
1 INTRODUCTION 

Accurate monitoring of operating conditions bears 
important feedbacks on the operation of modern 
plants, with respect to production, accident man-
agement and maintenance. Such monitoring is based 
on a system of sensors. During plant operation, some 
sensors may experience anomalies (e.g. drifts) which 
might convey inaccurate or misleading information 
about the actual plant state to automated controls 
and to the operators. A robust monitoring system 
must be able to detect such anomalies and re-
construct correctly the signals of the failed sensors. 

On-line sensor monitoring evaluates instrument 
channel performance by assessing its consistency 
with other plant indications (signal validation). In-
formation about the condition, performance and cal-
ibration state of the channels through accurate and 
frequent monitoring while the process is in operation 
provides a basis for determining when signal recon-
structions and sensor recalibrations are necessary 
(Hoffmann 2005). 

In real systems, the number of sensor signals in-
volved in the monitoring of the plant state is too 
large to be handled effectively within a single vali-
dation and reconstruction model. One approach to 
address the problem is to divide the signals into 
smaller groups and develop one model for each set 
of signals. 

In this paper, signal grouping is carried out by 
means of Genetic Algorithms (GAs) (Holland 1975, 
Goldberg 1989, Chambers 1995, Sawaragy et al. 
1985, Raymer et al. 2000, Bozdogan 2003). The ob-
jective functions of the grouping optimization need 
to capture several aspects. Most importantly, a good 
degree of correlation between the signals in a group 

is required for an effective and accurate signal vali-
dation and reconstruction (Hoffmann 2005, Hoff-
mann 2006). 

Once the groups are generated, the signals of each 
group are fed to a specifically trained Auto-
Associative Neural Network (AANN) (Kramer 
1992, Hines et al. 1998, Fantoni 2005, Fantoni & 
Mazzola 1996, Marseguerra et al. 2004), for signal 
validation and reconstruction. Other estimation 
modelling techniques may also be adopted, such as 
the Neural Network Partial Least Squares (NNPLS) 
algorithm (Hoffmann & Kirschner 2004, Kirschner 
& Hoffmann 2004). 

The paper is organized as follows. Section 2 pre-
sents the problem of signal grouping and briefly il-
lustrates the techniques used to solve it. Section 3 
focuses on the Genetic Algorithm approach here de-
veloped. In Section 4, the approach is applied to a 
data set of signals measured by 84 sensors at a Boil-
ing Water Reactor (BWR) in Oskarshamn, Sweden. 
Finally, some conclusions on the advantages and 
limitations of the proposed grouping technique are 
drawn in the last Section. 

2 AN OVERVIEW ON SIGNAL GROUPING 

The problem of signal grouping regards the task of 

discerning out of the several signals of the moni-

tored process or system those to be grouped together 

within an efficient model for signal validation and 

reconstruction.  

In practical cases, the number of signals moni-

tored is too large to be handled by a single validation 

and reconstruction model. To overcome this prob-
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lem, one may decompose the modelling task into a 

number of models based on subsets of signals, thus 

reducing the complexity of the modelling and 

providing a more efficient signal validation and re-

construction. 

Formally, given 1n  sensors’ signals if  to be 

validated, i =1,2,…, n , it is desirable to group them 

in K  groups jk , j =1,2,…, K , each constituted by 

nm j   signals and bearing some required charac-

teristics useful for the signal validation and recon-

struction tasks.  

The inclusion or not of a signal in a group can be 

encoded in terms of a binary variable which takes 

value 1 or 0, respectively. For n signals, the size of 

the binary vector space in which the search for the 

K  groups is to be carried out is n2 . Each group of 

signals selected during the search must be evaluated 

with respect to the given objective functions, e.g. the 

correlation between the signals and the group size. 

An exhaustive search is impractical unless n is 

small. 

Several methods for signal grouping can be adop-

ted. A simple and direct way for generating groups 

is based on the pairwise correlation between signals. 

Setting to m  the desired size of the group, the first 

1−m  most correlated signals to each signal are put 

in the same group together with the signal itself. Let-

ting m  vary in a preset range, n  groups of signals of 

different sizes can be generated, each one character-

ized by the value of the average correlation between 

the signals. Then, the K  most correlated groups can 

be selected manually and separately used as basis for 

validating the signals. This approach is expected to 

work well for the signal of reference of the group, to 

which all other signals are most highly correlated. 

However, it cannot ensure that the other 1−m  sig-

nals which are most correlated to the reference sig-

nal have also a high degree of correlation between 

themselves and thus it may not work optimally in 

their validation and reconstruction. Nevertheless, 

this approach represents a good basis of comparison 

for other more refined grouping techniques. 

Grouping techniques can be classified into two 

main categories: filter and wrapper methods (Kohavi 

& John 1997). In the former, the grouping algorithm 

functions as a filter to include/discard the signals in 

the groups based on their characteristics, indepen-

dently of the specific algorithm used for signal vali-

dation and reconstruction (e.g. AANNs). Numerical 

evaluation functions are used to compare the good-

ness of the groups of signals selected by a search al-

gorithm, with respect to signal characteristics which 

are regarded relevant for their validation and recon-

struction. At the end of the search, the groups with 

best values of the evaluation functions are kept for 

building the models (e.g. AANNs) for signal valida-

tion and reconstruction. 

Contrary to filter methods, in wrapper methods 

the signal grouping algorithm behaves as a "wrap-

per" around the specific algorithm used to validate 

and reconstruct the signals of the groups. The per-

formance of the validation and reconstruction algo-

rithm itself is directly used to compare the different 

groups of signals selected by the search algorithm 

(Kohavi & John 1997). 

The filter approach is generally computationally 

more efficient than the wrapper one because for each 

set of signals of trial, the computation of the evalua-

tion functions is less time consuming than the deve-

lopment of a complete validation and reconstruction 

model, as required by the wrapper approach. Indeed, 

a high number of groups of signals are tested during 

the search for the optimal ones and the time consu-

mption of a wrapper approach depends mainly on 

the time necessary for the development of the vali-

dation and reconstruction model, e.g. the training 

and testing of AANNs. Hence, for many practical 

applications the wrapper approach is feasible only if 

the validation and reconstruction model is a fast-

computing algorithm (Duran & Odell 1974). On the 

other hand, wrapper approaches are more perfor-

ming than the filter ones since the former ensure the 

creation of the groups of signals tailored for the spe-

cific validation and reconstruction algorithm used, 

whereas the latter totally ignore the effects of the 

created groups of signals on the performance of the 

validation and reconstruction model that will actual-

ly be used.  

With respect to the group search algorithms, three 

approaches are commonly adopted: complete, heu-

ristic and probabilistic (Kohavi & John 1997). In the 

complete approach, the properties of a pre-defined 

evaluation function are used to prune the signal 

search space to a manageable size (Duran & Odell 

1974). Only some evaluation functions give rise to a 

search that guarantees the optimal groups selection 

without being exhaustive.  

The heuristic approach does not guarantee that 

the best groups of signals are achieved, but is less 

time consuming than the complete one and may be 

employed in combination with any evaluation func-

tion (Zio et al. 2005). At present, the most employed 

heuristic methods are greedy search strategies such 

as the Sequential Forward Selection (SFS) or the 

Sequential Backward Elimination (SBE) “hill clim-

bing” methods, which iteratively add or subtract si-

gnals to the groups and at each iteration the evalua-

tion function is evaluated. The forward selection 

refers to a search that begins with the empty group 



and at each step a signal is added to the subspace; on 

the contrary, the backward elimination refers to a 

search that begins with the n-dimensional signal set 

and at each step a signal is removed. At each step, 

the choice of which signal to add or remove is dri-

ven by its effect on the evaluation function in the di-

rection of climbing towards its maximum value. The 

hill-climbing search is usually stopped when adding 

or removing new signals does not increase the value 

of the evaluation function or when the number of si-

gnals has reached a predefined threshold. 

The hill-climbing methods suffer from the so cal-

led “nesting effect”: if the signals added cannot be 

removed, a local minimum of the evaluation func-

tion may be found. To reduce this effect, it is possi-

ble to use the so called plus-l-take-away-r method 

(PTA) (Kohavi & John 1997). In this method, after l 

steps of the forward selection, r steps of the back-

ward elimination are applied so as to allow escaping 

from local minima. Still, there is no guarantee of ob-

taining the absolute optimum. 

The probabilistic approach is based on popula-

tion-based methauristics guided by the goodness of 

the solutions, such as the Genetic Algorithms pre-

sented in this work, or on methods like simulated 

annealing and tabu search algorithms (Zhang & Sun 

2002). 

3 A GENETIC ALGORITHM APPROACH TO 

SIGNAL GROUPING 

Mathematically, the problem of signal grouping can 

be formulated as an optimization problem aimed at 

finding the optimal groups of signals for achieving 

the best performance of the validation and recon-

struction model, i.e. the smallest error in the recon-

struction of the signals. 

In this Section, a probabilistic approach to signal 

grouping based on Genetic Algorithm is propound-

ed.  

In this respect, the probabilistic search is per-

formed by constructing a sequence of populations of 

chromosomes, the individuals of each population be-

ing the children of those of the previous population 

and the parents of those of the successive popula-

tion. A population is constituted by K  chromosomes 

each one constituted by n  bits and representing all 

the possible signals included in a group. The initial 

population is generated by randomly sampling the 

bits of all the strings. At each step, the new popula-

tion is then obtained by manipulating the strings of 

the old population by repeatedly performing the four 

fundamental operations of reproduction, crossover, 

replacement and mutation (all based on random 

sampling) in order to arrive at a new population 

hopefully characterized by an increased mean fit-

ness. This way of proceeding enables to efficiently 

arrive at optimal or near-optimal solutions. 

The problem is here framed as a Multi-Objective 

Genetic Algorithm (MOGA) optimization search 

(Goldberg 1989, Chambers 1995, Sawaragy et al. 

1985, Raymer et al. 2000, Bozdogan 2003, Zio et al. 

2006) in a filter configuration. 

In the generic j -th chromosome coding group jk , 

the i -th bit encodes the presence (1) or absence (0) 

of the i -th signal if  in the j -th group, ni ,...,2,1= , 

Kj ,...,2,1=  (Fig. 1). 

 
Figure 1. The structure of the generic j -th chromosome. 

Operatively, the total number N  of available n-

dimensional data patterns are partitioned into a set 

( MOGAX ) used for the signal grouping task and a sep-

arate set ( AANNX ) of approximately the same size 

used for signal validation.  

Then, a GA can be devised to find an optimal set 

of binary n -dimensional transformation vectors 

which operate on MOGAX  to maximize/minimize a 

set of optimization criteria regarding the group of 

signals. 

In a multi-objective optimization problem, sever-

al possibly conflicting objective functions must be 

evaluated in correspondence of each chromosome. 

The comparison of chromosomes (i.e. groups) is 

achieved in terms of the concepts of Pareto optimali-

ty and dominance (Goldberg 1989, Chambers 1995, 

Sawaragy et al. 1985). The chromosomes that are 

non-dominated within the entire search space are 

said to be Pareto optimal and constitute the so called 

Pareto optimal front. 

In this respect, let m be the number of 1’s and 

mn −  the number of 0’s in a transformation vector: 

then, a modified set of m -dimensional patterns is 

obtained and used to evaluate, in terms of domi-

nance, the quality of the groups with respect to the 

objective functions (Raymer et al. 2000, Bozdogan 

2003, Zio et al. 2006). On the basis of this feedback, 

the GA conducts its probabilistic search for the Pare-

to-optimal groups of signals. 

In this paper, two objective functions are consid-

ered for the probabilistic optimization: the maximi-

zation of the average correlation of the signals in a 

group and the maximization of the group size. 



The motivation of the first objective function is 

related to the fact that the signals in a generic group 

will be used to build a model for validating and re-

constructing the signals themselves, with the conjec-

ture that highly correlated signals are capable of re-

gressing one another. The measure used to quantify 

the objective function is the Pearson’s correlation 

coefficient (Lawrence & Kuei 1989, Hunt 1986): 

considering N  measurements of the two signals 

)(tf p  and )(tf q , Nt ,...,2,1= , the Pearson’s coeffi-

cient is: 
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where 
p

f , 
pfS , 

q
f  and 

qfS  are the mean values 

and standard deviations of pf  and qf , respectively. 

By definition, the value of qpcorr ,  varies from 

1−  to 1, being 0 for statistically independent quanti-

ties. Signals that have the same trend (both increas-

ing or both decreasing with respect to the mean) will 

have positive values of qpcorr , , whereas those which 

vary in opposite ways will render qpcorr ,  negative. 

To associate a degree of correlation to the generic 

k -th group of km  signals, Kk ,...,2,1= , first the av-

erage correlation between the p -th signal, 

kmp ,...,2,1= , and the remaining 1−km , is comput-

ed: 
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Then, the group correlation kr  is computed as the 

mean of the average correlations of each signal: 
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Finally, the group correlation measure is normal-

ized between 0 and 1.  
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As for the second objective function, the number 

of signals m  in each group is maximized to ensure 

that each signal is included in at least one group.  

At convergence of the MOGA search, the sets of 

signals of the two-dimensional Pareto front are iden-

tified by the number of signals m  and the average 

correlation *

kr . Among these, K  groups upon which 

to base the signal validation and reconstruction can 

be manually selected according to the specifics of 

the problem. The choice depends both on the ex-

pert’s system knowledge, i.e. selecting those groups 

including the signals mostly relevant for monitoring 

the system, and on the complexity, i.e. number of 

parameters, and desired accuracy proportional to the 

training time of the adopted validation model. For 

example, one could choose few large groups which 

globally include all the signals and therefore training 

a small number of highly parameterized validation 

models or a large number of small groups in order to 

include the signals with a certain redundancy thus 

using more models and combining the results.  

4 APPLICATION 

The proposed approach is applied to a real case 

study concerning the grouping of n =84 signals 

which have been collected from a BWR located in 

Oskarshamn, Sweden (Fig. 2). 

The MOGA code here used has been developed 

by the Laboratorio di Analisi di Segnale e di Analisi 

di Rischio (LASAR, Laboratory of Analysis of Sig-

nals and Analysis of Risk) of the Department of Nu-

clear Engineering of the Polytechnic of Milan 

(http://lasar.cesnef.polimi.it ). 

The 84 signals have been sampled every 10 

minutes from May 31 2005 to January 5 2006 from a 

corresponding number of sensors, providing a total 

amount of N =30110 time samplings. Each instant 

recording provides an 84-dimensional pattern 

)(),...,(),( 8421 tftftf , t =1,…, N , identified by the 

values of the n =84 signals at the time instant t , as 

illustrated in Table 1.  

Of the N  patterns available, MOGAN =14996 have 

been used for the MOGA grouping, train

AANNN =12000 

to train the validation and reconstruction AANN 

models and test

AANNN =3114 to test them (Fantoni 2005, 

Fantoni & Mazzola 1996, Marseguerra et al. 2004). 

Training and testing of the AANNs has been per-

formed with the AANN code also developed by the 

LASAR group. 

Table 2 shows the GA settings here adopted, with 

a synthetic explanation of the terms used. Since the 

correlation function (Eq. 4) is very fast to calculate, 

the wrapping MOGA search has been run for 30000 

generations, for a computing time of approximately 

20 minutes. Actual convergence was attained after 

2000 generations. 

http://lasar.cesnef.polimi.it/


 
Figure 2. The process diagram of the nuclear power plant in Oskarshamn. The 84 signals are identified by an alpha-numeric code 
(e.g., 312 KA301, 423 KB509, etc…)

 
Table 1. Partition of the data set for MOGA grouping and 
AANN training and test ___________________________________________________ 
Time samplings         Signals  
( t =1,…,30110)         ( i = 84,...,1 ) ___________________________________________________ 

MOGA data set      1   )1(1f  ... )1(84f  

( MOGAN =14996)     …   …    … 

           14996 ___________________________________________________ 

AANN data set  Training 14997 

( AANNN =15114) ( train
AANNN = … 

       12000)  26996        ___________________________________ 

       Test   26997 

       ( test
AANNN = …   …    … 

       3114)  30110 )30110(1f )30110(84f  
___________________________________________________  

 
Table 2. Parameters used for the MOGA searches ___________________________________________________ 
Selection   FIT-FIT: the population, rank-ordered on the 
      basis of the Pareto dominance criterion, is  
      scanned and each individual is parent-paired  
      with an individual of the next fittest Pareto  
      rank class. ___________________________________________________ 
Replacement  FITTEST: out of the four individuals (two  
      parents and two chromosomes) involved in  
      the crossover procedure, the fittest two replace 
      the parents ___________________________________________________ 
Mutation    10-2 
probability ___________________________________________________ 
Population size 100 ___________________________________________________ 
Number of   30000 
Generations ___________________________________________________ 

 

Figure 3 shows the Pareto front and final popula-

tion obtained at convergence of the MOGA search. 

Each of the K  points on the graph represents a dom-

inant solution, i.e. a group, identified by the number 

m  of signals and the average correlation between 

themselves *

kr  (Eq. 4), Kk ,...,2,1= . 

 
Figure 3. Pareto front and final population at the end of the 
two-objective MOGA search 

 

As a preliminary validation of the adopted MO-

GA approach, the optimal groups of the Pareto front 

obtained by the genetic search are compared with 

those obtained by grouping the most correlated sig-

nals of a given signal (Fig. 4). Since the Pareto front 

obtained at convergence of the MOGA search is 

constituted by groups ranging from 17 to 84 signals 

and always including signal 7, this has been taken as 

the reference signal for creating groups of 

84,....,18,17=m  most correlated signals, based on 

the method explained in Section 2. 

A reasonable number of signals which can be 

handled in a validation and reconstruction model is 

around 30 (as indicated in Figure 4). For the optimal 

group of this size, the MOGA finds an average cor-

relation of 0.9901 against the value of 0.9877 by the 

simple correlation method (Fig. 4). 

In order to verify the appropriateness of the corre-

lation between signals as a grouping criterion, two 

AANNs have been trained to perform the signal val-

idation and reconstruction, based on train

AANNN =12000 

patterns of 30 signals: one with the 30 highly corre-

lated signals of the optimal Pareto front group and 

the other with 3 signals of such group, namely num-



ber 7, 32 and 56 and the other 27 signals randomly 

chosen among the remaining 54 of the 84 signals 

available. Table 3 reports the main features of the 

architecture adopted for the AANNs and Table 4 the 

characteristics of the two groups. The trained 

AANNs are fed with the test

AANNN =3114 patterns to 

give in output the reconstructed estimates of the 30 

signals received in input. 

Figure 5 reports the reconstruction of signal 7 

common to the two groups. The reconstruction 

based on the correlated signals of the MOGA opti-

mal group leads to smaller errors especially in corre-

spondence of steady-states and sharp variations of 

the signal to be reconstructed. The average relative 

errors for signals 7, 32 and 56 common to the two 

different groups of signals achieved using the two 

groups are reported in Table 5. Since the signals of 

the optimal group are more correlated than those of 

the random group, the reconstruction is more accu-

rate 

Figure 4. Comparison between the grouping obtained by the 

MOGA search and the correlation method. 
 
 
 
 

Table 3. The AANNs architecture and training parameters. _______________________________________ 
Number of nodes  Mapping layer   45 
        Bottleneck layer   15 
        De-mapping layer  45 _______________________________________ 
Learning rate ( )          0.6 _______________________________________ 
Momentum ( )           0.8 _______________________________________ 
Number of iterations         106 
_______________________________________ 
 
Table 4. Characteristics of the optimal and random groups. In 
bold the common signals. ___________________________________________________ 
Group  Numb. of Average   Signal labels 
    signals  correlation ___________________________________________________ 
Optimal  30    0.99010   7 8 9 10 11 12 22 31 32 33 
             34 35 41 42 43 44 45 46  
             56 63 64 65 7173 74 76 77 
             78 79 81 ___________________________________________________ 
Random  30    0.54789   1 4 6 7 13 15 17 19 21 24 
             27 28 32 36 37 40 50 51  
             52 53 54 56 57 59 61 66  
             67 69 75 80 ___________________________________________________ 

 

Table 5. Average relative errors on the test of test
AANNN =3114 

patterns achieved using the optimal and random groups, for the 

3 signals common to both groups. ___________________________________________________ 
Average     Signal 7   Signal 32   Signal 56 
relative errors ___________________________________________________ 
Optimal group 4.105 x 10-3  6.920 x 10-3  1.069 x 10-2 
___________________________________________________ 
Random group 1.448 x 10-2  2.504 x 10-2  2.820 x 10-2 ___________________________________________________ 

As previously mentioned, the main purpose of an 

effective signal monitoring and validation scheme 

during plant operation is to allow the reconstruction 

of the signal values when in presence of sensor fail-

ures, e.g. drifts. For this, in our case the trained 

AANNs must be sufficiently ‘‘robust’’ in the sense 

that they should provide a good estimate of the cor-

rect output corresponding to the faulty sensor signal, 

without deteriorating too much the other outputs of 

the network associated to correct signals (Fantoni 

2005, Fantoni & Mazzola 1996, Marseguerra et al. 

2004). 

 
Figure 5. Reconstruction of signal 7 (with details) by the AANN fed with the signals of the optimal (dark dots) and random (light 
dots) groups.



 

When one of the sensors of an identified group 

becomes faulty, it sends in input to the correspond-

ing AANN a faulty signal; if the network is well 

trained, it should provide as output a good estimate 

of the true value of the faulty signal, obtained 

through the correlated information provided by the 

other signals coming from the non-faulty sensors of 

the group. To verify this aspect, a linear drift has 

been imposed to signals 7, 32 and 56 of both the 

MOGA-optimal and random groups of 30 signals 

previously considered (Tab. 4). The disturbance has 

been set so as to decrease linearly the value of the 

signals up to 75% of their real values. 

Figure 6 shows the reconstruction of signal 7 ob-

tained by the AANNs trained with the signals of the 

optimal and random groups. As illustrated in the 

highlighted regions of the Figure (corresponding to 

ramps and peaks where performing a good signal re-

construction in more difficult), when the validation 

and reconstruction model is tested on the drifted sig-

nal the more correlated signals of the MOGA opti-

mal group allow for a superior reconstruction of the 

real signals with respect to the random group, even 

though at the tale of the time series, i.e. where the 

drift gets larger, the random group slightly outper-

forms the optimal group. Nevertheless, Table 6 re-

ports that globally the average relative errors com-

mitted by the model trained with the optimal group 

is smaller than that obtained using the random 

group.

 

 
Figure 6. Reconstruction of signal 7 (with details) when linearly drifted (light grey), by the AANNs fed with the signals of the op-
timal (dark dots) and random (light dots) groups 
 
Table 6. Average relative errors during test achieved using the 
optimal and random groups, for the three signals common to 
both groups, in case of drift. ___________________________________________________ 
Average     Signal 7    Signal 32   Signal 56 
relative errors ___________________________________________________ 
Optimal group  0.1256    0.1687    0.1780 
___________________________________________________ 
Random group  0.1469    0.2173    0.2255 ___________________________________________________ 

5 CONCLUSIONS 

This paper addresses the problem of sensor monito-

ring for signal validation and reconstruction purpo-

ses, from the practical point of view. 

A major practical issue relates to the fact of deal-

ing with the large number of signals typically col-

lected in real plants. Currently, it is not possible to 

manipulate all these signals as a whole by an effi-

cient validation and reconstruction model. Then, one 

must find a way of optimally grouping the signals in 

smaller sets, which can then be used for developing 

effective models for signal validation and recon-

struction. 

In this work, the problem of signal grouping has 

been tackled by means of a Multi-Objective Genetic 

Algorithm in a filter configuration. The two objec-

tives of the search are the maximization of the corre-

lation between the signals in a group and the maxi-

mization of the group size. The first objective 

function has been chosen because highly correlated 

signals are shown capable of re-constructing and re-

gressing one another. The need to ensure that a sig-

nal is included in at least one group leads to maxim-

izing the group size as a second objective. 

At convergence of the MOGA search, the Pareto 

front is constituted by a number of groups of highly 

correlated signals, which are used for developing a 

corresponding number of signal validation and re-

construction models, in this case Auto-Associative 

Neural Networks. 

The approach has been applied to a real case 

study concerning signals collected from a nuclear 

BWR located in Sweden. In order to prove the effec-

tiveness of the correlation as a grouping criterion, 

the validation and reconstruction capabilities of the 

AANN modelling technique have been tested with 



respect to two different groups: one optimal group of 

the Pareto front found by the MOGA, and thus con-

stituted by highly correlated signals, and one group 

of the same size mostly constituted by randomly 

chosen and thus poorly correlated signals. As ex-

pected, the AANN based on the signals of the MO-

GA optimal group has provided a globally more ac-

curate re-construction than the AANN based on 

random signals. 

Finally, a linear drift, simulating a sensor failure, 

has been imposed to the three signals common to the 

optimal and random groups. The perturbed signals 

thereby obtained have been fed in input to the 

trained AANNs for testing their robustness as recon-

struction models, i.e. their capability of exploiting 

the undrifted signals of the groups for reconstructing 

the correct values of the corrupted signals. Also in 

this case, the AANN based on the highly correlated 

signals of the optimal group have obtained a more 

precise reconstruction than the AANN based on ran-

dom signals. Although these differences cannot be 

considered conclusive and could be due to a case of 

non optimal training of the AANN on the random 

group and more extensive tests including several 

trainined AANNs and several group selections are 

needed to confirm these first results, the adopted 

MOGA approach to signal grouping based on the 

correlation between the signals is worth being fur-

ther investigated. 
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