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1. Introduction

Let (Mn, g), n ≥ 3, be a n–dimensional smooth Riemannian manifold and consider the 
functional

S2(g) =

∫

M
R2 dVg (1.1)

on the space of Riemannian metrics on Mn, where R and dVg denote the scalar curvature
and the volume form of g respectively. The first variation of S2 (see [3]) in the direction of h
reads

δ S2(g)[h] =

∫

M

(

2RδR + 1
2R

2 tr(h)
)

dVg

=

∫

M

(

− 2R∆tr(h) + 2R∇i∇jhij − 2RRijhij +
1
2R

2 tr(h)
)

dVg

=

∫

M

(

− 2∆Rgij + 2∇i∇jR− 2RRij +
1
2R

2 gij
)

hij dVg .

Hence, the Euler–Lagrange equation for a critical metric of S2 is given by

2RRic− 2∇2R+ 2∆Rg = 1
2R

2 g ,

or equivalently
RRic−∇2R = 3

4(n−1)R
2 g , (1.2)

∆R = n−4
4(n−1)R

2 , (1.3)

where equation (1.3) is just the trace of (1.2).
Obviously, if a metric is scalar flat or Einstein, then it satisfies (1.2). Moreover, equa-

tion (1.3) implies that any compact critical metric of S2 is trivial, in the sense that it has
constant scalar curvature. More precisely, any compact critical metric of S2 is scalar flat if
n 6= 4, whereas it is either scalar flat or Einstein if n = 4. This is clear, since S2 is not
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scale–invariant if n 6= 4. To obtain nontrivial compact critical metrics in this case, one should
consider the modified functional

S2
v (g) =

∫

M R2 dVg
( ∫

M dVg

)(n−4)/n
,

which is scale–invariant. A simple integration by parts argument (see the appendix) shows
that any compact critical metric of S2

v with nonnegative scalar curvature is either scalar flat
or Einstein (see Anderson [1, Proposition 1.1] for a proof in dimension three). The existence
of nontrivial compact critical metrics of S2

v is still an open question.
In this paper we will focus on complete, possibly noncompact, critical metrics of S2. As

far as we know, noncompact critical metrics of S2 were not studied yet. Our main result
characterizes critical metrics with positive scalar curvature.

Theorem 1.1. Let (Mn, g), n ≥ 3, be a complete critical metric of S2 with positive scalar

curvature. Then (Mn, g) has constant scalar curvature.

In particular, from equations (1.2) and (1.3), if n 6= 4, there are no complete critical
metrics of S2 with positive scalar curvature, whereas, every complete four–dimensional critical
metric of S2 with positive scalar curvature is Einstein. Furthermore, by equation (1.3) and
the strong maximum principle, if n ≤ 4 and g is a critical metric with nonnegative scalar
curvature, then either R ≡ 0 or R > 0 on Mn. As an immediate consequence, we have the
following characterization of complete critical metrics of S2 with nonnegative scalar curvature
in dimension three and four.

Theorem 1.2. Let (M3, g) be a complete three–dimensional critical metric of S2 with non-

negative scalar curvature. Then (M3, g) is scalar flat.

Theorem 1.3. Let (M4, g) be a complete four–dimensional critical metric of S2 with non-

negative scalar curvature. Then (M4, g) is either scalar flat or Einstein with positive scalar

curvature.

We do not know if the condition of nonnegative scalar curvature is necessary or can be
dropped from these two theorems. Theorem 1.2 has to be compared with a result of Anderson
in [2] concerning the characterization of three–dimensional critical metric of the L2–norm of
the Ricci curvature

R2(g) =

∫

M
|Ric|2 dVg .

In fact, Anderson in [2, Theorem 0.1] proved that every complete three–dimensional critical
metric of R2 with nonnegative scalar curvature is flat.

The proof of Theorem 1.1 relies on a gradient estimate for the scalar curvature of critical
metrics and it is inspired by the classical Yau’s estimate for positive harmonic functions on
complete Riemannian manifolds with nonnegative Ricci curvature [5].

2. Proof of Theorem 1.1

Let (Mn, g) be a complete Riemannian manifold satisfying (1.2)

RRic−∇2R = 3
4(n−1)R

2 g .



We recall the traced equation (1.3)

∆R = n−4
4(n−1)R

2 .

If (Mn, g) is compact, the maximum principle implies that the scalar curvature of g has to be
constant and Theorem 1.1 follows. From now on we will assume that (Mn, g) is a complete,
noncompact, critical metric of S2 with positive scalar curvature, R > 0.

Let us define u = logR. From equation (1.3), the function u satisfies

∆u = −|∇u|2 + n−4
4(n−1)R .

Moreover, using Bochner formula, we can compute

∆|∇u|2 = 2|∇2u|2 + 2Ric(∇u,∇u) + 2〈∇u,∇∆u〉

= 2|∇2u|2 + 2Ric(∇u,∇u) − 2〈∇u,∇|∇u|2〉+ n−4
2(n−1)R|∇u|2

= 2|∇2u|2 + 2
R∇

2R(∇u,∇u) + 1
2R|∇u|2 − 2〈∇u,∇|∇u|2〉 ,

where in the last equality we have used the structure equation (1.2). On the other hand, one
has

2∇2R(∇u,∇u) = 2R−2∇2R(∇R,∇R)

= R−2〈∇R,∇|∇R|2〉

= R〈∇u,∇|∇u|2〉+ 2R|∇u|4 .

Hence, by the previous computation, we have obtained

∆|∇u|2 = 2|∇2u|2 − 〈∇u,∇|∇u|2〉+ 1
2R|∇u|2 + 2|∇u|4 . (2.1)

Moreover, the standard matrix inequality |A|2 ≥ (1/n) tr(A)2, implies at once that

2|∇2u|2 ≥ 2
n |∇u|4 + (n−4)2

8n(n−1)2R
2 − n−4

n(n−1)R|∇u|2 .

Combining this estimate with (2.1) yields

∆|∇u|2 ≥ −〈∇u,∇|∇u|2〉+ n2
−3n+8

2n(n−1) R|∇u|2 + 2(n+1)
n |∇u|4 + (n−4)2

8n(n−1)2R
2 . (2.2)

Choose now ϕ to be a nonnegative cut–off function on Mn and let H = ϕ|∇u|2. Then, at
any point where ϕ > 0, estimate (2.2) implies

∆H = (∆ϕ) |∇u|2 + ϕ∆|∇u|2 + 2〈∇ϕ,∇|∇u|2〉

= (∆ϕ)ϕ−1H + ϕ∆|∇u|2 + 2ϕ−1〈∇ϕ,∇H〉 − 2|∇ϕ|2ϕ−2H

≥ (∆ϕ)ϕ−1H + 2ϕ−1〈∇ϕ,∇H〉 − 2|∇ϕ|2ϕ−2H − 〈∇u,∇H〉

+ϕ−1H〈∇u,∇ϕ〉+ n2
−3n+8

2n(n−1) RH + 2(n+1)
n ϕ−1H2 + (n−4)2

8n(n−1)2
ϕR2 .

Moreover, Cauchy–Schwartz inequality gives

ϕ−1H〈∇u,∇ϕ〉 ≥ −|∇ϕ|ϕ−3/2 H3/2

and we have

∆H ≥ (∆ϕ)ϕ−1H + 2ϕ−1〈∇ϕ,∇H〉 − 2|∇ϕ|2ϕ−2H − 〈∇u,∇H〉

− |∇ϕ|ϕ−3/2 H3/2 + n2
−3n+8

2n(n−1) RH + 2(n+1)
n ϕ−1H2 + (n−4)2

8n(n−1)2
ϕR2 .



Thus, at a maximum point p0 ∈ Mn of H, one has

0 ≥ (∆ϕ)H − 2|∇ϕ|2ϕ−1H − |∇ϕ|ϕ−1/2 H3/2

+ n2
−3n+8

2n(n−1) ϕRH + 2(n+1)
n H2 + (n−4)2

8n(n−1)2
ϕ2 R2

≥ (∆ϕ)H − 2|∇ϕ|2ϕ−1H − |∇ϕ|ϕ−1/2 H3/2 + 2(n+1)
n H2 , (2.3)

where we have used the fact that R > 0.
Let ϕ = ϕ(r) be a function of the distance r to a fixed point p ∈ Mn and let Bs(p) be

a geodesic ball of radius s. We denote by Cp the cut locus at the point p and we choose ϕ
satisfying the following properties: ϕ = 1 on Bs(p), ϕ = 0 on Mn \B2s(p) and

−c s−1ϕ1/2 ≤ ϕ′ ≤ 0 and |ϕ′′| ≤ c s−2

on B2s(p) \Bs(p) for some positive constant c > 0. In particular, ϕ is smooth in Mn \Cp and
in {B2s(p) \Bs(p)} \ Cp one has

|∇ϕ|ϕ−1/2 ≤ |ϕ′|ϕ−1/2 ≤ c s−1 . (2.4)

Hence, to conclude the proof it remains to estimate the Laplacian term ∆ϕ. Notice that

∆ϕ = ϕ′∆r + ϕ′′ .

Let v = −u = − logR. One has

∇2v − dv ⊗ dv = −R−1∇2R .

Thus, by the structure equation (1.2), we obtain that the metric g satisfies

Ric+∇2v − dv ⊗ dv = 3
4(n−1)e

−v g ≥ 0

In particular, following the notations in [4], the 1–Bakry–Emery Ricci tensor Ric1v of g defined
by

Ric1v = Ric+∇2v − dv ⊗ dv

is nonnegative. Hence, by the Laplacian comparison estimate on manifolds with nonnegative
1–Bakry–Emery Ricci tensor [4, Theorem A.1], for every x ∈ {B2s(p) \Bs(p)} \ Cp, one has

∆r ≤ 〈∇r,∇v〉 + n r−1

≤ |∇u|+ n r−1

= ϕ−1/2 H1/2 + n s−1 ,

since s ≤ r. In particular, for every x ∈ {B2s(p) \Bs(p)} \ Cp, we obtain

∆ϕ = ϕ′∆r + ϕ′′

≥ ϕ′ ϕ−1/2H1/2 + nϕ′ s−1 − c s−2

≥ −c s−1H1/2 − nc s−2 − c s−2

= −c s−1H1/2 − C1 s
−2 ,

for some positive constant C1 > 0. Let us assume that the maximum point p0 of H does
not belong to the cut locus Cp of p. Combining the last estimate with (2.3) and (2.4), at
p0 ∈ Mn, we get

0 ≥ −C2 s
−2H − C3 s

−1H3/2 + 2(n+1)
n H2 ,

for some positive constants C2, C3 > 0. On the other hand,

C3 s
−1H3/2 ≤ αH2 +

C2

3

4 α−1 s−2H



for every α > 0. Thus, if α < 2(n+ 1)/n, we have proved that, if p0 /∈ Cp, then

H(p0) ≤ C4 s
−2 ,

for some positive constants C4 > 0. By letting s → +∞ we obtain that H ≡ 0, so u is
constant on Mn and g has constant scalar curvature.

If p0 ∈ Cp we argue as follows (this trick is usually referred to Calabi). Let γ : [0, L] → Mn,
where L = d(p0, p), be a minimal geodesic joining p to p0, the maximum point of H. Let
pε = γ(ε) for some ε > 0. Define now

Hε = ϕ
(

d(x, pε) + ε
)

|∇u|2 .

Since d(x, pε) + ε ≥ d(x, p) and d(p0, pε) + ε = d(p0, p), it is easy to see that Hε(p0) = H(p0)
and

Hε(x) ≤ H(x) for all x ∈ Mn ,

since ϕ′ ≤ 0. Hence p0 is also a maximum point for Hε. Moreover, since d(x, pε) is smooth
in a neighborhood of p0 we can apply the maximum principle argument as before to obtain
an estimate for Hε(p0) which depends on ε. Taking the limit as ε → 0, we obtain the desired
estimate on H.

This concludes the proof of Theorem 1.1. As we have observed in the introduction, Theo-
rem 1.2 and Theorem 1.3 now follows simply by observing that, if n ≤ 4 and g is a critical
metric with nonnegative scalar curvature, then the strong maximum principle implies that
either R ≡ 0 or R > 0 on Mn.

3. Appendix

Let (Mn, g), n ≥ 3, be a compact Riemannian manifold and consider the scale–invariant
functional

S2
v (g) =

∫

M R2 dVg
( ∫

M dVg

)(n−4)/n
.

The Euler–Lagrange equation for a critical metric of S2
v is given by

RRic−∇2R = 1
nR

2 g − 1
n∆Rg . (3.1)

Taking the divergence of (3.1), one has

0 = Ric(∇R, ·) + 1
2R∇R−∆∇R− 2

nR∇R+ 1
n∇∆R

= Ric(∇R, ·) + n−4
4n ∇R2 − n−1

n ∇∆R−Ric(∇R, ·)

= 1
4n∇

(

(n− 4)R2 − 4(n− 1)∆R
)

,

where we have used Schur’s identity dR = 2divRic and the commutation formula for covariant
derivatives. Hence, one has that any solution of (3.1), satisfies

∆R = n−4
4(n−1)

(

R2 −R2
)

, (3.2)

where R2 =
( ∫

M R2 dVg

)

/
( ∫

M dVg

)

. Obviously, if a metric is scalar flat or Einstein, then

it critical for S2
v . We prove that also the converse is true, if we assume that the critical

metric has nonnegative scalar curvature. We notice that equation (3.2) implies that any four
dimensional critical metric of S2

v has constant scalar curvature and it is either scalar flat or
Einstein.



Proposition 3.1. Any compact critical metric of S2
v with nonnegative scalar curvature either

is scalar flat or Einstein.

Proof. Contracting equation (3.1) with the Ricci tensor, one has

R
∣

∣Ric− 1
nRg

∣

∣

2
= Rij∇ijR− 1

nR∆R .

Integrating on Mn, we get
∫

M
R
∣

∣Ric− 1
nRg

∣

∣

2
dVg =

∫

M
Rij∇ijRdVg −

1
n

∫

M
R∆RdVg

= −1
2

∫

M
|∇R|2 + 1

n

∫

M
|∇R|2 dVg

= −n−2
2n

∫

M
|∇R|2 dVg .

Since R ≥ 0, this implies that either R ≡ 0 or the metric g is Einstein.

As we have observed in the introduction, this result was proved in dimension three by
Anderson in [1].
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