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Abstract. We consider the integrodifferential equation

∂tu−∆u−
∫ ∞

0

κ(s)∆u(t− s) ds+ φ(u) = f

arising in the Coleman-Gurtin theory of heat conduction with hereditary memory. Within
a novel abstract framework, based on the notion of minimal state, we prove the existence
of global and exponential attractors of optimal regularity and finite fractal dimension for
the related semigroup of solutions.

1. Introduction

1.1. The equation. Let Ω ⊂ R3 be a bounded domain with smooth boundary ∂Ω.
Introducing the strictly positive Dirichlet operator A = −∆ with domain

D(A) = H2(Ω) ∩H1
0 (Ω) ⊂ L2(Ω),

we consider for t > 0 the equation in the unknown variable u : Ω× R → R

(1.1) ∂tu+ A
[
u+

∫ ∞

0

κ(s)u(t− s) ds
]
+ φ(u) = f.

The following general assumptions on the constitutive terms are made:

A.1. The external force f is time-independent and belongs to the space L2(Ω).

A.2. The nonlinearity φ ∈ C2(R) fulfills φ(0) = 0, along with the growth restriction

(1.2) |φ′′(u)| ≤ c(1 + |u|3)

and the dissipation condition

(1.3) lim inf
|u|→∞

φ′(u) > −λ1,

where λ1 > 0 is the first eigenvalue of A.

A.3. The convolution (or memory) kernel κ is a nonnegative summable function of total
mass

∫∞
0
κ(s) ds = 1 having the explicit form

(1.4) κ(s) =

∫ ∞

s

µ(y) dy,
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where µ ∈ L1(R+) is a nonincreasing (hence nonnegative) piecewise absolutely continuous
function satisfying for some M ≥ 1 and δ > 0 the inequality

(1.5) µ(τ + s) ≤Me−δτµ(s), ∀τ, s > 0.

The discontinuity points of µ (if any) form an increasing sequence sn.

1.2. Physical motivations. Equation (1.1) rules the evolution of the temperature vari-
ation field u in a homogeneous isotropic heat conductor Ω subject to hereditary memory,
where the classical Fourier law for the heat flux q : Ω × R → R3 is replaced by the
Coleman-Gurtin constitutive law [5]

q(t) = −α∇u(t)−
∫ ∞

0

κ(s)∇u(t− s) ds,

based on the key assumption that the evolution of q is influenced by the past history
of the temperature gradient (see also [13, 17, 18, 20]). The constant α > 0 represents
the instantaneous conductivity, whereas the convolution kernel κ can be interpreted as
a conductivity density, introducing delay effects in the model. The temperature is also
required to satisfy the Dirichlet boundary condition

u(x, t)|x∈∂Ω = 0,

complying with the physical assumption that the boundary ∂Ω of the conductor is kept
at null (equilibrium) temperature for all times. The thermal evolution is governed by the
balance equation

∂te+ div q = F,

where e : Ω×R → R is the internal energy of the system, while F is a source term possibly
depending on the temperature itself. For small variations of u and its gradient, e is well
approximated by

e(t) = e0 + cu(t),

the function e0 : Ω → R being the internal energy at equilibrium and c > 0 the specific
heat. Hence, setting α = c = 1 for simplicity, (1.1) is recovered by choosing a nonlinear
source of the form

F(t) = −φ(u(t)) + f.

More generally, (1.1) serves as a model for the description of diffusive phenomena in
presence of delay mechanisms or memory effects.

1.3. Asymptotic behavior. The longterm properties of equation (1.1) have been widely
investigated in [2, 8, 12]. In those papers, rephrasing the problem in the history framework
of Dafermos [9], a dissipative solution semigroup is obtained, acting on a suitable phase
space accounting for the past values of the variable u. Such a semigroup is shown to
possess finite-dimensional global and exponential attractors of optimal regularity. Let
alone the growth restriction (1.2) on the nonlinearity φ (indeed, the polynomial order 5 is
not attained in [8, 12]), the main improvement of the latest work [2] lies in condition (1.5)
for the memory kernel µ, in place of the less general

(1.6) µ′(s) + δµ(s) ≤ 0, ∀s > 0,

introduced in the seminal article [9] and commonly adopted in the literature thereafter.
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Remark 1.1. Condition (1.5), firstly devised in [3], is easily seen to coincide with (1.6)
if M = 1. On the other hand, the picture becomes completely different when M > 1.
For instance, (1.6) prohibits µ to have (even local) flat zones, whereas any compactly
supported µ fulfills (1.5) for some M > 1. Furthermore, (1.5) turns out to be neces-
sary for semigroups arising from systems with memory in order to exhibit uniform decay
properties, such as the existence of absorbing sets (see [3]).

The aim of this work is a detailed analysis of equation (1.1) within a new theoretical
scheme recently formalized in [16], the so-called minimal state framework. The need of
a different perspective in connection with memory problems is motivated by an intrinsic
weakness of the history approach and, more generally, of any other possible approach
based on the knowledge of the past history of the variables in play at an arbitrarily given
initial time. Indeed (cf. Section 4 below), such a request can be simultaneously unphysical
and overabundant to determine the future evolution. On the contrary, the minimal state
framework does not suffer from this drawback, providing a (minimal) description of the
dynamics in terms of quantities which can be actually measured. In this spirit, paral-
leling [2], equation (1.1) is shown to generate a semigroup on a suitable Hilbert space,
accounting this time for the “minimal state” (rather than the past history) of the variable
u. Then, we prove the existence of finite-dimensional global and exponential attractors of
optimal regularity, establishing an interesting connection between the two formulations.

1.4. Outline of the paper. The notation and the functional setting are introduced in
the subsequent Section 2. In Section 3 we give the definition of weak solution to (1.1).
In Section 4 the equation is translated into an ODE in a Hilbert space H (the minimal
state space), generating a strongly continuous semigroup S(t) of solutions. Such solutions
turn out to be weak solutions in the sense of the previous definition, as demonstrated in
Section 5. Section 6 is devoted to the comparison between this novel approach and the
well-known past history framework. The dissipativity features of the semigroup S(t) are
discussed in Section 7, showing the existence of bounded absorbing sets. The main result
of the paper, concerned with the existence of global and exponential attractors for S(t),
is stated in Section 8 and proved in the final Section 9.

2. Functional Setting and Notation

We consider the scale of compactly nested Hilbert spaces

Hq = D(A
q
2 ), q ∈ R,

with inner products and norms given by

⟨u, v⟩q = ⟨A
q
2u,A

q
2v⟩L2(Ω) and ∥u∥q = ∥A

q
2u∥L2(Ω).

The index q will be always omitted whenever zero. The symbol ⟨·, ·⟩ will also stand for the
duality product between Hq and its dual space H−q. We recall the well-known identities

H = L2(Ω), H1 = H1
0 (Ω), H2 = H2(Ω) ∩H1

0 (Ω),

and the Poincaré inequality

λ1∥u∥2 ≤ ∥u∥21, ∀u ∈ H1.

We will make use of two different classes of weighted L2-spaces.

Oct 17 2011 7:53:59 EDT
Vers. 1 - Sub. to TRAN



4 M. CONTI, E.M. MARCHINI, V. PATA

2.1. History spaces. For q ∈ R we introduce the history spaces (q is omitted if zero)

Mq = L2
µ(R+; Hq+1)

endowed with the weighted L2-inner products

⟨η1, η2⟩Mq =

∫ ∞

0

µ(s)⟨η1(s), η2(s)⟩q+1 ds,

along with the extended history spaces

Ĥ = H×M and V̂ = H2 ×M1.

For any r ≥ 0 we define the ball

B̂r =
{
ẑ ∈ Ĥ : ∥ẑ∥Ĥ ≤ r

}
.

We will also consider the (linear) right-translation semigroup R(t) on M

(R(t)η)(s) =

{
0 s ≤ t,

η(s− t) s > t,

whose infinitesimal generator is the linear operator

Tη = −η′ with domain D(T ) =
{
η ∈ M : η′ ∈ M, η(0) = 0

}
,

the prime standing for weak derivative.

2.2. Minimal state spaces. Calling ς ∈ (0,∞] the supremum of the support of µ, we
define the new kernel ν : (0, ς) → R+ as

ν(τ) = 1/µ(τ).

The assumptions on µ imply that ν is nondecreasing and piecewise absolutely continuous.
Furthermore, rewriting (1.5) in terms of ν we get

(2.1) ν(τ − s) ≤Me−δsν(τ), ∀s < τ < ς.

Remark 2.1. Aiming to describe the finite delay (ς <∞) and the infinite delay (ς = ∞)
cases in a unitary fashion, for any function h = h(τ) defined on (0, ς) we agree to put
h(τ) = 0 whenever ς < τ <∞.

Then, for q ∈ R, we introduce the (minimal) state spaces (again, q is omitted if zero)

Sq = L2
ν(R+; Hq+1)

with inner products

⟨ξ1, ξ2⟩Sq =

∫ ∞

0

ν(τ)⟨ξ1(τ), ξ2(τ)⟩q+1 dτ,

along with the extended state spaces

H = H× S and V = H2 × S1.

As in the previous case, for any r ≥ 0 we define the ball

Br =
{
z ∈ H : ∥z∥H ≤ r

}
.

We will consider the (linear) left-translation semigroup L(t) on S
(L(t)ξ)(τ) = ξ(t+ τ),
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whose infinitesimal generator is the linear operator

Pξ = ξ′ with domain D(P ) =
{
ξ ∈ S : ξ′ ∈ S

}
.

As shown in [7, 16], the operator P fulfills

(2.2) ⟨Pξ, ξ⟩S ≤ 0, ∀ξ ∈ D(P ),

meaning that the semigroup is contractive. Actually, L(t) is exponentially stable as well.
Indeed, for every ξ ∈ S we infer from (2.1) that

(2.3) ∥L(t)ξ∥2S =

∫ ∞

t

ν(τ − t)∥ξ(τ)∥21 dτ ≤Me−δt

∫ ∞

t

ν(τ)∥ξ(τ)∥21 dτ ≤Me−δt∥ξ∥2S .

2.3. The map Λ. The connection between the history and the state spaces has been
devised in [7, 16]. Supposing without loss of generality µ right-continuous, we denote by

µn = µ(s−n )− µ(sn) > 0

the jump amplitudes at the (left) discontinuity points sn. Setting for any η ∈ M

(Λη)(τ) = −
∫ ∞

0

µ′(τ + s)η(s) ds+
∑
τ<sn

µnη(sn − τ),

the following result is proved.

Theorem 2.2. The map Λ defined by

(u, η) 7→ Λ(u, η) = (u,Λη)

is a bounded linear operator of unitary norm from Ĥ into H, as well as from V̂ into V.
Moreover, we have the equality∫ ∞

0

µ(s)η(s) ds =

∫ ∞

0

(Λη)(τ) dτ, ∀η ∈ M.

A further technical lemma will be needed (see [7, Lemma 2.1]).

Lemma 2.3. Let p : R+ → H1 satisfy∫ ∞

0

µ(τ + s)∥p(s)∥1 ds <∞, ∀τ > 0.

Assume also that its primitive p̃(s) =
∫ s

0
p(y) dy belongs to M. Then

(Λp̃)(τ) =

∫ ∞

0

µ(τ + s)p(s) ds.

Remark 2.4. If p ∈ L1(R+; H1) the hypotheses of the lemma are easily verified.
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3. Weak Solutions

The evolution of (1.1) is influenced by the past history of the variable u. Accordingly, at
the initial time t = 0, the exact value of the convolution integral∫ ∞

0

κ(s)u(−s) ds

is needed. To this end, after the seminal work of Dafermos [9], a widely used strategy is
regarding the past history of u as an initial datum of the problem, i.e.

(3.1) u(0) = u0 and u(−s)|s>0 = g0(s),

where u0 : Ω → R and g0 : Ω × R+ → R are assumed to be known. In that case,
introducing the function

(3.2) G0(t) =

∫ ∞

0

κ(t+ s)g0(s) ds, t ≥ 0,

equation (1.1) can be reformulated as

(3.3) ∂tu+ A
[
u+

∫ t

0

κ(s)u(t− s) ds+G0

]
+ φ(u) = f.

This leads to the following quite natural notion of (weak) solution.

Definition 3.1. Let u0 ∈ H and let g0 be such that the corresponding G0 in (3.2) belongs
to H1 for almost every t. A function

u ∈ C([0,∞),H) ∩ L2
loc(0,∞; H1)

is a solution to (1.1) with initial condition (3.1) if u(0) = u0 and

⟨∂tu(t), v⟩+ ⟨u(t), v⟩1 +
∫ t

0

κ(s)⟨u(t− s), v⟩1 ds+ ⟨G0(t), v⟩1 + ⟨φ(u(t)), v⟩ = ⟨f, v⟩,

for every test v ∈ H1 and almost every t > 0.

A quite successful way to overcome the difficulties arising from the nonlocal character
of the equation is setting the problem in the so-called history framework of Dafermos [9].
More precisely, introducing t ≥ 0 and s > 0 the integrated past history η = ηt(s) of the
variable u, formally defined as

ηt(s) =

∫ s

0

u(t− y) dy,

the original equation (1.1) translates into the system in the unknown variables u = u(t)
and η = ηt(s)

(3.4)

∂tu+ A
[
u+

∫ ∞

0

µ(s)η(s) ds
]
+ φ(u) = f,

∂tη(s) = −∂sη(s) + u.

In turn, the initial conditions (3.1) become

u(0) = u0 and η0(s) =

∫ s

0

g0(y) dy.
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Adopting this strategy, several results have been proved in the last years, especially with
regard to the asymptotic behavior of solutions (see e.g. [2, 8, 13, 17, 18, 20]).

4. The Minimal State Framework

4.1. The initial condition problem. A closer look to (3.3) tells that, besides u0, all
is needed to determine the evolution of u is the knowledge of the function G0 in (3.2).
This points out a structural theoretical drawback of the history approach: two different
past histories g0 may lead to the same G0(t), hence to the same solution u(t) for t ≥ 0
(see [10, 11]). In other words, the “initial datum” g0 may not be recoverable by the
evolution of the system, and so is not a physical (measurable) quantity.

Remark 4.1. An immediate example is given by the memory kernel κ(s) = e−s, for
which (3.2) reads

G0(t) = e−t

∫ ∞

0

e−sg0(s) ds.

It is apparent here that infinitely many g0 produce the same function G0.

Such an obstacle can be overcome by adopting a different theoretical scheme, recently
devised in [16], based on the notion of minimal state: an additional variable accounting
for the past history which contains the necessary and sufficient information determining
the future dynamics.

4.2. Heuristic derivation of the scheme. For t ≥ 0 and τ > 0 we introduce an
auxiliary variable ξ = ξt(τ), which we call minimal state, formally defined as

(4.1) ξt(τ) =

∫ ∞

0

µ(τ + s)u(t− s) ds,

which (again, formally) satisfies the relations

∂tξ
t(τ) = ∂τξ

t(τ) + µ(τ)u(t)

and ∫ ∞

0

ξt(τ) dτ =

∫ ∞

0

κ(s)u(t− s) ds.

Hence, we rewrite (1.1) into an evolution system in the unknown variables u = u(t) and
ξ = ξt(τ)

(4.2)

∂tu+ A
[
u+

∫ ∞

0

ξ(τ) dτ
]
+ φ(u) = f,

∂tξ(τ) = ∂τξ(τ) + µ(τ)u,

where the initial condition (3.1) translates into

u(0) = u0 and ξ0(τ) =

∫ ∞

0

µ(τ + s)g0(s) ds.

Such a description meets the sought minimality requirement. Indeed, once the initial
state ξ0 is assigned, we can express (4.1) in the equivalent form

(4.3) ξt(τ) = ξ0(t+ τ) +

∫ t

0

µ(τ + s)u(t− s)ds.
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Then, plugging (4.3) into the first equation of (4.2), we deduce for every t ≥ 0 the equality∫ ∞

t

ξ0(τ) dτ = U(t),

for some function U depending only on u(t)|t≥0. Accordingly, the knowledge of u(t) for
all t ≥ 0 uniquely determines ξ0, and so ξt by invoking again (4.3).

4.3. The semigroup. In order to give the heuristic scheme a rigorous interpretation in
a suitable functional setting, the idea is viewing (4.2) as the ODE in H

(4.4)

u̇+ A
[
u+

∫ ∞

0

ξ(τ) dτ
]
+ φ(u) = f,

ξ̇(τ) = (Pξ)(τ) + µ(τ)u.

A well-posedness result holds.

Theorem 4.2. Equation (4.4) generates a solution semigroup S(t) : H → H. Thus, for
every t ≥ 0 and every z = (u0, ξ0) ∈ H,

S(t)z = (u(t), ξt)

is the unique solution at time t to (4.4) with initial datum z. In addition,

u ∈ L2
loc(0,∞; H1),

while ξ fulfills the explicit representation formula (4.3) with ξ0 = ξ0.

We omit the proof of the theorem, which is essentially identical to the one of the ex-
istence and uniqueness result in [8] (see also [2]), up to recasting the arguments in the
minimal state framework. We only observe that, once u is given, the explicit formula (4.3)
is obtained from the second equation of (4.4) by applying the standard variation of con-
stants method.

Proposition 4.3. The continuous dependence estimate

∥S(t)z1 − S(t)z2∥H ≤ eℓt∥z1 − z2∥H
holds for some ℓ ≥ 0 and every z1, z2 ∈ H.

Proof. The difference
Z(t) = (w(t), ζt) = S(t)z1 − S(t)z2

fulfills the problem
ẇ + A

[
w +

∫ ∞

0

ζ(τ) dτ
]
+ φ(u1)− φ(u2) = 0,

ζ̇(τ) = (Pζ)(τ) + µ(τ)w,

Z(0) = z1 − z2.

where uı(t) is the first component of S(t)zı. Working as usual in a regularization scheme,
we multiply the first equation by w in H and the second one by ζ in S, so obtaining

d

dt
∥Z∥2H + 2⟨φ(u1)− φ(u2), w⟩ = −2∥w∥21 + 2⟨Pζ, ζ⟩S ≤ 0,
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having used (2.2) in the latter inequality. Besides, (1.3) implies that φ′ ≥ −ℓ for some
ℓ ≥ 0. Consequently,

2⟨φ(u1)− φ(u2), w⟩ ≥ −2ℓ∥w∥2 ≥ −2ℓ∥Z∥2H.
Summarizing, we end up with

d

dt
∥Z∥2H ≤ 2ℓ∥Z∥2H,

and the sought inequality follows from the Gronwall lemma. �

5. Recovering the Original Equation

We now clarify the correspondence between the original problem (1.1) and its reformula-
tion in the minimal state framework. We begin with a definition.

Definition 5.1. A measurable function G : R+ → H1 is called a state function if

(5.1) G(t) =

∫ ∞

0

κ(t+ s)g(s) ds

for some measurable g : R+ → H1. We denote by S the space of state functions.

Remark 5.2. Note that G(t) is defined in H1 (as a Bochner integral) for every t > 0.
Indeed, given any t > 0, there is a time t0 ≤ t such that G(t0) ∈ H1. Since κ is
nonincreasing this is the same as saying that∫ ∞

0

κ(t+ s)∥g(s)∥1 ds ≤
∫ ∞

0

κ(t0 + s)∥g(s)∥1 ds <∞.

The space S fulfills some regularity properties.

Lemma 5.3. Let G ∈ S. For any g complying with (5.1) the identities

G(t) =

∫ ∞

t

[ ∫ ∞

0

µ(τ + s)g(s) ds
]
dτ =

∫ ∞

0

µ(t+ s)
[ ∫ s

0

g(y) dy
]
ds

occur for every t > 0.

Proof. Select g for which the representation (5.1) holds. By virtue of (1.4) we have the
equality

κ(t+ s) =

∫ ∞

t

µ(τ + s) dτ,

and exchanging the order of integration we obtain

G(t) =

∫ ∞

t

[ ∫ ∞

0

µ(τ + s)g(s) ds
]
dτ.

Writing instead

κ(t+ s) =

∫ ∞

s

µ(t+ τ) dτ,

we are led to

G(t) =

∫ ∞

0

[ ∫ ∞

s

µ(t+ τ)g(s) dτ
]
ds =

∫ ∞

0

µ(t+ s)
[ ∫ s

0

g(y) dy
]
ds.

This finishes the proof. �
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Differentiating the first identity of the lemma we get an immediate corollary.

Corollary 5.4. If G ∈ S then G′ ∈ L1(t,∞; H1) for all t > 0 and

G(t) = −
∫ ∞

t

G′(τ) dτ.

Moreover, for any g satisfying (5.1), the derivative G′ has the explicit form

G′(τ) = −
∫ ∞

0

µ(τ + s)g(s) ds.

In particular, the space inclusion S ⊂ C0([t,∞),H1) holds for every t > 0.

At this point, we can rephrase Definition 3.1 in a more convenient way by considering
initial conditions of the form

(u0, G0) ∈ H× S,
in comply with the fact that G0, rather than g0, is the correct initial datum describing
the past history of u, for it contains all the information determining the future dynamics.
In fact, we will restrict on a particular (albeit quite general) class of state functions.

Definition 5.5. A function G ∈ S is a proper state function whenever its derivative G′

is an element of S. We call Sp the space of proper state functions.

We are now in a position to establish the link between the two different formulations
of the problem.

Proposition 5.6. Assume that (u0, G0) ∈ H × Sp. Then u is a solution to (1.1) with
initial conditions (u0, G0) if and only if

(u(t), ξt) = S(t)(u0, ξ0),

where ξ0 = −G′
0 and ξt as in (4.3).

Proof. Having G′
0 = −ξ0, Corollary 5.4 entails

G0(t) =

∫ ∞

t

ξ0(τ) dτ =

∫ ∞

0

ξ0(t+ τ) dτ.

Since in both cases u ∈ L1(0, t; H1) for every t > 0, we learn from (1.4) that∫ t

0

κ(s)u(t− s) ds =

∫ ∞

0

(∫ t

0

µ(τ + s)u(t− s) ds
)
dτ.

In summary, we draw the identity∫ t

0

κ(s)u(t− s) ds+G0(t) =

∫ ∞

0

ξt(τ) dτ,

with ξt given by (4.3). The claim follows by comparing (3.3) and (4.4). �
We end with a sufficient condition for a state function to be proper.

Proposition 5.7. A state function G lies in Sp whenever exists a representation (5.1)
for some g whose primitive g̃(s) =

∫ s

0
g(y) dy belongs to the space M.
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Proof. By Corollary 5.4 we know that for every τ > 0

G′(τ) = −
∫ ∞

0

µ(τ + s)g(s) ds ∈ H1.

Therefore, as g̃ ∈ M, Lemma 2.3 yields the equality

G′(τ) = −(Λg̃)(τ),

implying in turn G′ ∈ S. �

6. Minimal State versus History

Next, we dwell on the comparison between the minimal state and the past history for-
mulations of problem (1.1). Indeed, paralleling the discussion leading to (4.4), the formal

evolution system (3.4) is interpreted as the ODE in the extended history space Ĥ

(6.1)

u̇+ A
[
u+

∫ ∞

0

µ(s)η(s) ds
]
+ φ(u) = f,

η̇(s) = (Tη)(s) + u.

As shown in [8], equation (6.1) generates a solution semigroup Ŝ(t) : Ĥ → Ĥ. Besides,
for every solution

Ŝ(t)ẑ = (u(t), ηt) with ẑ = (u0, η0) ∈ Ĥ,
we have that u ∈ L2

loc(0,∞; H1), while η fulfills the representation formula

(6.2) ηt(s) =

{∫ s

0
u(t− y) dy s ≤ t,

η0(s− t) +
∫ t

0
u(t− y) dy s > t.

The link between the history and the minimal state formulations is detailed in the
next proposition, showing in particular that the state approach describes the dynamics
in greater generality.

Proposition 6.1. For every ẑ ∈ Ĥ the following equality holds:

S(t)Λẑ = ΛŜ(t)ẑ.

Proof. Given a solution

Ŝ(t)ẑ = (u(t), ηt) with ẑ = (u0, η0) ∈ Ĥ,
let us define

ξt(τ) = (Ληt)(τ) and ξ0 = Λη0.

By Theorem 2.2 we have the equality∫ ∞

0

µ(s)ηt(s) ds =

∫ ∞

0

ξt(τ) dτ.

Accordingly, the pair (u(t), ξt) fulfills the first equation of (4.4). In order to verify the
second equation, it is convenient to extend u equal to zero on R−. Then we can give (6.2)
the equivalent form

ηt(s) = (R(t)η0)(s) +

∫ s

0

u(t− y) dy.

Oct 17 2011 7:53:59 EDT
Vers. 1 - Sub. to TRAN



12 M. CONTI, E.M. MARCHINI, V. PATA

By the very definition of Λ, we easily get

(ΛR(t)η0)(τ) = (L(t)ξ0)(τ) = ξ0(t+ τ),

while an application of Lemma 2.3 with

p = u(t− ·) ∈ L1(R+; H1)

yields the identity

(Λp̃)(τ) =

∫ ∞

0

µ(τ + s)p(s) ds =

∫ t

0

µ(τ + s)u(t− s) ds.

Summarizing, the function ξt = Ληt fulfills the representation formula (4.3), and so the
second equation of (4.4). �

7. Dissipative Estimates

We now turn to the main focus of this work: the analysis of the global asymptotic prop-
erties of the solutions to (4.4). As customary, the first step is showing the dissipative
character of the semigroup S(t), ensured by the existence of a bounded set B ⊂ H, called
absorbing set, able to capture all trajectories originating from any given bounded set of
initial data in finite time.

Theorem 7.1. There exist ε > 0 and c ≥ 0 such that, for every z ∈ Br and every t ≥ 0,

∥S(t)z∥2H ≤ 2∥z∥2He−εt + c.

Remark 7.2. For example, the ball

B = B√
2c

is an absorbing set for S(t). Indeed, for every r ≥ 0, Theorem 7.1 tells that

S(t)Br ⊂ B, ∀t ≥ tr,

where tr =
1
ε

(
log 2r2

c

)+ ≥ 0 is the entering time of Br into B.

Proof of Theorem 7.1. Calling for short

E(t) = ∥S(t)z∥2H,
we multiply within a regularization scheme (4.4) by (u, ξ) in H and we get

d

dt
E + 2∥u∥21 + 2⟨φ(u), u⟩ − 2⟨f, u⟩ = 2⟨Pξ, ξ⟩S .

In light of (1.3), completely standard calculations together with the Poincaré inequality
entail the control

2⟨φ(u), u⟩ − 2⟨f, u⟩ ≥ −(2− α)∥u∥21 − b

for some α > 0 (possibly very small) and some b ≥ 0. Thus, recalling (2.2), we end up
with

(7.1)
d

dt
E + α∥u∥21 ≤ b.

Defining the integrated kernel

ϱ(τ) =

∫ τ

0

ν(s) ds,
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which satisfies on account of (2.1)

(7.2)

∫ τ

0

ν(s) ds ≤Mν(τ)

∫ τ

0

e−δ(τ−s) ds ≤ M

δ
ν(τ),

we introduce the functional

Ψ(t) = 2

∫ ∞

0

ϱ(τ)∥ξt(τ)∥21 dτ.

By (7.2), we find the uniform-in-time control

(7.3) Ψ(t) ≤ 2M

δ
∥ξt∥2S ≤ 2M

δ
E(t).

Taking the time derivative of Ψ and using the second equation of (4.4) we obtain

d

dt
Ψ = 2

∫ ∞

0

ϱ(τ)
d

dτ
∥ξ(τ)∥21 dτ + 4

∫ ∞

0

ϱ(τ)µ(τ)⟨u, ξ(τ)⟩1 dτ.

An integration by parts provides the equality (see [6, 16])

2

∫ ∞

0

ϱ(τ)
d

dτ
∥ξ(τ)∥21 dτ = −2∥ξ∥2S

Moreover, using again (7.2) and applying the Hölder and the Young inequalities,

4

∫ ∞

0

ϱ(τ)µ(τ)⟨u, ξ(τ)⟩1 dτ ≤ 4M

δ
∥u∥1

∫ ∞

0

∥ξ(τ)∥1 dτ ≤ k∥u∥21 + ∥ξ∥2S ,

where we set k = 4M2κ(0)
δ2

. Summarizing,

(7.4)
d

dt
Ψ+ ∥ξ∥2S ≤ k∥u∥21.

Finally, for ε > 0 we define the energy functional

Φ(t) = E(t) + 2εΨ(t).

Up to fixing ε suitably small, we get from (7.3) the uniform bounds

E(t) ≤ Φ(t) ≤ 2E(t),

whereas collecting (7.1)-(7.4) we are led to the differential inequality

d

dt
Φ + εΦ ≤ b.

Thus, the Gronwall lemma allows us to conclude that

E(t) ≤ Φ(t) ≤ Φ(0)e−εt +
b

ε
≤ 2E(0)e−εt +

b

ε
,

and the claim follows by choosing c = b
ε
. �

A subsequent integration of inequality (7.1) on the time-interval (t, t + 1) provides a
noteworthy corollary.
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Corollary 7.3. There exists an increasing positive function I such that, for every z ∈ Br

and every t ≥ 0,

∥S(t)z∥2H +

∫ t+1

t

∥u(y)∥21 dy ≤ I(r).

8. Exponential and Global Attractors

Our main result, whose proof is given in the final Section 9, concerns with the existence
of an exponential attractor for the semigroup S(t) acting on H (see [19] for a detailed
presentation of the subject). Roughly speaking, this is a small -in a suitable sense- set
which attracts exponentially fast all bounded subsets of H with respect to the Hausdorff
semidistance.1

Theorem 8.1. There exists a set E ⊂ H, called exponential attractor, satisfying the
following properties:

(i) E is compact with finite fractal dimension in V

dimV(E) = lim sup
ε↓0

lnNε(E)

ln 1
ε

<∞,

where Nε(E) is the smallest number of ε-balls of V necessary to cover E.

(ii) E is positively invariant under the action of the semigroup:

S(t)E ⊂ E, ∀t ≥ 0.

(iii) For every r ≥ 0 and every t ≥ 0 the exponential attraction formula

distH(S(t)Br,E) ≤ I(r)e−ωt

holds for some ω > 0 and some increasing positive function I. Both ω and I can
be explicitly calculated.

By standard arguments (cf. [1, 4, 14, 15, 19, 21]), the existence of an exponential
attractor, or more generally the one of a compact attracting set, implies the existence of
the global attractor : the unique compact set A ⊂ H which is at the same time

• fully invariant: S(t)A = A for every t ≥ 0; and

• attracting: lim
t→∞

distH(S(t)Br,A) = 0 for every t ≥ 0.

In particular, since fully invariant, the global attractor A is contained in every closed
attracting set, such as E. This proves the next corollary.

Corollary 8.2. The semigroup S(t) possesses the global attractor A. Moreover, A is
compact with finite fractal dimension in V.

1The Hausdorff semidistance between two (nonempty) sets X ,Y ⊂ H is defined as

distH(X ,Y) = sup
x∈X

inf
y∈Y

∥x− y∥H.
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We also recall that, for an arbitrarily fixed x ∈ R, the global attractor can be given the
form (see [15])

A =
{
Z(x) : Z cbt

}
,

where a complete bounded trajectory (cbt) of the semigroup is a function Z ∈ Cb(R,H)
satisfying

Z(x) = S(t)Z(x− t), ∀t ≥ 0, ∀x ∈ R.
Quite interestingly, the trajectories lying on the attractor turn out to verify the formal
equality (4.1) for all times.

Proposition 8.3. For every cbt Z = (u, ξ) we have the equality

(8.1) ξx(τ) =

∫ ∞

0

µ(τ + s)u(x− s) ds, ∀x ∈ R.

Proof. If Z = (u, ξ) is a cbt we know by definition that

Z(x) = S(t)(u(x− t), ξx−t), ∀t ≥ 0, ∀x ∈ R.
Moreover, since Z(x) ∈ A for all x,

sup
x∈R

[
∥u(x)∥1 + ∥ξx∥S

]
= K <∞,

for some K > 0 depending only on A. Exploiting the representation formula (4.3), we get

ξx(τ) = ξx−t(t+ τ) +

∫ t

0

µ(τ + s)u(x− s) ds.

Accordingly, for an arbitrary x ∈ R, we obtain the identity

ξx(τ)−
∫ ∞

0

µ(τ + s)u(x− s) ds = Qt
1(τ) +Qt

2(τ),

where

Qt
1(τ) = ξx−t(t+ τ) and Qt

2(τ) = −
∫ ∞

t

µ(τ + s)u(x− s) ds.

Since the left-hand side above is independent of t, in order to conclude it is enough showing
that Qt

ı → 0 in S as t→ ∞. Indeed, thanks to (2.3), we handle the first term as

∥Qt
1∥2S = ∥L(t)ξx−t∥2S ≤Me−δt∥ξx−t∥2S ≤MK2e−δt → 0.

Concerning the latter one, we infer from (1.5) that

∥Qt
2(τ)∥1 ≤

∫ ∞

t

µ(τ + s)∥u(x− s)∥1 ds ≤MKµ(τ)

∫ ∞

t

e−δs ds =
MK

δ
e−δtµ(τ).

In turn,

∥Qt
2∥2S ≤ M2K2

δ2
e−2δt

∫ ∞

0

ν(τ)[µ(τ)]2 dτ =
M2K2κ(0)

δ2
e−2δt → 0,

as desired. �
A quite direct consequence of Proposition 8.3 is the following result, whose proof is left

to the reader.
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Corollary 8.4. Given u ∈ L∞(R,H1) and defining ξ = ξx(τ) by the formula (8.1), the
function Z = (u, ξ) is a cbt of S(t) if and only if u solves (in fact in the strong sense)
the equation

u̇(x) + A
[
u(x) +

∫ ∞

0

κ(s)u(x− s) ds
]
+ φ(u(x)) = f

for every x ∈ R.

9. Proof of Theorem 8.1

The direct proof of the theorem requires several steps, some of which rather technical.
Nevertheless, an alternative and much more convenient strategy is possible, leaning on
the earlier contributions in the history space framework. To this end, we firstly recall the
main result of [2].

Theorem 9.1. There exists a set Ê ⊂ Ĥ, compact with finite fractal dimension in V̂ and
positively invariant for Ŝ(t), satisfying the exponential attraction formula

distĤ(Ŝ(t)B̂r, Ê) ≤ Î(r)e−ω̂t

for some ω̂ > 0 and some increasing positive function Î, both explicitly calculated.

Remark 9.2. The growth restriction (1.2), not really necessary for the existence of the

semigroup Ŝ(t), plays here a crucial role.

We now define the candidate exponential attractor of our problem as

E = ΛÊ.

Due to the Lipschitz continuity of Λ, we infer from Theorem 9.1 that E is compact in V
with fractal dimension

dimV(E) ≤ dimV̂(Ê) <∞.

Moreover,
S(t)E = S(t)ΛÊ = ΛŜ(t)Ê ⊂ ΛÊ = E.

This establishes (i)-(ii). In order to prove the exponential attraction (iii), let r ≥ 0 be
fixed, and denote by Cr ≥ 0 a generic constant depending (increasingly) only on r. Given
a solution

S(t)z = (u(t), ξt) with z = (u0, ξ0) ∈ Br

we set (upon extending u on R− equal to zero)

ψt(s) =

∫ s

0

u(t− y) dy.

Then we consider the function
Ẑ(t) = (u(t), ψt),

which satisfies the uniform-in-time estimate

∥Ẑ(t)∥Ĥ ≤ Cr.

Indeed, by Corollary 7.3, ∥u(t)∥ ≤ Cr and

∥ψt(s)∥21 ≤
(∫ t

t−s

∥u(y)∥1 dy
)2

≤ s

∫ t

t−s

∥u(y)∥21 dy ≤ Cr(1 + s2).
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Recalling (1.5), the latter inequality readily yields the remaining bound ∥ψt∥M ≤ Cr.
Finally, we introduce the function

Z(t) = ΛẐ(t) = (u(t),Λψt).

Lemma 9.3. For every x, y ≥ 0 we have

∥S(x+ y)z − S(x)Z(y)∥H ≤ Cre
ℓx− δ

2
y.

Proof. We first apply Proposition 4.3 to get

∥S(x+ y)z − S(x)Z(y)∥H ≤ eℓx∥S(y)z − Z(y)∥H = eℓx∥ξy − Λψy∥S .

On account of Lemma 2.3 (see also Remark 2.4),

(Λψy)(τ) =

∫ ∞

0

µ(τ + s)u(y − s) ds =

∫ y

0

µ(τ + s)u(y − s) ds.

Thus, from (2.3) and the representation formula (4.3) for ξy, we find

∥ξy − Λψy∥2S = ∥L(y)ξ0∥2S ≤Me−δy∥ξ∥2S ≤ Cre
−δy,

and the claim follows. �

Lemma 9.4. For every x, y ≥ 0 we have

distH(S(x)Z(y),E) ≤ Cre
−ω̂x.

Proof. Exploiting Proposition 6.1 and Theorem 2.2, by the very definition of Hausdorff
semidistance we obtain

distH(S(x)Z(y),E) = distH(ΛŜ(x)Ẑ(y),ΛÊ) ≤ distĤ(Ŝ(x)Ẑ(y), Ê).

As Ẑ is uniformly bounded in Ĥ, the exponential attraction property of Theorem 9.1
completes the argument. �

Conclusion of the proof. Due to the straightforward inequality

distH(S(x+ y)z,E) ≤ ∥S(x+ y)z − S(x)Z(y)∥H + distH(S(x)Z(y),E),

setting for any κ ∈ [0, 1]

x = κt and y = t− κt
we deduce from Lemma 9.3 and Lemma 9.4 that

distH(S(t)z,E) ≤ Cr

[
e−

1
2
(δ−2ℓκ−δκ)t + e−ω̂κt ].

The optimal choice

κ = κ⋆ =
δ

2ω̂ + 2ℓ+ δ

entails

distH(S(t)z,E) ≤ Cre
−ω̂κ⋆t.

Since z ∈ Br is arbitrary, the exponential attraction (iii) is attained with ω = ω̂κ⋆. �
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