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1. Introduction

Thermal effects in electronics are of increasing concern at both 
transistor, package and system levels. In order to estimate such 
effects, in the last decades many methods have been proposed for 
performing heat diffusion analysis, both analytical and numerical. 
A particularly effective approach, able to alleviate the computa-
tional burden of linear heat diffusion analysis, has turned out to be 
the construction of compact thermal models [1–8].

All these results rely on the deterministic knowledge of material 
parameters and boundary conditions. However, for a wide range of 
examples in electronics, uncertainties should be introduced in the 
modeling process. In particular the analysis of the effects of 
parameter uncertainty on thermal performance is crucial in nano-
electronics. The standard approach for stochastic analysis is the 
Monte Carlo method. Monte Carlo gives accurate results and its 
implementation is straightforward, but it requires a huge number 
of simulations. Since simulations are often computationally 
expensive due to the complexity of the electronic systems, Monte 
Carlo has a very high computational cost and can be even 
unfeasible. Recently, new approaches, based on Polynomial Chaos 
Expansion (PCE) [11,12], have emerged to perform stochastic 
analysis as efficient alternatives to Monte Carlo.

In this paper, the projection-based multi-point moment matching 
approach for constructing compact thermal models for deterministic 
heat diffusion problems is extended to stochastic heat diffusion 
problems. This approach is limited to linear heat diffusion

problems in which thermal parameters are assumed not to depend 
on temperature. The obtained compact thermal models allow to 
estimate the PCEs of the space–time temperature rise distribution 
of the heat diffusion problem, in both the time and frequency 
domain. These expansions are then used to determine any 
statis-tical properties of the thermal variables of the problem, 
such as statistical moments and probability density functions.

The method is robust, since the projection preserves the 
structure of the equations that are modeling the stochastic heat 
diffusion problem. The method is efficient, since the projection 
space is determined by computing the solution to few stochastic 
heat diffusion problems in the frequency domain, by means of a 
method which allows to reduce the computational burden. The 
method also leads to accurate approximations of the statistical 
properties of the whole space–time temperature rise distribution 
by means of compact models with state-space dimensions as small 
as those of the compact thermal models for deterministic heat 
diffusion problems. The stochastic compact thermal models thus 
can be numerically solved at negligible computational cost.

As an application example, the stochastic thermal analysis of a 
Ball Grid Array (BGA) package is performed. In particular, a 
stochastic compact thermal model is efficiently derived, from 
which the probability density functions of the temperature rise 
distribution within the package are estimated when thermal 
conductivities, heat capacities and heat exchange coefficients are 
assumed to have known statistical properties.

The rest of this paper is organized as follows. In Section 2 the 
PCE formulation of stochastic heat diffusion problems for compo-
nents and packages is introduced. In Section 3, the projection 
approach for constructing compact thermal models is extended 
from the deterministic to the stochastic case. In Section 4 the 
multi-point moment matching technique is extended from the
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deterministic to the stochastic case, by means of an algorithm of 
reduced computational complexity. The BGA application example 
is investigated in Section 5.

2. Stochastic thermal analysis by polynomial chaos expansion

The heat diffusion equation in an electronic component or
package, discretized by any proper numerical method, such as the 
Finite Difference (FD) or the Finite Element Method (FEM) assumes 
the form

C
du
dt

ðtÞþKuðtÞ ¼ gðtÞ ð1Þ

in which uðtÞ is a column vector with N unknowns, usually
representing the degrees of freedom for the temperature rise
distribution, due to a power density distribution represented by
the N�1 vector gðtÞ. Matrices C and K are N-order square
matrices, symmetric and positive definite, which model respec-
tively the effects of volumetric heat capacity and of thermal
conductivity with heat exchange coefficients.

When a deterministic thermal model is introduced, for the sake
of simplicity here assumed to have only one port, the power
density is written as proportional to the junction power P(t)

gðtÞ ¼GPðtÞ; ð2Þ
in which G is an N � 1 vector, and the junction temperature rise is 
introduced as the spatial mean of temperature rise space–time 
distribution weighted by the power density shape [7]

TðtÞ ¼ GTuðtÞ: ð3Þ
The junction power P(t) and the junction temperature rise T(t) are
the variables measured at the port of the deterministic 
thermal model.

If a material parameter p, among the volumetric heat capa-
cities, the thermal conductivities and the heat exchange coeffi-
cients, is uncertain, it can be represented by its probability 
distribution. As a result hereafter it is assumed that the thermal 
parameters pk, with k ¼ 1; …; q, of the materials composing the 
electronics component or package depend on a small number r of
random variables ξ1; …; ξr , which can always be assumed to be 
statistically independent. Such variables form a vector ξ so that it
can be written as pk ¼ pkðξÞ, with k ¼ 1; …; q, and (1) takes the form

CðξÞdu
dt

ðt; ξÞþKðξÞuðt; ξÞ ¼ gðtÞ; ð4Þ

in which the temperature rise uðt; ξÞ and the matrices CðξÞ, KðξÞ now
depend on the randomvariables ξ. More precisely it can be written as

CðξÞ ¼ ∑
q

k ¼ 1
pkðξÞCk; ð5Þ

KðξÞ ¼ ∑
q

k ¼ 1
pkðξÞKk; ð6Þ

in which the N-order matrices Ck, Kk do not depend on random 
variables.

Eq. (4) is a stochastic equation, whose solution allows to 
compute all stochastic properties of uðt; ξÞ, such as any probability 
density function. A solution to this equation can be approximated 
by PCE [11]. In this approach the unknowns uðt; ξÞ are approxi-
mated by the expansion

uðt; ξÞ ¼ ∑
jαjrp

uαðtÞψαðξÞ ð7Þ

in which α¼ ðα1;…;αrÞ are multi-indices of r elements, jαj
indicates the sum α1þ⋯þαr and

ψαðξÞ ¼ψ1
α1
ðξ1Þψ2

α1
ðξ2Þ⋯ψ r

αr
ðξrÞ; ð8Þ

in which ψ k
j ðξkÞ are polynomials of degrees j, forming an ortho-

normal basis in the probability space of random variables ξk, with
k¼ 1;…; r. Thus the functions ψαðξÞ form a basis of dimensions

n¼
pþr
p

 !
: ð9Þ

Projecting (4) onto the space spanned by the basis functions ψαðξÞ,
it results in

E ψαðξÞ CðξÞdu
dt

ðt; ξÞþKðξÞuðt; ξÞ�gðtÞ
� �� �

¼ 0

in which E½�� is the expected value operator. Thus, using (7), it 
results in

∑
jβjrp

E½CðξÞψαðξÞψβðξÞ�
duβ
dt

ðtÞþE½KðξÞψαðξÞψβðξÞ�uβðtÞ ¼ gðtÞδα0;

in which δ is Kronecker's delta symbol. Using (5) and (6), this 
expression can be written in simplified form

∑
q

k ¼ 1
∑

jβjrp
pkαβ Ck

duβ
dt

ðtÞþKkuβðtÞ
� �

¼ gðtÞδα0 ð10Þ

in which

pkαβ ¼ E½pkðξÞψαðξÞψβðξÞ� ð11Þ

are scalars. The PCE of the junction temperature rise can also be
computed

Tðt; ξÞ ¼ ∑
jαjrp

TαðtÞψαðξÞ ð12Þ

in which

TαðtÞ ¼ GTuαðtÞ ð13Þ
Eqs. (10) and (13) define a stochastic thermal model of heat 

diffusion within the electronics component or package. It has n 
thermal ports, one for each term in the PCE of the junction 
temperature rise, as shown in Fig. 1. At the first thermal port the 
power P(t) is injected and the expected value of the junction

Fig. 1. Stochastic thermal model.



temperature rise T0ðtÞ is measured. At the other thermal ports no 
power is injected while the higher terms TαðtÞ in the PCE of the 
junction temperature rise are measured. All the terms of the PCE of 
the junction temperature rise provided by the stochastic thermal 
model can be used to determine the junction temperature T(t), 
function of random variables ξ, by means of (12). This expression 
can be used, as a post-processing, to determine any statistic 
property, such as the mean value or the standard deviation or even 
the probability density function of T(t).

It is noted that the power P(t) is injected only at the first thermal 
port since it has been assumed not to be affected by uncertainty. If 
power is affected by uncertainty, the proposed model could be 
straightforwardly modified, by introducing the terms of the PCE of 
the injected power at the thermal ports.

Eqs. (10) and (13) form a linear dynamical system which can be 
rewritten in the matrix form as

C
du
dt

ðtÞþKuðtÞ ¼GPðtÞ; ð14Þ

TðtÞ ¼ FTuðtÞ: ð15Þ
Here

uðtÞ ¼ ½uαðtÞ�
are the nN unknowns,

C¼ ½E½CðξÞψαðξÞψβðξÞ�� ¼ ∑
q

k ¼ 1
pkαβCk

" #
;

K¼ ½E½KðξÞψαðξÞψβðξÞ�� ¼ ∑
q

k ¼ 1
pkαβKk

" #
;

are nN-order symmetric, positive definite matrices,

G¼ ½Gδα0�
in an nN � 1 vector and

F¼ ½Gδαβ�;

is an nN�n matrix. The output variables are the PCE terms of the
junction temperature Tðt; ξÞ, gathered into vector

TðtÞ ¼ ½TαðtÞ�:

3. Stochastic compact thermal modeling

From (14), it is noted that the stochastic heat diffusion problem 
formulated by PCE has the same matrix form of a deterministic 
heat diffusion problem. As a result the projection-based approach 
used for constructing compact thermal models for deterministic 
heat diffusion problems [7] can be extended also to stochastic heat 
diffusion problems. Thus uðtÞ is approximated by a linear combi-
nation of basis functions, so that

uðtÞ ¼UûðtÞ ð16Þ
in which û ðtÞ is a vector with a small number m̂ of elements, and U 
has dimensions nN � m̂ . Equivalent to (16), it is

uαðtÞ ¼  Uαû ðtÞ;
Uα being a set of N � m̂ matrices such that

U ¼ ½Uα�:

With this assumption, by projecting (10) onto the space 
spanned by the columns of the U matrix, it results in

Ĉ
dû
dt

ðtÞþK̂ûðtÞ ¼ ĝðtÞ ð17Þ

in which

Ĉ ¼UTCU¼ ∑
jαjrp

∑
jβjrp

UT
αE½CðξÞψαðξÞψβðξÞ�Uβ

¼ ∑
q

k ¼ 1
∑

jαjrp
∑

jβjrp
pkαβU

T
αCkUβ; ð18Þ

K̂ ¼UTKU¼ ∑
jαjrp

∑
jβjrp

UT
αE½KðξÞψαðξÞψβðξÞ�Uβ

¼ ∑
q

k ¼ 1
∑

jαjrp
∑

jβjrp
pkαβU

T
αKkUβ: ð19Þ

Also recalling (2) and (3), it results in

ĝðtÞ ¼ Ĝ0PðtÞ;
where

Ĝ0 ¼UT
0G: ð20Þ

Eqs. (17) and (20) are the equations of a stochastic compact thermal 
model approximating the stochastic thermal model defined in 
Section 2, by introducing port variables. From the solution û ðtÞ of 
this model, the PCE of uðt; ξÞ can be reconstructed in the form

ûðt; ξÞ ¼ ∑
jαjrp

UαψαðξÞ
!
ûðtÞ ð21Þ

and, in particular, the PCE of the junction temperature rise Tðt; ξÞ is
reconstructed in the form

T̂ ðt; ξÞ ¼ ∑
jαjrp

GTUαψαðξÞ
!
ûðtÞ

¼ ∑
jαjrp

Ĝ
T
αψαðξÞ

!
ûðtÞ; ð22Þ

where

Ĝ α ¼ UT
αG:

From the PCEs (21) and (22), the statistical properties of both the 
temperature rise distribution and junction temperature rise can be 
straightforwardly determined [11]. It is noted that both Ĉ and K̂ are 
symmetric, positive definite matrices. The stochastic compact 
thermal model equations thus preserve the same structure of the 
stochastic heat diffusion equation.

4. Multipoint moment matching

The basis vectors, columns of Uα, can be computed by general-
izing the multi-point moment matching approach [7] from deter-
ministic to stochastic heat diffusion problems. Precisely by writing 
(4) in the complex frequency domain s, and assuming P(t) equal to 
a Dirac's delta function, it results in

ðsCðξÞþKðξÞÞvðs; ξÞ ¼G ð23Þ
vðs; ξÞ being the Laplace transform of uðs; ξÞ. Approximated the
solution to this equation by PCE, it results in

vðs; ξÞ ¼ ∑
jαjrp

vαðsÞψαðξÞ: ð24Þ

Projecting (23) onto the space spanned by the basis functions ψαðξÞ, 
it results in
E½ψαðξÞððsCðξÞþKðξÞÞvðs; ξÞ�GÞ� ¼ 0:

Thus using (24) it results in

∑
jβjrp

ðsE½CðξÞψαðξÞψβðξÞ�þE½CðξÞψαðξÞψβðξÞ�ÞvβðsÞ ¼ Gδα0



or equivalently, after recalling (5) and (6),

∑
q

k ¼ 1
∑

jβjrp
pkαβ sCkþKkð ÞvβðsÞ ¼Gδα0: ð25Þ

ð26Þ
Eq. (25) forms a linear system, written in the matrix form as 

ðsCþKÞvðsÞ ¼  G;

in the nN unknowns

vðsÞ ¼ ½vαðsÞ�:
Eq. (26) has the same matrix form of a deterministic heat diffusion 
problem in the frequency domain. Proceeding as in the multipoint 
moment matching method for deterministic problems, (26) is 
solved for different values sj of the complex frequency s, with 
j ¼ 1; …m̂ . Following [7], the sj values are chosen as

sj ¼ λMdn
2j�1
2m

K ; k
� �

; j¼ 1;…; m̂

in which K is the complete elliptic integral of the first kind of
modulus k, dn is the elliptic function of modulus k and

k¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�k02

q
;

k0 ¼ λm
λM

: ð27Þ

In these expressions λm and λM are the minimum and maximum 
eigenvalues of the eigenvalue problem

λCvþKv ¼ 0:

It is noted that in order to determine the set of values sj with j ¼ 1; 
…; m̂ , it is sufficient to have a rough estimate of λm a λM [7]. Such a 
rough estimate can be achieved by approximating the minimum 
and maximum eigenvalues of the deterministic heat diffusion 
problem derived from the stochastic heat diffusion problem by 
taking the statistical means of the material thermal properties.

The solutions vðsjÞ, with j ¼ 1; …m̂ , are used for constructing 
the projection matrix U directly as

U¼ ½vðs1Þ⋯vðsmÞ�: ð28Þ
Equivalently it is assumed

Uα ¼ ½vαðs1Þ⋯vαðsmÞ�: ð29Þ
These expressions are used in (18)–(20) for determining the 
stochastic compact thermal model. The dimension m̂ of the 
stochastic compact thermal model is equal to the number of the 
chosen values sj. As shown in [7], for a chosen level of accuracy this 
number depends on the ratio k0 given by (27). Since the eigenva-
lues λm, λM can be roughly estimated by the values of the minimum 
and maximum eigenvalues of the deterministic heat diffusion 
problem derived from the stochastic heat diffusion problem by 
taking the statistical means of the material thermal properties, the 
state-space dimension of the compact thermal model of a 
deterministic problem, commonly in the range of 1–15, is expected 
to be also the state-space dimension of the compact thermal model 
of a stochastic heat diffusion problem.

As a result, the extension of the multipoint moment matching 
technique from deterministic to stochastic heat diffusion problems 
requires the solution of the m̂ linear systems (25) of dimensions nN. 
These linear systems, for complex electronics applications, are 
huge. In these cases it can become unfeasible even to store into 
memory the coefficient matrices. Here an approach is proposed for 
amply alleviating the computational burden of this problem. The 
linear systems of Eq. (25) have symmetric, positive definite 
coefficient matrices

AðsjÞ ¼ sjCþK; j ¼ 1; …; m̂ :

Thus these linear systems can be efficiently solved by any 
conjugate gradient based algorithm. Using any of such algorithms, 
it is not necessary to manipulate directly the coefficient matrices 
AðsjÞ, but it is sufficient just to be able to compute the vectors 
y ¼ ½yα� obtained by multiplying the coefficient matrix AðsjÞ by any 
vector x ¼ ½xα�. Recalling (5) and (6), these quantities can be 
determined by formulae

yα ¼ ∑
q

k ¼ 1
sCkþKkð Þ ∑

jβjrp
pkαβxβ

!
ð30Þ

The computation of these expressions requires only to store the N-
order square matrices Ck and Kk and the scalars pkαβ, for k ¼ 1; …; q. 
This implies about the same storage memory for one deterministic

heat diffusion problem. As a result in solving (25), the AðsjÞ 
coefficient matrices are not explicitly constructed but conjugate 
gradient based methods are used, exploiting (30). In this way the 
solutions of (25) become affordable, as proven by numerical 
applications.

5. Numerical application

A BGA package, containing a single die, is considered. Thermal 
grease is used to connect the upper face of the die to a cap, while the 
lower face is connected to a substrate via a controlled collapse chip 
connection (C4). The substrate is then connected to a printed circuit 
board via a column grid array. The die is modeled by a parallelepiped 
of 13.65 mm� 11.9 mm� 0.83 mm having thermal conductivity 
108 W K� 1 m� 1 and volumetric heat capacity 1:794 � 106 J K� 1 

m� 3. Power P(t) is assumed to be uniformly dissipated inside the 
die. The aluminum cap is modeled by a parallelepiped of 40.5 mm� 
40.5 mm� 3 mm having thermal conductivity 240 W K� 1 m� 1 and 
volumetric heat capacity 2:530� 106 J K� 1 m� 3. Similarly a cap 
protrusion towards the die is modeled using a parallelepiped of 
13.7 mm� 13.7 mm� 0.83 mm having thermal conductivity 240 W 
K� 1 m� 1 and volumetric heat capacity 2:530 � 106 J K� 1 m� 3. The
thermal grease is modeled by a parallelepiped of 34.1 mm� 
34.1 mm� 1.7 mm having thermal conductivity 1 W K� 1 m� 1 and 
volumetric heat capacity 1:568� 106 J K� 1 m� 3. The ceramic sub-
strate is modeled by a parallelepiped of 42.5 mm� 42.5 mm� 
5.85 mm having thermal conductivity 18 W K� 1 m� 1 and volumetric 
heat capacity 3:613 � 106 J K� 1 m� 3. The tungsten vias inside the 
substrate are modeled by multiple parallelepipeds. Large vias are 
modeled by a parallelepiped of 42.5 mm� 42.5 mm� 2.93 mm and 
thermal conductivity and volumetric heat capacity 3:598 W K� 1

m� 1. Small vias are modeled by a parallelepiped of 13.65 mm� 
11.9 mm� 2.93 mm having thermal conductivity 30:57 W K� 1 m� 1

and volumetric heat capacity 3:523 W K� 1 m� 1. The column grid 
array is modeled by a parallelepiped of 42.5 mm� 42.5 mm� 
2.25 mm having equivalent thermal conductivity 12 W K� 1 m� 1

and volumetric heat capacity 0:6122 W K� 1 m� 1. The top and side 
of the BGA package are assumed adiabatic. At the bottom of the BGA 
package a heat exchange coefficient of 2000 W K� 1 m� 2 is assumed.

Three material thermal parameters, shown in Fig. 2, are assumed 
to be given by independent random variables, with 730% uniformly 
distributed variations around their mean values: the thermal 
conductivity of the small vias, the volumetric thermal capacity of 
the column grid array, the heat exchange coefficient at the bottom 
of the package. Without sacrificing accuracy, thermal parameters 
have been assumed to be independent on temperature. This is a 
common assumption [9,10] when temperature rises do not exceed 
50–100 K.

An accurate FEM discretization by means of N ¼ 107 911 
degrees of freedom is performed. An accurate PCE is introduced 
by expanding each of the three independent random variable by 
7 basis functions. Such number has been chosen in such a way that
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Fig. 2. Regions in which the materials are assumed to have uncertain thermal
properties: (1) small vias, (2) column grid array and (3) bottom of the BGA.

Fig. 3. Probability density function f of junction temperature rise T at steady state,
estimated both by the Compact Thermal Model and by Monte Carlo Analysis.

Fig. 4. Probability density function f of the real part of the junction temperature 
rise T at frequency 0.1 Hz, estimated both by the Compact Thermal Model and by 
Monte Carlo Analysis.

its further increase affects the thermal simulation results by less 
than 0.1%. In this way the number of total PCE terms in (7) is 120. 

The stochastic multipoint moment matching method is now
applied to this problem. A ratio λm=λM � 10� 7 is estimated so that

Fig. 5. Probability density function f of the imaginary part of the junction
temperature rise T at frequency 0.1 Hz, estimated both by the Compact Thermal
Model and by Monte Carlo Analysis.

Fig. 6. Mean temperature rise distribution (in K) at steady state, in a horizontal
section of the package, cutting the die.

Fig. 7. Standard deviation of the temperature rise distribution (in K) at steady state,
in a horizontal section of the package, cutting the die.



a number m̂ ¼ 10 of expansion points is used for getting an accurate 
stochastic compact thermal model with relative error less than 
0.1% [7] with respect to the FEM model. The corresponding m̂ ¼ 10 
linear systems are solved using the conjugate gradient method 
without constructing the coefficient matrices, as detailed in the 
text. The storage requirement is of 1 020 834 double precision 
numbers, to be compared to 849 010 double precision numbers 
of the corresponding deterministic problem. The iterative 
solution of each of these linear systems, with a 10�7 relative 
error requires about 9 min and 1003 iteration steps on a 2.3 GHz 
Intel Core i7, instead of 6 s and 997 iteration steps for the 
corresponding deterministic problem. Since the number of the 
iteration steps of the conjugate gradient algorithm is practically 
unchanged passing from the deterministic to the stochastic 
problem, the number of numerical operations of the stochastic 
problem is about 120 times larger than the deterministic problem. 
The achieved stochastic compact thermal model has then been 
used to perform both time and frequency domain simulations. 
Each of these simulations, shown in Figs. 6–13, has required less 
than 1 s of simulation time. As a post-processing, stochastic

Fig. 8. Mean temperature rise distribution (in K) at steady state, in a vertical
section of the package, cutting the die.

Fig. 9. Standard deviation of the temperature rise distribution (in K) at steady state,
in a vertical section of the package, cutting the die.

Fig. 10. Cumulative probability distribution function F of the junction temperature
rise T, as a function of the time instant t.

Fig. 11. Probability density function f of the junction temperature rise T at time
t ¼ 0:12 s.

Fig. 12. Probability density function f of the junction temperature rise T at time
t ¼ 0:8 s.



6. Conclusions

In this paper an approach has been proposed for constructing
compact thermal models for the stochastic thermal analysis of

electronics components and packages. The approach exhibits high 
levels of accuracy for state-space dimensions of the model as small 
as those of the compact models for deterministic heat diffusion 
problems. It is also efficient thanks to an approach for reducing the 
computational burden for the solution of the linear systems that 
are modeling the stochastic heat diffusion problem. Such compact 
models can be used for accurately determining not only the 
stochastic properties of junction temperature rises but also of 
the space–time distributions of temperature rise within the 
electronics component or package.
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tries with a computational time of 14 h. The result of the time 
domain analysis shown in the other figures is not feasible by the 
Monte Carlo method with 10 000 tries, since it would require about 
six months of computational work.
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