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1. Introduction

Bearings are the widely used mechanical parts in rotational 

As the vibration signals of the bearing possess non-stationary
characteristic and have the weak faulty signals with strong back
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equipment and usually constitute a large portion of the failure ac-
cidents. In order to avoid the fatal breakdowns of the machines, the
bearing defects should be detected as early as possible to pre-vent
unexpected failure [1]. Condition based maintenance (CBM), aiming to
reduce the cost of maintenance and improve the relia-bility, becomes
an efficient strategy during these years. Prognostics of bearing has a
great significance to identify the future conditions for the
maintenance plans, and also benefit to reduce the produc-tion
downtime, the maintenance cost, and the safety hazards [2].

Effective performance degradation assessment is still a chal-
lenging problem in academia and industries [3]. Three main ap-
proaches, including model-based, data-driven and hybrid prognostics
with statistics, are commonly used [4]. The data-driven methodology
is directly based on the acquired vibration signals. Although the
bearing vibration signals contain very specific infor-mation about the
bearing’s fault conditions, it’s quite difficult to detect and track the
weak signals at an early stage [5]. Thus,  one  of the main
challenges in prognostics of the bearing is how to extract the
features and construct the proper health indicators from the
monitoring signals.
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effective way for extracting the features of the original data [6,7]. The
algorithm based on wavelet packet decomposition (WPD) has been
applied for the vibration signal analysis [8,9]. WPD, which is capable o
dividing the whole time–frequency signal into many dif-feren
frequency bandwidths, has received widespread attentions in these
years. The energy of the wavelet packet is commonly used to identify
the failure mode of the bearings [10]. Wavelet  packet energy
entropy, which reflects the energy change of each sub-band when the
degradation occurs, is also proved to be a good recognition method in
bearing fault diagnosis [11]. In recent years, another time–frequency
analysis method named as empirical mode decomposition (EMD) ha
been more and more widely used in signal processing [12]. The signa
will be decomposed into a set of intrinsic mode functions (IMF) tha
involves both sam-pling frequency and changes with the signal itself. By
analyzing each IMF, the feature information of the original signal could
be extracted more effectively and accurately. Some successful fault di
agnosis methods based on EMD have been carried on which use energy
entropy or Hilbert transform to identify the work condi-tion and the
fault patterns [13–16]. To overcome the shortcomings in EMD, an
improved EMD method using Wavelet Packet Transform (WPT-EMD
are presented in fault diagnosis [17–19].The main purpose of using WP
EMD method in those literatures is to
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get more accurate bearing fault characteristic information. WPD is 
used for de-noising the signal and then put the signal decomposed 
into each IMFs component for envelope analysis or energy charac-
teristics extraction. Q. Liu estimated the fault frequency by using 
Wavelet Package Transform and Ensemble Empirical Mode Decom-
position [20]. A. Santhana Raj and N. Murali used Morlet wavelet 
Undecimated Discrete Wavelet Transform (UDWT) de-noising and 
EMD method to find the characteristic frequencies of the bearing 
fault [21]. However, in those methods, the trend information of IMFs 
is not being fully utilized and single fault frequency is not enough for 
degradation trend analysis. More proper features for trend analysis 
still need to be constructed.

The progressions of those vibration based features are not 
monotonic during the degradation of the bearing, which makes the 
remaining useful life (RUL) prediction even more challenging. Health 
indicator is introduced for evaluating the performance of the bearing 
from available features. Different features are sensitive to different 
faults and degradation severity [22]. A proper health indicator should 
be applied to describe the whole progression of the degradation for 
condition assessment. And this is very dif-ferent from the traditional 
failure diagnosis which basically just needs to identify different 
failure modes [23]. Caesarendra et al. proposed a combination 
method using logistic regression (LR) and relevance vector machine 
(RVM) to assess the state of health and predict the RUL [24]. Huang et 
al. estimated the degradation con-dition and the RUL by using a self-
organizing map (SOM) and back propagation (BP) neural network 
[25]. Zhao Wei et al. utilized a dynamic particle filter–support vector 
regression method for relia-bility prediction [26]. With each claiming 
the effectiveness of the proposed method based on the experimental 
results on a certain data set, those methods still have some 
shortcomings when multiple faults occur. Usually, a specific fault 
data is used for training the model and a fairly good result can be 
obtained in diagnosis. However, it is quite impossible for us to know 
the specific failure mode that will occur in a real-world prognosis, 
especially for a long-term prediction with multiple faults 
occurrences. Thus, another main challenge in the bearing 
prognostics is how to provide an effective condition assessment to 
describe the development of the performance degradation and make 
an accurate RUL prediction for proactive maintenance.

To solve problems mentioned above, this paper presents a con-
dition assessment approach based on the degraded signal. The main 
contribution concerns the utilization of the WPD and EMD technique 
to extract features, as well as SOM neural networks to construct 
health indicators achieving the performance degradation assessment 
and the RUL estimation. The original signals are decomposed by the 
WPD and the corresponding entropy features are extracted from the 
time series that are obtained after the wavelet coefficient 
reconstruction. EMD, served as a trend analysis method, is applied to 
extract the entropy sequences which are taken as the input vectors of 
the SOM network. The confidence value (CV) de-rived from the SOM 
are used to illustrate the health state and estimate the RUL. To verify 
the superiority of the proposed method, it is compared with some 
traditional features. Seventeen datasets from a bearing run-to-failure 
test are used for assessment as well. The experimental results show 
that the prognostic approach of the proposed method can be severed 
as a powerful way to describe the evolution of the bearing 
degradation.

This paper is organized as follows. In Section 2, the combina-
torial feature extraction method of WPD and EMD are presented. 
In Section 3, the proposed assessment method is described in de-
tails. Section 4 presents the results of the proposed method on the 
condition assessment of the performance degradation and the RUL 
estimation using the experiment signals. General conclusions are 
presented in Section 5.
2. Combination feature extraction based on WP-EMD

In the WPD analysis, the signal is filtered with the low-pass
{hk} and the high-pass filters {gk} at first. Thus, WPD can decom-
pose the full frequency-band of the signal into different frequency
sub-bands and allow better time–frequency localization of the sig-
nals. For a signal f (t) = x1

0(t), the decomposition is defined as,

⎧⎪⎪⎨
⎪⎪⎩

x2i
j =

∑
k

hk(k − 2t)xi
j−1(t)

x2i+1
j =

∑
k

gk(k − 2t)xi
j−1(t)

(1)

The reconstruction process of the i-th wavelet on the j-th layer
is defined as

xi
j(t) = 2

[∑
k

h(t − 2k)x2i−1
j+1 (t) +

∑
k

g(t − 2k)x2i
j+1(t)

]
(2)

where h(n) is the low-pass filter related to the scaling function and
g(n) is the high-pass filter related to the wavelet function.

The combination feature extraction uses 3-layers WPD as a
preprocessor to de-noise and decompose of the collected vi-
bration signal. Eight waveforms are obtained and designated as
x1

3(t)x2
3(t) · · · x8

3(t). The wavelet energy is varying over different
scales depending on the input signals. We use the energy en-
tropy to describe the change of the energy distribution. The en-
ergy and the entropy of each sub-band can be calculated as fol-
lows,

Ei
j(t) =

N∑
n=1

(
xi

j(t)
2) (3)

Sen = −
N∑

i=1

pi
j log pi

j

(
Sen = 0 when pi

j = 0
)

(4)

where i, j is the number of the wavelet coefficients, N is the
length of the signal xi

j(t) and pi
j is the energy probability dis-

tribution of the signal on the j-th layer, which is defined as

pi
j = Ei

j(t)∑
j E i

j(t)
(5)

After calculate each entropy of the collected vibration signals, 
the entropy sequences sen(t) in whole life time series can be ob-
tained. As bearing operating, the entropy sequences will be de-
graded. To analyze the evolution of degradation more concisely, 
EMD is applied to extract the trend of entropy sequences.

EMD is a self-adaptive method to decompose nonlinear and
non-stationary signals developed by Huang in 1998 [27]. It de-
composes the signal into a number of IMFs and the residue of the 
decomposition. Given an input signal x(t), the EMD procedure can 
be express as the following formulas,

⎧⎪⎨
⎪⎩

m(t) = (
emax(t) + emin(t)

)
/2

ci(t) = x(t) − mi(t)

ri(t) = x(t) − ci(t)

(6)

where emax(t) and emin(t) are the upper envelope and the lower 
envelope obtained from all the local maxima of the signal x(t) us-
ing a cubic spline line. Then, take the residual r1(t) as the original 
signal and iterate (6). As a result, n IMFs can be obtained as fol-
lows,



Fig. 1. Overview of the condition assessment method.
r2(t) = r1(t) − c2(t)

r3(t) = r2(t) − c3(t)

. . .

rn(t) = rn−1(t) − cn(t) (7)

In practice, the above procedure will repeat until the residual
item rn(t) becomes a monotonic function or the IMF cn(t) can be
considered as zero-mean signal. Finally, the original signal x(t) is
decomposed into n-empirical modes as follows,

x(t) =
n∑

i=1

ci(t) + rn(t) (8)

where rn(t), the residual function shows the average trend of the 
signal and the IMFs ci (t), include different frequency bands of the 
signal from high frequency to low frequency.

We can achieve a decomposition of the entropy sequences sen(t) 
into n-empirical modes using (8). Generally, the first of several major 
IMFs are considered to contain the faulty information and can be 
adopted to pattern recognition by using some classification 
algorithm like SVM, which have been reported in many studies. But it 
may be not enough for us to distinguish the fault pattern due to the 
lack of learning data and the occurrence of multiple faults. The last 
few IMFs are often ignored in traditional diagnosis methods. 
However, those IMFs illustrate the tendency of the origin signal that 
can be used for illustrating the change of the signal. To describe the 
entropy sequences trend precisely, we define the entropy sequences 
trend sTrend(t) of the selected sub-bands by considering last L IMFs 
and then construct the feature vectors T :

sTrend(t) =
n∑

i=L

ci(t) + r(t) (9)

T = [
sTrend1(t) sTrend2(t) · · · sTrendn (t)

]
(10)

3. Condition assessment method

In this section, the main steps of the proposed method are 
presented. Schematic diagram of the proposed model is shown in 
Fig. 1.

Performance condition can be assessed according to the fea-
ture vectors from the monitoring signal. We use the CV as a 
health indicator which represents the state of bearing by using a 
number between 0 and 1 [28]. A higher CV represents a normal 
state, whereas a lower CV indicates a failure state. Four stages are
classified as normal, slight degradation, severely degradation and
failure. Each threshold should be depended on the actual needs.
Thus, different maintenance strategy can be carried on according
to the different stages.

The CV is obtained from the SOM neural network, which is a
non-supervised learning neural network designed to organize it-
self according to the input data. The map units of SOM form a
two-dimensional topology on the output space. The number of
map units is approximately d = 5

√
k, where k is the number of

data samples. Each neuron i in the SOM is represented by an
n-dimensional weight vector mi = [mi1,mi2, . . . ,min], where n is
the dimension of the input vectors.

The SOM is trained by the feature vectors under the normal
condition first. Then, as the bearing operates, the feature vectors
obtained by the vibration signal are calculated to the trained SOM
incessantly. For an input vector T , the minimum quantization error
(MQE) is used to quantize the degradation condition.

MQE = ‖T − mBMU‖ (11)

where T is the input data vector and mBMU stands for the weight 
vector of Best Matching Unit (BMU) of the input T [29]. Then, the 
CV representing the performance of a rolling bearing, can be for-
mulated as follow,

C V = c√
MQE + c

(12)

where c is scale parameter determined by the MQE under the nor-
mal condition, and xMQE is the MQE obtained from the monitoring 
feature vectors.

This assessment method develops a degradation trend-depend-
ent approach for the RUL estimation that allows the estimated RUL 
to be dependent on the history degradation data and to be dy-
namic updated when a newly observed data is available. We can 
start the estimation once the bearing enters the degradation stage 
and continuously monitor the CV trend.

The RUL estimation approach can be divided into two steps, as 
depicted in Fig. 2. The first step is an off-line model, which utilizes 
the signal data under normal state for training the SOM. As more 
feature vectors are calculated for testing, the progression of bear-
ing degradation can be described by CV curve. The second step is 
on-line prediction. The health state and the RUL of the bearing will 
be dynamic updated when the new collected data are available by 
using the trained SOM in the off-line model. Regression algorithm, 
such as AR model and SVR, can be applied for the RUL estimation 
according to the bearing’s CV.
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Fig. 2. Framework of the RUL estimation approach.

4. Experiment analysis and discussion

4.1. Description of the experiment

In order to explain the achieving process and the feasibility of 
the proposed prediction method, a bearing run-to-failure test data 
is taken as a case study. The bearing test dataset was generated 
and collected from the bearing Accelerated Life Tests (ALT) of 17 
bearings [30]. The bearing experimentation platform is depicted 
in Fig. 3. The vibration data for each bearing include two channels 
from two accelerometers placed radially on the external race of the 
bearing in vertical and horizontal directions, respectively. The load 
is applied to the bearing radially in horizontal direction. The vibra-
tion signal data are collected at a sampling frequency of 25.6 kHz 
every 10 s for a period of 0.1 s. Failure of the bearing is claimed 
when the acceleration amplitude of the vibration signal exceeds 
the threshold of 20 g. 17 bearings are tested in three different op-
eration condition, as shown in Table 1. Bearing 1-1, 1-2, 2-1, 2-2, 
3-1, 3-2 are six learning data, and the remaining 11 data are used 
for testing.
4.2. Condition assessment

The original acceleration vibration signal of Bearing 1-3, which is
the 3rd bearing of the dataset 1, is presented in Fig. 4. Some
commonly used time-domain features of bearing, namely RMS
kurtosis, crest factor and entropy, are calculated as shown in Fig. 5. I
can be seen form Fig. 5(a), the change rate of RMS increase sig-
nificantly at the end of this experiment. The changes of kurtosis and
crest factor have similar trends but with more background noise in
Fig. 5(b) and Fig. 5(c). For the entropy of this bearing, there is no
significant change during the experiment as in Fig. 5(d). Those figures
show that the cumulative damage consumes most of the bearing
fatigue time and may result in a sudden crack in a rel-atively shor
time period. Prognosis based on those features cannot be able to
provide timely maintenance suggestion. Therefore, we not only can’
assess bearing future’s performance, but also can hardly estimate the
RUL according to those parameter’s trend or values. None of them can
be used as an effective indicator for the bearing degradation
assessment.

In this application, by applying three layers WPD to the origina
signal with Daubechies 5 (Db 5) wavelet base, eight time series are
reconstructed according to the coefficients of the frequency bands
Those signal waveforms are arranged from low frequency to high
frequency as C1(t), C2(t) . . .  C8(t) shown in Fig. 6. Then the energy o
the eight reconstructed waveforms is extracted according to (3) in Fig
7. Three principle frequency sub-bands which include the mos
dominant fault information are chosen and the correspond-ing
entropies are calculated. Fig. 8 shows the entropy sequences of the
three selected waveforms of Bearing 1-3. The entropy sequence is
decomposed by EMD to obtain 11 IMFs as shown in Fig. 9. By
accumulating the last four IMFs using (9), the sequence trend is

Table 1
Bearing operation conditions.

Dataset Load
(N)

Speed
(rev/min)

Training data Testing data

Dataset 1 4000 1800 Bearing 1-1
Bearing 1-2

Bearing 1-3 Bearing 1-4
Bearing 1-5 Bearing 1-6
Bearing 1-7

Dataset 2 4200 1650 Bearing 2-1
Bearing 2-2

Bearing 2-3 Bearing 2-4
Bearing 2-5 Bearing 2-6
Bearing 2-7

Dataset 3 5000 1500 Bearing 2-1 Bearing 2-2 Bearing 2-3
Fig. 3. Overview of the experimentation platform.



extracted shown in Fig. 9. And then feature vectors of the selected 
sub-bands are composited using (10).

The former one hundred feature vectors of each bearing, which 
represent the normal state, are used for training the SOM. After

Fig. 4. The vibration acceleration signal of Bearing 1-3.
 Fig. 5. Four features of the vibration signal.
Fig. 6. The decomposition results of bearing vibration signal by WPD.

Fig. 7. Energy of each wavelet packet sub-band.
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Fig. 8. Three signal entropies of the wavelet packet sub-bands.

Fig. 9. The decomposition results of wavelet packet entropy by EMD.

training, all testing signals are used for testing and the corre-
sponding CV curves of dataset 1 are shown in Fig. 10. Each stage’s
threshold can be set according to real situation. By the contrast
analysis, we can see the CVs in normal state are high, whereas
those at the ending stage of the experiment are relatively low.

Previous studies have reported that multiple faults including in-
ner race fault, outer race fault, ball fault, cage fault, are found at the
end of the experiment. Compared with those features shown in Fig. 5
we can find that the CV curves not only can obviously reflect the
occurrence of early degradation of different faults, but also can
effectively demonstrate the whole stage of degradation development
Assessment and maintenance strategy can be taken based on the CV
curves and the state of the bearing.

4.3. RUL estimation and analysis

Since the CV curves have been obtained, the RUL of the bear-
ing can be estimated using regression algorithm. Gaussian Process
Regression (GPR) algorithm is applied to predict the RUL. GPR is
a promising kernel machine-learning technique and has received
increased attention over the past years [31]. It provides a good
Fig. 10. Condition assessments of the testing bearing datasets using CV.

Table 2
Comparison between RUL prediction and Actual RUL.

Test bearing
ID

Current
life (s)

Actual
RUL (s)

RUL
prediction (s)

Er
(%)

Er 2
(%)

Bearing1_3 18 010 5730 5790 −1.04 37
Bearing1_4 11 380 339 410 −20.94 80
Bearing1_5 23 010 1610 6090 −278.26 9
Bearing1_6 23 010 1460 1180 19.18 −5
Bearing1_7 15 010 7570 8110 −7.13 −2
Bearing2_3 12 010 7530 6740 10.49 64
Bearing2_4 6110 1390 670 51.80 10
Bearing2_5 20 010 3090 2200 28.80 −440
Bearing2_6 5710 1290 1560 −20.93 49
Bearing2_7 1710 580 320 44.83 −317
Bearing3_3 3510 820 850 −3.66 90

adaptability to handle high dimensionality, small sample size and 
nonlinear problems. The squared exponential (SE) covariance func-
tion is selected and the hyper-parameters in the SE covariance 
function are optimized by maximizing the marginal likelihood al-
gorithm.

We use the CV curve data as input vector and calculate the out-
put prediction. The RUL of the bearing can be obtained based on 
the predicted values and final threshold. Due to different working 
conditions, the failure thresholds, according to the learning data of 
each dataset, are set as 0.57 for dataset 1, 0.7 for dataset 2 and 
0.68 for dataset 3. CV curves are then used to estimate the RUL of 
each bearing.

The estimation result of the RUL is depicted in Table 2. For each
testing bearing, the prediction is made at the end of training data 
(see in column 2), and the corresponding error rate is defined as 
follows,

Er = ActRULi − PredRULi

ActRULi
× 100% (13)

where ActRULi is the actual RUL of i-th bearing in column 3 and
PredRULi is the RUL prediction using the proposed method in col-
umn 4. For most test bearings, the predictions are feasible. A major
deviation is found in Bearing 1-5, whose CV curve doesn’t reach
the failure threshold of dataset 1 until 29 100 s in simulation. One
reason is the lack of learning data. If more learning data were
provided for training the model, the RUL results would have per-
formed much better. Another cause of the abnormal results is the



multiple faults may introduce a lot of uncertainty to the predic-
tions. In order to simplify the assessment model, we make a trade 
off in the proposed method in terms of the precision and the com-
plexity, which may leads to the large deviation.

A similar study, which is a winner solution strategy of 2012 
challenge competition, has been published using the same bear-
ing data [32]. The prediction percent error result is present in 
column 6. The author describes a methodology for bearing RUL 
estimating using anomaly detection, degradation feature extrap-
olation and survival time ratios. That model works perfectly for 
some test bearing, but a larger deviation occurred as well. Com-
pared with that model, 7 out of 11 bearings have less estimate 
percent error using the method proposed in this paper. According 
to the scoring method in [30], the score of the proposed method is 
0.4181 and the score of that model is 0.3535 using (14) and (15), 
which means by using the prognostic model in the paper, the pre-
diction accuracy can be increased by 5% for an early prediction.

Ai =
{

exp− ln(0.5)·(Eri/5) if Eri � 0

exp+ ln(0.5)·(Eri/20) if Eri > 0
(14)

Score = 1

11

11∑
i=1

Ai (15)

5. Conclusion

This paper presents an assessment method for evaluating the
state of the bearing’s degradation and estimating the RUL. Multi-
ple widely used techniques, such as WPD, EMD and SOM neural
network, are applied as a combination method. The wavelet packet
energy entropy supplies an effective way to reflect the change of
degradation and EMD provides a simple but powerful way for ex-
tract waveform trend. Thus, we design a health indicator named
CV to reflect the health state and propose a new method for the
bearing degradation assessment based on those techniques. From
the experiment result and the comparison, it can be concluded as
follows:

(1) The combination of feature extraction method based on WP-
EMD successfully reflects the degradation using wavelet packet
energy entropy than those traditional features, such as RMS,
kurtosis and Crest factor.

(2) The CV derived from the SOM network can effectively identify
the current degradation stage, which will help to realize the
equipment condition based maintenance.

(3) The proposed method provides a useful tool for RUL estima-
tion and the prediction accuracy is acceptable for the real-
word scenario.
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