explicit description of the map f̆  7→ f .
In the paper [3] we have proved an integral representation formula for the inverse

Fueter mapping theorem for axially monogenic functions defined on axially symmet-

ric open sets U ⊆ Rn+1, where n is an odd number. In general, one may address the 
problem of finding an explicit expression for f such that f̆(x) = ∆

n
2
−1 
f(x), given a 

monogenic function f̆ . However, in order to solve the problem, we need additional 
hypothesis on the monogenic function f̆ .
In [4] we have generalized the result by proving the inverse Fueter mapping theorem

for axially monogenic functions of degree k, i.e. functions of type

f̆k(x) := [A(x0, ρ) + ωB(x0, ρ)]Pk(x),

where A(x0, ρ) and B(x0, ρ) satisfy a suitable Vekua-type system and Pk(x) is
a homogeneous monogenic polynomial of degree k. Given an axially monogenic
function of degree k, it is possible to explicitly write a holomorphic function f of a
paravector variable defined on U such that

∆k+ n−1
2 (f(x)Pk(x)) = f̆(x)Pk(x). (1)

Axially monogenic functions of degree k are important since every monogenic func-

tion f̆ defined on an axially symmetric open set can be written as a series f̆ =
∑
k fk

where fk are axially monogenic functions of degree k. For each addendum of degree
k we can provide a Fueter primitive as described in (1), and so we have, see [4]

f̆ = ∆
n−1
2

∑
k

∆kϕk.

The aim of this paper to solve the problem of inverting the Fueter mapping theorem
at a different level of generality, in fact we consider the case of biaxially monogenic
functions. A monogenic function f is said to be biaxially monogenic if it is invariant
under the action of the group Spin(p) × Spin(q), p ≥ 1, q ≥ 1. It can be proved, see
[14] and Remark 1, that a biaxially monogenic function f is of the form

f(x, y) = A(|x|, |y|) +
x

|x|
B(|x|, |y|) +

y
C(|x|, |y|) +

x

|x|
y

|y|
D(|x|, |y|), (2)

|y|
where the functions A, B, C, D satisfy a Vekua-type system.

Corollary 1 in [21] shows that the Fueter mapping theorem can be extended to
this setting. Indeed, functions W of type

W (x, y) = h1(|x|, |y|) x
|x|

+ h2(|x|, |y|)
y

|y|
(3)

with h1, h2 real valued and such that W is in the kernel of the operator x
|x|∂|x| +

y

|y|∂|y|, are such that

∆
p+q
2 −1W (x, y) = f(x, y) (4)

with f biaxially monogenic. The aim of this paper is to provide the inverse of this
version of the Fueter mapping theorem (4). More precisely:

Problem. Let f be a biaxially monogenic function. Determine W , as in (3), that
is a solution to (4).

The solution of such problem is the main result of this paper and it is given in
Theorem 4.2 and Theorem 4.5, which treat the case of the odd and even part of a
biaxially monogenic, respectively. From these results we can construct the Fueter’s
primitive for a general biaxially monogenic function.



The plan of the paper. In Section 2 we state some preliminary results on the
series expansion of functions W (x, y) in the kernel of the operator x

|x|∂|x| +
y

|y|∂|y|.

In Section 3 we introduce and study the kernels N+
p,q,λ,µ(x, y) and N−p,q,λ,µ(x, y), for

p, q ∈ N and for λ > 0 and µ > 0, which are obtained by integrating the monogenic
Cauchy kernel on suitable spheres. We explicitly determine two Fueter’s primitives
W+
p,q,λ,µ(x, y) and W−p,q,λ,µ(x, y) of N+

p,q,λ,µ(x, y) and N−p,q,λ,µ(x, y), respectively.

In Section 4 we use the kernels W+
p,q,λ,µ(x, y) and W−p,q,λ,µ(x, y) to state our main

result, namely, the inverse Fueter mapping theorem in integral form. We distinguish
between odd and even part of biaxially monogenic functions and we obtain Fueter’s
primitive for a general biaxially monogenic function.

2. Preliminary material. The setting in which we work is the real Clifford al-
gebra Rm over m imaginary units e1, . . . , em satisfying the relations eiej + ejei =
−2δij . An element in the Clifford algebra will be denoted by

∑
A eAxA where

A = i1 . . . ir, i` ∈ {1, 2, . . . ,m}, i1 < . . . < ir, is a multi-index, eA = ei1ei2 . . . eir
and e∅ = 1.

Let p, q be two natural numbers. The basis of Rp+q is then

e1, . . . , ep, ep+1, . . . , ep+q.

An element (x1, . . . , xp, y1, . . . , yq) in the Euclidean space Rp×Rq will be identified
with the pair (x, y) of the two 1-vectors x =

∑p
i=1 xiei, y =

∑q
i=1 yiep+i or also

with the 1-vector x+y. By ∂x, ∂y, and ∂x+y we will denote the corresponding Dirac
operators.

Definition 2.1 (Biaxially monogenic function). Let U be an open set in Rp ×Rq,
for p ≥ 1 and q ≥ 1, invariant under the action of the group Spin(p)× Spin(q). Let
f be a Spin(p) × Spin(q)-invariant monogenic function on U . Then we say that f
is a biaxially monogenic function on U .

Remark 1. It can be shown that biaxially monogenic functions are of the form

f(x, y) = A(|x|, |y|) +
x

|x|
B(|x|, |y|) +

y

|y|
C(|x|, |y|) +

x

|x|
y

|y|
D(|x|, |y|)

defined on an open set U in Rp×Rq invariant under the action of the group Spin(p)× 
Spin(q). In [14], the authors show that this function is biaxially monogenic if the
functions A, B, C, D satisfy the following Vekua-type system, where r = |x| and
ρ = |y|:

∂

∂ρ
A(r, ρ) +

(
∂

∂r
+
q − 1

r

)
D(r, ρ) = 0,(

∂

∂ρ
+
p− 1

ρ

)
D(r, ρ)− ∂

∂r
A(r, ρ) = 0,(

∂

∂ρ
+
p− 1

ρ

)
B(r, ρ) +

(
∂

∂r
+
q − 1

r

)
C(r, ρ) = 0,

∂

∂ρ
C(r, ρ)− ∂

∂r
B(r, ρ) = 0.

Moreover, the condition of monogenicity ∂x+yf = 0 decomposes into a pair of

equations for A and D and another pair for B and C, precisely it decomposes as

∂x+y

(
x

|x|
B(|x|, |y|)+

y

|y|
C(|x|, |y|)

)
= 0, ∂x+y

(
A(|x|, |y|)+

x

|x|
y

|y|
D(|x|, |y|)

)
= 0.



This means that both
x

|x|
B(|x|, |y|)+

y

|y|
C(|x|, |y|), (5)

and

A(|x|, |y|)+
x

|x|
y

|y|
D(|x|, |y|), (6)

are biaxially monogenic functions.

We recall the following.

Definition 2.2. Functions of type (5) are the ”odd part” of a biaxially monogenic
function, while (6) corresponds to the ”even part” of a biaxially monogenic function.

Definition 2.3. Let U ⊆ (R+ ∪ {0}) × (R+ ∪ {0}) and let U ⊆ Rp × Rq be the set 
induced by U . Then we denote by HB(U) the set of functions W of the form

W (x, y) = h1(|x|, |y|) x
|x|

+ h2(|x|, |y|)
y

|y|

with h1, h2 real valued and such that W are nullsolutions of the operator

x

|x|
∂|x| +

y

|y|
∂|y|.

Lemma 2.4. Let U be an open set in Rp×Rq, for p ≥ 1 and q ≥ 1, invariant under
the action of the group Spin(p) × Spin(q) and let x/r ∈ Sp−1, y/ρ ∈ Sq−1, where

r = |x|, ρ = |y|. Then the function W is in the kernel of the operator x
|x|∂|x|+

y

|y|∂|y|

if and only if its components h1 and h2 satisfy the equations{
∂rh1(r, ρ) + ∂ρh2(r, ρ) = 0,
∂ρh1(r, ρ)− ∂rh2(r, ρ) = 0.

(7)

Proof. It follows by a direct computation.

Notation. Let us consider Cm = Rm ⊗ C = Rm + iRm where i is the imaginary
unit of the algebra of complex numbers C. With an abuse of notation, for any a+ ib
in Cm we set Re(a+ ib) = a.

Proposition 1. Let U in Rp × Rq, for p ≥ 1 and q ≥ 1, be invariant under the
action of the group Spin(p)×Spin(q), and assume that W ∈ HB(U). Then we have

W (x, y) = Re
(

(h1(r, ρ) + ih2(r, ρ))(ω − iν)
)
. (8)

Moreover, if we set

H(r − iρ) := h1(r, ρ) + ih2(r, ρ), H(`)(r) := ∂`rH(r), ` = 0, 1, 2, ... (9)

then W can be represented in power series as follows:

W (x, y) =
+∞∑
`=0

( 1

(2`)!
y2`H(2`)(r)

x

r
− 1

(2`+ 1)!
y2`+1H(2`+1)(r)

)
(10)

or equivalently

W (x, y) =
+∞∑
`=0

( 1

(2`)!
y2`H(2`)(|x|) x

|x|
− 1

(2`+ 1)!
y2`+1H(2`+1)(|x|)

)
. (11)



Proof. Observe that since we have set r = |x|, ρ = |y|, x/r = ω, y/ρ = ν we can
write

W (x, y) =h1(|x|, |y|) x
|x|

+ h2(|x|, |y|)
y

|y|

=h1(r, ρ)ω + h2(r, ρ)ν = Re
(

(h1(r, ρ) + ih2(r, ρ))(ω − iν)
)

so we obtain (8). By Lemma 2.4 it follows that the function H defined in (9) is
holomorphic in the variable z := r − iρ so it admits power series expansion with
respect to the variable ρ. We can write

W (x, y) =Re
(
H(z)[ω − iν]

)
= Re

(∑
k≥0

1

k!
(−iρ)kH(k)(r)[ω − iν]

)
=
∑
`≥0

1

(2`)!
(−iρ)2`H(2`)(r)ω − 1

(2`+ 1)!
(−iρ)2`ρH(2`+1)(r)ν

=
+∞∑
`=0

( 1

(2`)!
y2`H(2`)(r)

x

r
− 1

(2`+ 1)!
y2`+1H(2`+1)(r)

)
.

This is formula (10).

In the paper [21], the authors prove a version of the Fueter mapping theorem
that we state here in a special case:

Theorem 2.5 (See Corollary 1 in [21]). Let p, q be two odd numbers. Let f ∈ HB(U)

where U ⊆ Rp × Rq is an open set invariant under the action of Spin(p) × Spin(q). 
Let ∆ := ∆x + ∆y. Then the function

p+q
2∆ −1f(x, y)

is left monogenic with respect to the operator ∂x+ ∂y.

Remark 2. Theorem 2.5 is a generalization of the Fueter theorem that considers a
holomorphic function f , p = 1, q = 3, and states that ∆f is in the kernel of the
Cauchy-Fueter operator. The Fueter-Sce theorem can be obtained by considering a
holomorphic function f , p = 1, q any odd number.

Analogously to what we did in [3], [4] one may ask if it is possible to solve the
following problem.

Problem. Let f be a biaxially monogenic function on an open set U ⊆ Rp × Rq, 
invariant under the action of the group Spin(p) × Spin(q). Determine a function
W ∈ HB(U) such that

∆
p+q
2 −1W (x, y) = f(x, y),

where p, q are odd positive integers.

From the above problem naturally arises the following definition.

Definition 2.6. Let p, q are odd positive integers and let f be a biaxially monogenic
function on an open set U ⊆ Rp × Rq, invariant under the action of the group
Spin(p)× Spin(q). A function W ∈ HB(U) is a Fueter primitive of f if

∆
(p+q)

2 −1(W (x, y)) = f(x, y).

We conclude this section with a proposition that we will use in the sequel.



Proposition 2. Let p and q odd positive integers, let U be a domain in Rp × Rq
invariant under the action of the group Spin(p)× Spin(q) and let W ∈ HB(U). Set
d := p+q

2 − 1, so we have

(∆x + ∆y)dW (x, y)|y=0 =
d∑
k=0

(
d

k

)
Ck

(2k)!
∆d−k
x

(
H(2k)(r)

x

r

)
where H is defined in (9) and

C0 := 1, and Ck = (−1)kΠk
i=1(2i) Πk−1

j=0 (q + 2j), for k ∈ N. (12)

Proof. We know that ∆y = −∂2
y where ∂y is the Dirac operator in dimension q and

that

∂y
(
y`
)

=

{
−` y`−1 if ` is even,
−(`+ q − 1) y`−1 if ` is odd.

We then obtain

∆k
y

(
y`
)

=


0 if k > 2`,
Ck if k = 2`,
E(y) if k < 2`,

where Ck are constants depending on k and E is a continuous function such that
E(y) → 0 for y → 0. Thus we only have to compute the constants in the case

k = 2`. To this purpose note that ∆0
y

(
y0
)

= 1 and

∆y(y2) = −2q, ∆2
y(y4) = 2 · 4 · q(q + 2), ∆3

y(y6) = −2 · 4 · 6 · q(q + 2)(q + 4);

and, by recurrence, one can easily verify that

Ck = ∆k
y

(
y2k
)

= (−1)kΠk
i=1(2i) Πk−1

j=0 (q + 2j). (13)

We set for simplicity d = m/2− 1 and we compute (∆x + ∆y)dW (x, y) keeping in

mind that we have to consider the restriction to y = 0. We have:

(∆x + ∆y)dW (x, y)
∣∣∣
y=0

=
[ d∑
k=0

(
d

k

)
∆d−k
x ∆k

y

]+∞∑
`=0

( 1

(2`)!
y2`H(2`)(r)

x

r
− 1

(2`+ 1)!
y2`+1H(2`+1)(r)

)∣∣∣
y=0

=
[ d∑
k=0

(
d

k

)
∆d−k
x

]+∞∑
`=0

( 1

(2`)!
∆k
y(y2`)H(2`)(r)

x

r
− 1

(2`+1)!
∆k
y(y2 +̀1)H(2 +̀1)(r)

)∣∣∣
y=0

=
[ d∑
k=0

(
d

k

)
∆d−k
x

]+∞∑
`=0

( 1

(2`)!
∆k
y(y2`)H(2`)(r)

x

r

)∣∣∣
y=0

=
d∑
k=0

(
d

k

)
Ck
k!

∆d−k
x

(
H(2k)(r)

x

r

)
,

and this concludes the proof.

As an example we explicitly compute (∆x + ∆y)dW (x, y)|y=0 for p = q = 3.

Proposition 3. Let U be a domain in R3 × R3 invariant under the action of the
group Spin(3)× Spin(3) and let W ∈ HB(U). Then we have

(∆x + ∆y)2W (x, y)|y=0 = −8∂r

(1

r
∂2
rH(r)

)
ω,



where x/r = ω.

Proof. Using the notations of the previous proposition we have p = q = 3 and d = 2.
Recall that if x ∈ Rp, p ∈ N, x = rω then

∆x = ∂2
r +

p− 1

r
∂r +

1

r2
Γ(p− 2− Γ)

where the Γ operator is such that Γ(ω) = (p− 1)ω. For every function F (r, ω), with
suitable regularity, and such that F (r, ω) = f(r)ω and for p = 3, we have

∆x = ∂2
r +

2

r
∂r −

2

r2

since Γ(1− Γ)ω = −2ω. Let us set the positions:

γk(r, ω) :=

(
2
)

Ck
(2k)!

∆2−k
x

(
H(2k)(r)

x

r

)
, k = 0, 1, 2,

k

where Ck is given by (12), then

(∆x + ∆y)2W (x, y)|y=0 =

2∑
k=0

γk(r, ω),

where, more explicitly,

γ0(r, ω) =
(
∂2
r +

2

r
∂r −

2

r2

)2

(H(r)ω),

γ1(r, ω) =− 6
(
∂2
r +

2

r
∂r −

2

r2

)
(H(2)(r)ω),

γ2(r, ω) =5H(4)(r)ω.

With some computations we finally get

2∑
k=0

γk(r, ω) =
(
− 8

r
∂3
r +

8

r2
∂2
r

)
(H(r)ω) = −8∂r

(1

r
∂2
rH(r)

)
ω.

3. The biaxially Cauchy kernel and Fueter’s primitive. To prove some of
our main results we recall Funk-Hecke’s theorem. We denote by Pm(t) the Legendre
polynomials and by An−1 the area of the unit sphere Sn−1 in Rn, i.e.

An−1 =
2π(n−1)/2

Γ(n−1
2 )

.

Note that, by the Rodriguez formula, Pm(t) can be expressed by

Pm(t) =
(
− 1

2

)m Γ((n− 1)/2)

Γ(m+ (n− 1)/2)
(1− t2)(3−n)/2Dm(1− t2)m+(n−3)/2. (14)

Theorem 3.1 (Funk-Hecke (see [13])). Denote by Sn−1 the unit sphere in Rn and by 
An−1 its area. Let ξ and η be two unit vectors in Rn. Let ψbe a real-valued function 
whose domain contains [−1, 1] and let Sm(ξ) be spherical harmonics, of degree m. 
Then we have∫

Sn−1

ψ(〈ξ, η〉)Sm(η) dS(η) = An−1Sm(ξ)

∫ 1

−1

ψ(t)Pm(t)(1− t2)(n−3)/2 dt,

where dS(η) is the scalar element of surface area on Sn−1, 〈ξ, η〉 denotes the scalar 
product of ξ, η and Pm(t) is defined in (14).



Definition 3.2 (The monogenic Cauchy kernel). We denote by G the monogenic
Cauchy kernel on Rm := Rp ⊕ Rq

G(x) = −
x+ y

|x+ y|p+q
, x+ y ∈ Rp+q \ {0}. (15)

The area of the unit sphere in Rp+q will be denoted by

Ap+q =
2π(p+q)/2

Γ(p+q2 )
.

Definition 3.3 (The kernels N+
p,q,λ,µ(x, y) and N−p,q,λ,µ(x, y)). Let p, q ∈ N and let

G(x + y − X − Y ) be the monogenic Cauchy kernel defined in (15) with x ∈ Rp, y ∈ 
Rq, and assume ω ∈ Sp−1, η ∈ Sq−1 and for λ > 0 and µ > 0, we define the
kernels

N+
p,q,λ,µ(x, y) =

1

Ap+q

∫
Sp−1

∫
Sq−1

G(x+ y − λξ − µη) dS(ξ) dS(η), (16)

N−p,q,λ,µ(x, y) =
1

Ap+q

∫
Sp−1

∫
Sq−1

G(x+ y − λξ − µη) ξ η dS(ξ)dS(η), (17)

where dS(ξ) and dS(η) are the scalar element of surface area of Sp−1 and of Sq−1, 
respectively.

Theorem 3.4 (The restrictions of the kernels N +p,q(x, y) and N −p,q(x, y) to y = 0).
Let p, q be odd numbers. Let N +p,q(x, y) and N −p,q(x, y) be the kernels defined in (16) 
and (17), respectively. Then their restrictions to y = 0 are given by

N+
p,q,λ,µ(x, 0) =

AqAp−1

Ap+q
[J2,λ,µ(r; p, q)− rλJ1,λ,µ(r; p, q)]

x

r
, (18)

N−p,q,λ,µ(x, 0) =
Aq
Ap+q

J2,λ,µ(r, p, q)µ
x

r
, (19)

where the functions Jj,λ,µ(r; p, q), j = 1, 2 are given by

Jj,λ,µ(r; p, q) :=

∫ 1

−1

tj−1(1− t2)(p−3)/2

(r2 − 2rλt+ λ2 + µ2)(p+q)/2
dt, j = 1, 2. (20)

Remark 3. Since p and q are odd numbers we have that (p−3)/2 and (p+q)/2 are 
integers and so the integrals (20) can be explicitly computed as integrals of rational 
functions.

Proof of Theorem 3.4. First we compute the restriction to y = 0 of N +p,q. We have:

N+
p,q,λ,µ(x, y) =

1

Ap+q

∫
Sp−1

∫
Sq−1

G(x+ y − λξ − µη) dS(ξ)dS(η)

=
1

Ap+q

∫
Sp−1

∫
Sq−1

−x− y + λξ + µη

(|x− λξ|2 + |y − µη|2)(p+q)/2
dS(ξ)dS(η).

Let us now restrict to y = 0 and get

N+
p,q,λ,µ(x, 0) =

1

Ap+q

∫
Sp−1

∫
Sq−1

−x+ λξ + µη

(|x− λξ|2 + µ2)(p+q)/2
dS(ξ)dS(η).

We now set x = rω, where r = |x| and ω ∈ Sp−1, and we have

N+
p,q,λ,µ(x, 0) = − Aq

Ap+q

∫
Sp−1

x− λξ
(r2 − 2rλ〈ω, ξ〉+ λ2 + µ2)(p+q)/2

dS(ξ)



= − Aq
Ap+q

∫
Sp−1

x

(r2 − 2rλ〈ω, ξ〉+ λ2 + µ2)(p+q)/2
dS(ξ)

+
Aq
Ap+q

λ

∫
Sp−1

ξ

(r2 − 2rλ〈ω, ξ〉+ λ2 + µ2)(p+q)/2
dS(ξ).

Using again Funk-Hecke’s theorem, we obtain

N+
p,q,λ,µ(x, 0) =− AqAp−1

Ap+q
x

∫ 1

−1

(1− t2)(p−3)/2

(r2 − 2rλt+ λ2 + µ2)(p+q)/2
dt

+
AqAp−1

Ap+q
λI

∫ 1

−1

(1− t2)(p−3)/2t

(r2 − 2rλt+ λ2 + µ2)(p+q)/2
dt.

We recall the integrals defined in (20)

Jj,λ,µ(r; p, q) :=

∫ 1

−1

tj−1(1− t2)(p−3)/2

(r2 − 2rλt+ λ2 + µ2)(p+q)/2
dt, j = 1, 2

and we obtain

N+
p,q,λ,µ(x, 0) = −AqAp−1

Ap+q
J1,λ,µ(r; p, q)x+

AqAp−1

Ap+q
J2,λ,µ(r; p, q)λ

x

r

which is formula (18).

With similar computations we treat N −p,q(x, 0). In fact

N−p,q,λ,µ(x, y) =
1

Ap+q

∫
Sp−1

∫
Sq−1

−x− y + λξ + µη

(|x− λξ|2 + |y − µη|2)(p+q)/2
ξ η dS(ξ)dS(η)

and taking the restriction to y = 0, we obtain

N−p,q,λ,µ(x, 0) =
1

Ap+q

∫
Sp−1

∫
Sq−1

−x ξ η − λη + µη ξ η

(r2 − 2rλ〈ω, ξ〉+ λ2 + µ2)(p+q)/2
dS(ξ) dS(η)

and so we split in the three integrals

N−p,q,λ,µ(x, 0) =
1

Ap+q

∫
Sp−1

∫
Sq−1

−x ξ η
(r2 − 2rλ〈ω, ξ〉+λ2+µ2)(p+q)/2

dS(ξ) dS(η)

− 1

Ap+q

∫
Sp−1

∫
Sq−1

λη

(r2 − 2rλ〈ω, ξ〉+λ2+µ2)(p+q)/2
dS(ξ) dS(η)

+
1

Ap+q

∫
Sp−1

∫
Sq−1

µη ξ η

(r2 − 2rλ〈ω, ξ〉+λ2+µ2)(p+q)/2
dS(ξ) dS(η),

where the first and the second integral above are zero since∫
Sq−1

η dS(η) = 0.

To compute the last integral we recall the identity

ξη = −ηξ,

from which

η ξ η = η(−ηξ) = ξ

so we have

N−p,q,λ,µ(x, 0) =
1

Ap+q

∫
Sp−1

∫
Sq−1

µξ

(r2 − 2rλ〈ω, ξ〉+ λ2 + µ2)(p+q)/2
dS(ξ) dS(η)



by Funk-Hecke’s theorem we get

N−p,q,λ,µ(x, 0) =
Aq
Ap+q

µωJ2(r)

from which we finally have (19).

We explicitly compute the integrals in (20) for p = q = 3.

Corollary 1 (The restrictions of the kernels N+
3,3,λ,µ(x, y) and N−3,3,λ,µ(x, y) to

y = 0). Let N+
3,3,λ,µ(x, y) and N−3,3,λ,µ(x, y) be the kernels defined in (16) and (17),

respectively. Then their restrictions to y = 0 are given by

N+
3,3,λ,µ(x, 0) =

A3A2

A6

2λr(2− (r2 + λ2 + µ2))

[(r2 + λ2 + µ2)2 − 4λ2r2]2
x

r
, (21)

N−3,3,λ,µ(x, 0) =
A3

A6

4λµr

[(r2 + λ2 + µ2)2 − 4λ2r2]2
x

r
. (22)

Proof. Let us set p = q = 3 in the integrals Jj,λ,µ in (20):

Jj,λ,µ(r; 3, 3) :=

∫ 1

−1

tj−1

(r2 − 2rλt+ λ2 + µ2)3
dt, j = 1, 2

so for j = 1 we have

J1,λ,µ(r; 3, 3) = 2
r2 + λ2 + µ2

[(r2 + λ2 + µ2)2 − 4λ2r2]2
.

For j = 2, with some computations, we obtain

J2,λ,µ(r; 3, 3) =
r2 + λ2 + µ2

2λr
J1,λ,µ(r; 3, 3)− 1

2λr

1

[(r2 + λ2 + µ2)2 − 4λ2r2]2

from which we obtain

J2,λ,µ(r; 3, 3) =
4λr

[(r2 + λ2 + µ2)2 − 4λ2r2]2
,

2λr(2− (r2 + λ2 + µ2))

[(r2 + λ2 + µ2)2 − 4λ2r2]2
.

and

J2,λ,µ(r; 3, 3) − rλJ1,λ,µ(r; 3, 3) =

Using (18) and (19) we get the statement.

Definition 3.5. Let p and q be an odd numbers and let λ > 0 and µ > 0. We say
that W+

p,q,λ,µ(x, y) and W−p,q,λ,µ(x, y) are Fueter’s primitives of N+
p,q,λ,µ(x, y) and

N−p,q,λ,µ(x, y), respectively, if they satisfy

∆
(p+q)

2 −1(W+
p,q,λ,µ(x, y)) = N+

p,q,λ,µ(x, y), ∆
(p+q)

2 −1(W−p,q,λ,µ(x, y)) = N−p,q,λ,µ(x, y).

Since a Fueter primitive W ∈ HB(U) of a given biaxially monogenic function admits 
the power series expansion given in (10), the function W is known when its

coefficients H(`), ` ∈ N ∪ {0} are determined.

Definition 3.6. Let p and q be an odd numbers and let λ > 0 and µ > 0.
Let W+

p,q,λ,µ(x, y) and W−p,q,λ,µ(x, y) be Fueter primitives of N+
p,q,λ,µ(x, y) and



N−p,q,λ,µ(x, y). We denote by H
(`)
p,q,λ,µ,±(r), for ` ∈ N ∪ {0}, the coefficients that

appear in the series expansions:

W±p,q,λ,µ(x, y) =
+∞∑
`=0

( 1

(2`)!
y2`H

(2`)
p,q,λ,µ,±(r)

x

r
− 1

(2`+ 1)!
y2`+1H

(2`+1)
p,q,λ,µ,±(r)

)
.

Remark 4. In this paper we assume that functions W±p,q,λ,µ are defined on U ,

which is a open set invariant under the action of the group Spin(p) × Spin(q). On
this set U the functions W±p,q,λ,µ are represented by a convergent series expansion

so we have to determine the coefficients H
(`)
p,q,λ,µ,±.

Theorem 3.7 (The differential equations for coefficients of the restrictions of
W±p,q,λ,µ). Let p and q be an odd numbers, d = (p+q)/2−1, λ > 0 and µ > 0 and let

U be a domain in Rp×Rq invariant under the action of the group Spin(p)×Spin(q)
and let W±p,q,λ,µ ∈ HB(U) be Fueter’s primitives of N±p,q,λ,µ. Then the coefficients

H
(`)
p,q,λ,µ,±(r), for ` ∈ N ∪ {0}, of the series expansions of W±p,q,λ,µ(x, y) satisfy the

differential equations

d∑
k=0

(
d

k

)
Ck

(2k)!
∆d−k
x

(
H

(2k)
p,q,λ,µ,+(r)

x

r

)
=
AqAp−1

Ap+q
[J2,λ,µ(r; p, q)− rJ1,λ,µ(r; p, q)]

x

r
,

(23)
d∑
k=0

(
d

k

)
Ck

(2k)!
∆d−k
x

(
H

(2k)
p,q,λ,µ,−(r)

x

r

)
=

Aq
Ap+q

J2,λ,µ(r; p, q)
x

r
. (24)

Proof. From Proposition 2, for d = (p+ q)/2− 1, the restrictions of

(∆x + ∆y)dW±p,q,λ,µ(x, y)

to y = 0 can be written as

(∆x + ∆y)dW±p,q,λ,µ(x, y)|y=0 =
d∑
k=0

(
d

k

)
Ck

(2k)!
∆d−k
x

(
H

(2k)
p,q,λ,µ,±(r)

x

r

)
.

Let us observe that the kernels N+
p,q,λ,µ(x, y) and N−p,q,λ,µ(x, y) defined in (16) and

(17), respectively are monogenic, thus they satisfy an elliptic system so N +p,q,λ,µ(x, y)

and N−p,q,λ,µ(x, y) are determined by their restrictions N+
p,q,λ,µ(x, 0) and

N−p,q,λ,µ(x, 0), respectively. From Theorem 3.4 we have that

N+
p,q,λ,µ(x, 0) =

AqAp−1

Ap+q
[J2,λ,µ(r; p, q)− rJ1,λ,µ(r; p, q)]

x

r
(25)

N−p,q,λ,µ(x, 0) =
Aq
Ap+q

J2,λ,µ(r; p, q)
x

r
(26)

so by the definition of Fueter primitive we get the statement.

Let us write explicitly the differential equations for the case p = q = 3.

Corollary 2 (The differential equations for the coefficients of the restrictions of

W±3,3,λ,µ). The coefficients H
(`)
3,3,λ,µ,±(r), for ` ∈ N ∪ {0}, in the series expansions:

W±3,3,λ,µ(x, y) =

+∞∑
`=0

( 1

(2`)!
y2`H

(2`)
3,3,λ,µ,±(r)

x

r
− 1

(2`+ 1)!
y2`+1H

(2`+1)
3,3,λ,µ,±(r)

)



of Fueter’s primitives of N±3,3,λ,µ(x, y) are given by the differential equations

−8∂r

(1

r
∂2
rH3,3,λ,µ,+(r)

)
=
A3A2

A6

2λr(2− (r2 + λ2 + µ2))

[(r2 + λ2 + µ2)2 − 4λ2r2]2
,

−8∂r

(1

r
∂2
rH3,3,λ,µ,−(r)

)
=
A3

A6

4λµr

[(r2 + λ2 + µ2)2 − 4λ2r2]2
.

Proof. Recall that W+
3,3,λ,µ(x, y) and W−3,3,λ,µ(x, y) are the Fueter primitives of

N+
3,3,λ,µ(x, y) and N−3,3,λ,µ(x, y), respectively. From Proposition 3 we have

(∆x + ∆y)2W±3,3,λ,µ(x, y)|y=0 = −8∂r

(1

r
∂2
rHp,q,λ,µ,±(r)

)
ω,

where x/r = ω. So using the explicit formulas (21) and (22) for N ± 3,3,λ,µ(x, 0) and
setting

(∆x + ∆y)2W±3,3,λ,µ(x, y)|y=0 = N±3,3,λ,µ(x, 0),

we get the statement.

4. The inverse Fueter mapping theorem for biaxially monogenic func-
tions. We now recall the Cauchy’s integral formula for monogenic functions that
with the results of the previous section is the main tool to prove our main result.

Theorem 4.1 (Cauchy’s integral representation theorem for monogenic functions).

Let f̆ be a left monogenic function in U ⊆ Rn. Then, for every M ⊂ U and for
x ∈M , we have

f̆(x) =
1

An

∫
∂M

G(y − x)dσ(y)f̆(y), (27)

where ∂M is an n-dimensional compact smooth manifold in U , the differential form
dσ(y) is given by dσ(y) = η(y)dS(y) where η(y) is the outer unit normal to ∂M at
point y and dS(y) is the scalar element of surface area on ∂M .

We are now in position to state and prove the main result of this paper.

Theorem 4.2 (The inverse Fueter mapping theorem for the odd part of a biaxially
monogenic function). Let f(x) be a biaxially monogenic function of the form

f(x, y) = ωB(ρ, r) + νC(ρ, r)

(where ω = x/r, r = |x|, ν = y/ρ, ρ = |y|) defined on an axially symmetric domain

U ⊆ Rp+q, where p and q are odd numbers. Let Γ be the boundary of an open
bounded subset V of the half plane

ξR+ + ηR+

and let V = {ξu+ηv, (u, v) ∈ V, ξ ∈ Sp−1, η ∈ Sq−1} ⊂ U . Moreover suppose, that
Γ is a regular curve whose parametric equations λ = λ(s), µ = µ(s) are expressed
in terms of the arc-length s ∈ [0, L], L > 0. Then the function

W (x, y) :=

∫
Γ

W+
p,q,λ,µ(x, y)µp−1λq−1 [C(λ, µ)dλ−B(λ, µ)dµ] (28)

+

∫
Γ

W−p,q,λ,µ(x, y)µp−1λq−1 [B(λ, µ)dλ+ C(λ, µ)dµ],

is a Fueter’s primitive of f(x, y) on U , where W±p,q,λ,µ are as in Theorem 2.



Proof. We represent a biaxially monogenic functions f by the Cauchy formula using
the following manifold

Σ := {ξλ+ ηµ | (µ, λ) ∈ Γ, ξ ∈ Sp−1, η ∈ Sq−1},
where

Γ ∈ R+ × R+

is a smooth curve. We specify the notations

• ds is the infinitesimal arc-length and dS(ξ)dS(η) is the infinitesimal element

of surface area on Sp−1 × Sq−1

• The the unite tangent vector is easily obtained by t = d
ds [µη+λξ] = µ′(s)η+

λ′(s)ξ, so that the unit normal vector to to Γ is given by

n = λ′(s)η − µ′(s)ξ.
• The scalar infinitesimal element of the manifold Σ, expressed in terms of ds

and dS(ξ)dS(η) is given by

dΣ(s, ξ, η) = µp−1λq−1 ds dS(ξ)dS(η).

Finally, the oriented infinitesimal element of manifold dσ(s, ξ) is given by

dσ(s, ξ, η) = ndΣ = [λ′(s)η − µ′(s)ξ]µp−1λq−1 ds dS(ξ)dS(η)

so finally we get

dσ(s, ξ, η) = [ηdλ(s)− ξdµ(s)]µp−1λq−1 dS(ξ)dS(η).

Thanks to the above considerations we have:

f(x+ y) = − 1

Ap+q

∫
Γ

∫
Sp−1

∫
Sq−1

G(x+ y − λξ − µη) dσ(s, ξ, η) f(λξ + µη),

so we get

f(x+ y) = − 1

Ap+q

∫
Γ

∫
Sp−1

∫
Sq−1

G(x+ y − λξ − µη) [ηdλ(s)− ξdµ(s)]

×[ξB(λ, µ) + ηC(λ, µ)]µp−1λq−1 dS(ξ)dS(η)

We can now split the integral in the following way

f(x+ y) =

1

Ap+q

∫
Γ

∫
Sp−1

∫
Sq−1

G(x+ y − λξ − µη) dS(ξ)dS(η)µp−1λq−1 [C(λ, µ)dλ−B(λ, µ)dµ]

+
1

Ap+q

∫
Γ

∫
Sp−1

∫
Sq−1

G(x+ y − λξ − µη) ξ η dS(ξ) dS(η) [B(λ, µ)dλ+ C(λ, µ)dµ]

Taking into account the kernels N+
p,q,λ,µ(x, y) and N−p,q,λ,µ(x, y) in Definition 3.3 we

have

f(x+ y) =

∫
Γ

N+
p,q,λ,µ(x, y)µp−1λq−1 [C(λ, µ)dλ−B(λ, µ)dµ]

+

∫
Γ

N−p,q,λ,µ(x, y) [B(λ, µ)dλ+ C(λ, µ)dµ].

Now we recall the functions W+
p,q,λ,µ(x, y) and W−p,q,λ,µ(x, y) that are the Fueter

primitives of N+
p,q,λ,µ(x, y) and N−p,q,λ,µ(x, y), respectively, introduced in Definition

3.5 and we get

f(x+ y) =

∫
Γ

∆
(p+q)

2 −1(W+
p,q,λ,µ(x, y))µp−1λq−1 [C(λ, µ)dλ−B(λ, µ)dµ]



+

∫
Γ

∆
(p+q)

2 −1(W−p,q,λ,µ(x, y)) [B(λ, µ)dλ+ C(λ, µ)dµ],

that we write as

f(x+ y) = ∆
(p+q)

2 −1

∫
Γ

W+
p,q,λ,µ(x, y)µp−1λq−1 [C(λ, µ)dλ−B(λ, µ)dµ]

+∆
(p+q)

2 −1

∫
Γ

W−p,q,λ,µ(x, y) [B(λ, µ)dλ+ C(λ, µ)dµ].

So the Fueter primitive of f is given by

W (x, y) :=

∫
Γ

W+
p,q,λ,µ(x, y)µp−1λq−1 [C(λ, µ)dλ−B(λ, µ)dµ]

+

∫
Γ

W−p,q,λ,µ(x, y)µp−1λq−1 [B(λ, µ)dλ+ C(λ, µ)dµ].

We conclude this section by pointing out what is the form of a Fueter’s primitives 
for even biaxially monogenic functions. Since that computations are very similar the 
the case of Fueter’s primitives for odd type we omit the proof of the main theorem.

4.1. Fueter’s primitives for even biaxially monogenic functions. When con-
sider biaxially monogenic functions of the form:

f(x, y) = A(r, ρ) + ω νD(r, ρ)

where ω = x/r, r = |x|, ν = y/ρ, ρ = |y|, we have to replace the kernels N +p,q(x, y) and 
N −p,q(x, y) in Definition 3.3 by the kernels described in next definition.

Definition 4.3 (The kernels N ⊕p,q(x, y) and N 	p,q(x, y)). Let p, q ∈ N and let G(x + y 
− X − Y ) be the monogenic Cauchy kernel defined in (15) with x ∈ Rp, y ∈ Rq, and 
assume ω ∈ Sp−1, η ∈ Sq−1 and for λ > 0 and µ > 0, we define the kernels

N⊕p,q,λ,µ(x, y) =
1

Ap+q

∫
Sp−1

∫
Sq−1

G(x+ y − λξ − µη) ξ dS(ξ) dS(η), (29)

N	p,q,λ,µ(x, y) =
1

Ap+q

∫
Sp−1

∫
Sq−1

G(x+ y − λξ − µη) η dS(ξ)dS(η), (30)

where dS(ξ) and dS(η) are the scalar element of surface area of Sp−1 and of Sq−1,
respectively.

Definition 4.4. Let p and q be an odd numbers and let λ > 0 and µ > 0. We say
that W⊕p,q,λ,µ(x, y) and W	p,q,λ,µ(x, y) are Fueter’s primitives of N⊕p,q,λ,µ(x, y) and

N	p,q,λ,µ(x, y), respectively, if they satisfy

∆
(p+q)

2 −1(W⊕p,q,λ,µ(x, y)) = N⊕p,q,λ,µ(x, y), ∆
(p+q)

2 −1(W	p,q,λ,µ(x, y)) = N	p,q,λ,µ(x, y).

Computations similar to those done in the proof of Theorem 3.4 for W±p,q,λ,µ(x, y)
can be repeated to obtain the representation formula for the Fueter’s primitives
W⊕p,q,λ,µ(x, y) and W	p,q,λ,µ(x, y). Thus we can state the inverse Fueter mapping for
the even case.



Theorem 4.5 (The inverse Fueter mapping theorem for the even part of a biaxially
monogenic function). Let f(x) be a biaxially monogenic function of the form

f(x, y) = A(ρ, r) + ωνD(ρ, r)

(where ω = x/r, r = |x|, ν = y/ρ, ρ = |y|) defined on an axially symmetric domain

U ⊆ Rp+q, where p and q are odd numbers. Let Γ be the boundary of an open
bounded subset V of the half plane

ξR+ + ηR+

and let V = {ξu+ηv, (u, v) ∈ V, ξ ∈ Sp−1, η ∈ Sq−1} ⊂ U . Moreover suppose, that
Γ is a regular curve whose parametric equations λ = λ(s), µ = µ(s) are expressed
in terms of the arc-length s ∈ [0, L], L > 0. Then the function

W (x, y) :=

∫
Γ

W⊕p,q,λ,µ(x, y)µp−1λq−1 [D(λ, µ)dλ−A(λ, µ)dµ] (31)

+

∫
Γ

W	p,q,λ,µ(x, y)µp−1λq−1 [A(λ, µ)dλ+D(λ, µ)dµ],

is a Fueter’s primitive of f(x, y) on U , where W⊕p,q,λ,µ and W	p,q,λ,µ are determined
with analogous computations as in Theorem 2.

Remark 5. Theorems 4.2 and 4.5 allows to determine the structure of a Fueter’s 
primitive for a general biaxially monogenic function.
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