
Efficient residuals pre-processing for diagnosing multi-class faults
in a doubly fed induction generator, under missing data scenarios
1. Introduction

The doubly fed induction generator (D
widely used classes of induction machines
wind turbines (Hansen & Michalke, 2007). The DFIGs have shown of potential faults (Razavi-Far, Davilu, Palade, & Lucas,

⇑ Corresponding author.
E-mail addresses: roozbeh.razavi@gmail.com, roozbeh.razavi@mail.polimi.it

(R. Razavi-Far), enrico.zio@polimi.it, enrico.zio@ecp.fr, enrico.zio@supelec.fr (E.
Zio), vasile.palade@coventry.ac.uk (V. Palade).
Roozbeh Razavi-Far a,⇑, Enrico Zio a,b, Vasile Palade c
a Department of Energy, Politecnico di Milano, via Ponzio 34/3, 20133 Milan, Italy
b Systems Science and the Energetic Challenge, European Foundation for New Energy-Electricité de France, Ecole Centrale Paris and Supelec, Paris,
92295 Chatenay-Malabry Cedex, France
c Faculty of Engineering and Computing, Coventry University, Priory Street, Coventry, UK
FIG) is one of the most
 in the megawatt-class

Fault diagnosis can be performed in two major steps. Firstly,
several signals, so-called residuals, reflecting faults in the process
behavior, are generated. In the second step, the residuals are eval-
uated for decision making, to determine the time and the location
2009a,

a good performance in normal operation, but they are quite sensi-
tive to particular classes of faults. The rate of failures in the sensors

2009b).
Multiple observers schemes were developed in Boulkroune et al.
and the generator of wind turbines are reported to be approxi-
mately 14.1% and 5.5% of the total number of failures, that cause
5.4% and 8.9% of the system downtime (Ribrant & Bertling, 2007).

The sensor fault detection and isolation in the DFIGs has an
important role to guarantee the safe and reliable operation of wind
turbines. Since monitoring the generator entails processing the cur-
rent and voltage sensor measurements, the first step is devoted to
sensor fault diagnosis, which has been addressed in recent works
(Boulkroune, Galvez-Carrillo, & Kinnaert, 2010; Galvez-Carrillo &
Kinnaert, 2010).
(2010) and Galvez-Carrillo and Kinnaert (2010) to generate
residuals associated to stator voltage and current sensors, as well as
rotor sensors, respectively. These multiple observers were inte-
grated in Razavi-Far and Kinnaert (2012, 2013) to reveal the mutual
effects of the faults in each type of sensors on the residuals
associated to another sensor type. This coupling prevented to
develop a decision system by basic combination of the previously
developed decision systems for each class of sensors. Thus, an
effective classification technique has been used to design a suitable
decision system in Razavi-Far and Kinnaert (2012, 2013).

The problem of fault classification can be tackled resorting to
computational intelligence techniques. However, these approaches
are usually based on time-series data of various signals in static
environments (Razavi-Far, Davilu, Palade, & Lucas, 2009b). On the
contrary, in dynamic environments, an incremental learning

http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2014.03.056&domain=pdf
mailto:roozbeh.razavi@gmail.com
mailto:roozbeh.razavi@mail.polimi.it
mailto:enrico.zio@polimi.it
mailto:enrico.zio@ecp.fr
mailto:enrico.zio@supelec.fr
mailto:vasile.palade@coventry.ac.uk

strategy is needed to update the decision system for fault classifi-
cation. This has been done by resorting to ensemble of fault classi-
fiers (Baraldi, Razavi-Far, & Zio, 2011b). In Baraldi, Razavi-Far, and
Zio (2011a), a bagged ensemble of Fuzzy C-Means (FCM) classifiers
was used for fault classification and its confidence for decision
making has been studied in Baraldi, Razavi-Far, and Zio (2010).

The incrementally trained ensemble of classifiers in Baraldi et al.
(2011b) can learn the new relations between the upcoming signals,
while keeping the previously trained classifiers to preserve the
existing knowledge. Albeit this has been successfully applied for
decision making and fault classification in changing operating
conditions (Baraldi et al., 2011b), the situation becomes more com-
plicated when the datasets collected in subsequent installments
have patterns of new classes of faults that were not included in
previous datasets. Consequently, the base classifiers of the ensem-
ble are doomed to misclassify patterns from faulty classes on which
they were not trained.

The problem of new class fault diagnosis was firstly tackled by
resorting to dynamic weighting ensembles (Razavi-Far, Baraldi, &
Zio, 2012a), where a dynamic weighting ensembles algorithm was
adopted for fault diagnosis in the feedwater system of a boil-ing
water reactor (BWR). The algorithm is particularly developed for
incremental learning of multiple new concept classes of faults. The
detection of unseen classes in subsequent data was based on
thresholding the normalized weighted average of the outputs
(NWAO) of the base classifiers in the ensemble (Razavi-Far et al.,
2012a, Razavi-Far, Baraldi, & Zio, 2012b).

Here a multiple observer scheme is used for residual generation,
while for residual evaluation a dynamic weighting ensemble of
classifiers is used. In the first step, a bank of observers generates a
set of residuals that are robust to operating point changes. A so-
called signal-based approach is used for residual generation of the
stator current and voltage sensors, while two-stage filters
exploiting the DFIG model and the balanced signal model are used
for residual generation of the rotor currents, the same as in Razavi-
Far and Kinnaert (2012, 2013).

In the second step, the pre-processed residuals are progres-
sively fed into the dynamic weighting ensembles for fault classifi-
cation. The algorithm incrementally learns the relation between
projected residuals and faults, and dynamically classifies the faults
including multiple new classes.

In Razavi-Far and Kinnaert (2012, 2013), prior to fault classifica-
tion, the generated residuals (ri = r1; r2; . . . ; r9) were resampled (i.e.,
down-sampled) in the processing module and then forwarded to
the fault classifier, i.e., the ‘second step’. Each residual contains two
vectors that form 18 features for the dynamic weighting ensemble
of fault classifiers. The dynamic weighting ensemble of fault
classifiers mapped these 18 features to 10 possible classes. These
classes include the normal state ‘ff or fault-free’ and 9 classes of
faults (fi=f1; f2; . . . ; f9). The first three faults are sensor faults in the
stator voltage at phase ða; b; cÞ. Other faults correspond to sen-sor
faults in stator and rotor currents at phase ða; b; cÞ, respectively. In
the preceding works (Razavi-Far & Kinnaert, 2012, 2013), it was
shown that the decision module of the diagnostic system can iso-
late all classes with respect to the unavailability of patterns from all
faulty classes during the training (i.e., new faults became avail-able
dynamically in the course of time). The major focus was on
detection and isolation of additive step-like faults, but additive
drift-like faults were taken into account as well.

The generated residuals by multiple observers contain redun-
dant or irrelevant residual vectors (i.e., features) that can degrade
the fault classification performance. The pre-processing module in
Razavi-Far and Kinnaert (2012, 2013) only resamples (i.e., down-
samples) the residual vectors, which is a pattern-wise process.
To improve the fault classification performance, a pre-
processing of the features is necessary. Feature selection is a task of
pre-processing the data to select a subset of features. Feature
extraction generates new features (e.g., latent residuals) from func-
tions of the original features (i.e., generated residuals by multiple
observers). This can improve the fault classification performance by
improving the model interpretability, reducing overtraining,
enhancing the generalization capability and shortening the training
times.

The feature selection methods can be divided into three main
categories: wrappers, filters and embedded methods (Guyon &
Elisseeff, 2003). There exist different methods for feature extrac-
tion, such as those presented in Vong and Wong (2011), Vong,
Wong, and Ip (2013) and Bruzzese (2014).

Moreover, the fault classifiers of the diagnostic system, like any
other type of classifiers, fail to classify the incomplete patterns (i.e.,
containing some missing features). Thus, it is necessary to discard
or impute the patterns with missing data/features before sending
to the dynamic weighting ensemble. In the first case, the fault clas-
sification module cannot classify the fault for the missing patterns
and the final decision is in question. In the latter case, the missing
data are imputed in advance and, thus, the missing patterns can
also be classified. There exists different number of missing data
imputation techniques (Gheyas & Smith, 2010; Rassler, Rubin, &
Zell, 2013). Although, these methods can impute the missing data,
the outcome is the completed dataset that needs further pre-
processing to reduce the size of features. This can be computation-
ally expensive, and not feasible for online monitoring and
diagnostic applications. Therefore, here a non-linear iterative par-
tial least squares (NIPALS) algorithm along with the Wold cross-
validation (Wold, 1978) has been used for pre-processing. This
algorithm is fast and suitable for online application, it extracts the
latent variables (i.e., latent residuals) from the residual data-sets,
and it handles the missing data.

This paper aims to study the residuals and focus on the pre-
processing module to provide more informative features of smaller
size for fault classification. An efficient way to process the generated
residuals is developed in order to extract latent information among
residuals and provide informative features for the decision module of
the diagnostic system. This is done by resorting to the principal
component analysis (PCA), a popular data analysis technique.

The contribution of this work is in developing a non-linear iter-
ative partial least squares (NIPALS) algorithm along with a dynamic
weighting ensemble, for residual evaluation and new class fault
diagnosis in dynamic environments. This algorithm is capable of
reducing the number of the generated residuals, which
incrementally become available, and projecting them onto the new
feature space of smaller size, by extracting the latent information.
The projected latent residuals allow faster incremental update of
the ensemble of fault classifiers and improve the classification
accuracy of some of the faults, while incomplete batches of resid-
uals become available. The proposed classification scheme is vali-
dated on the problem of early diagnosis of new class faults in the
sensors of a DFIG.

The rest of this paper is organized as follows. Section 2 describes
briefly the system and presents the fault diagnostic scheme with a
focus on the pre-processing module. Section 3 presents the NIPALS
algorithm for the dimensional reduction of incomplete data. Next,
the Wold cross-validation algorithm is used along with the NIPALS
algorithm to estimate the number of principal components and
extract the latent residuals. In Section 4, an application to the sen-
sors of DFIG-based wind turbines is presented. First, the generated
batch of residuals by multiple-observers are processed by the Wold
cross-validation along with the NIPALS algorithm to form the latent

ors,

heme is
residual

signals
sensor

n in the
residuals. Then, the decision module of the diagnostic system incre-
mentally learns the latent residuals and classifies multiple faults
including new classes. Here, incomplete batches of residual data
are used to validate the diagnostic system in the presence of
missing data. Finally, conclusions are drawn in Section 5. The
pseudo-codes of the NIPALS algorithms and the Wold cross-
validation algorithm are presented in Appendix A.
an upon
by the

aults.

rs and
ossible
re used
le two-
del are
eration

Far and

. . . ; r Þ
er-ating
gned to
gned to

residual
r faulty

fication
ts, it is
ifferent
nt time
f faults
assifier.
 over a
2. System description and problem statement

The system description and the fault diagnosis scheme are first
presented, as they are prerequisites for the problem statement.

2.1. The DFIG-based wind turbine

The considered system, shown in Fig. 1, is a DFIG-based wind
turbine. The generator and the wind turbine rotor are coupled
together via a gearbox. The stator of the DFIG machine is directly
connected to the grid, while the rotor side is connected to a back-
to-back converter via slip rings (Razavi-Far & Kinnaert, 2013). The
back-to-back converter is composed of a rectifier con-nected to the
rotor windings, that is called the rotor side converter (RSC), and an
inverter connected to the power grid, namely, the grid side
converter (GSC). A DC link has been devised between RSC and GSC
to store energy and reduce the DC ripple. To reduce the harmonics
injected by the GSC, a line filter has been placed between the GSC
and the grid. The DFIG dynamics and notations are not described
here for the sake of conciseness (the reader can refer to Razavi-Far
& Kinnaert (2012, 2013) for a more detailed explanation).

2.2. Fault diagnosis scheme

The primary aim of this work is to detect and isolate single
additive sensor faults in a controlled DFIG, as described in
Razavi-Far and Kinnaert (2013). The faults are small additive faults
rting to

diverse
fiers are
from its
assifiers
is more
se in an
classify

training

semble
 used to
orithm,
ember

ltiLayer
1; S2; S3;
rons in

iagnosis
an vary
qual to

vailable

Fig. 1. Model of the DFIG-based wind turbine (Galvez-Carrillo & Kinnaert, 2010).
Additional notations: V Wind speed, b pitch angle, Xr;g rotor and generator speed, P;
Q active and reactive powers, lower indices e; s; r; l; f ; dc respectively grid, stator,
rotor, line filter, direct current, upper indices m; � stand for measurements and
references (Razavi-Far & Kinnaert, 2013).
in the stator voltage and current sensors as well as rotor current sens
specifically step and drift-like faults.

Fault diagnosis is performed in two major steps. The proposed sc
displayed in Fig. 2. This scheme has two main components: the
generation and fault classification modules. Firstly, residual
reflecting faults in the system are generated from sampled
measurements and command inputs. These residuals have zero mea
fault-free mode, and some of them are subject to a change in the me
occurrence of a sensor fault. Then, the residuals are evaluated
decision module, in order to determine the time and the location of f

2.2.1. Residual generation
The residual generator module contains multiple observe

complementary filters in three integrated sub-modules to detect all p
classes of faults in rotor and stator sensors. Signal-based observers a
for residual generation of stator current and voltage sensors, whi
stage filters utilizing the DFIG model and the balanced signal mo
used for residual generation of rotor currents. The residual gen
module (i.e., both approaches) is completely described in Razavi-
Kinnaert (2012, 2013).

These multiple observers generate a set of residuals r1; 9ð
that are robust against modeling uncertainties and change in op
points (Razavi-Far & Kinnaert, 2012, 2013). Each residual is desi
be sensitive to a subset of faults. Besides, the residuals are desi
have different responses to different faults.

2.2.2. Fault classification
The fault classification module matches each pattern of the

vectors with one of the pre-assigned classes, i.e., the fault-free o
classes.

Unlike conventional pattern recognition methods for fault clas-si
based on time-series data of various signals in static environmen
assumed that the residuals successively become available in d
batches and the signature trends of the residuals vary in differe
intervals. The new signature trends can be related to new classes o
that have not been seen previously during the training of the fault cl
Therefore, the fault classifier needs to be incrementally updated
period of time. This incremental learning can be performed by reso
an ensemble of fault classifiers (Baraldi et al., 2011b).

Ensemble learning is a two-step algorithm: first, multiple
classifiers are trained; second, the outcomes of the individual classi
combined strategically to achieve higher classification performance
individual-base classifiers. Albeit an ensemble of fault cl
outperforms a single fault classifier (Baraldi et al., 2011a), and
robust and confident (Baraldi et al., 2010), and can learn and diagno
incremental fashion (Baraldi et al., 2011b), it is doomed to mis
patterns of new classes of faults (i.e., classes unseen during the
session) in subsequent datasets.

In Razavi-Far and Kinnaert (2013), a dynamic weighting en
algorithm, called Learnþþ:NC (Muhlbaier, Topalis, & Polikar, 2009), is
dynamically learn and diagnose the new classes of faults. This alg
which is used here for fault classification, creates and trains a new m
of the ensemble fE1; E2; E3; etcg (i.e., a pre-assigned number of Mu
Perceptron MLP-based classifiers) with each new batch of data fS
etcg. Each MLP is a three layer network in which the number of neu
the input layer is equal to the number of features used for the d
(i.e., the number of principal components or latent residuals that c
for each dataset), and the number of neurons in the output layer is e
the number of classes, here 10.
 Each MLP network is trained on a different subset of the a
training data fS1; S2; S3; etcg. A training data subset is drawn

Fig. 2. Block diagram of the diagnostic system: the pre-processing bridges the gap between the residual generation and fault classification modules.
according to an iteratively updated distribution in order to train
each individual base classifier.

The algorithm evaluates the ensemble on the current dataset
and calculates the errors. The algorithm calls a subroutine, named
the dynamically weighted consult and vote (DW-CAV), to create a
weighted average of classifier errors on current and recent data-
sets, and assigns voting weights to each classifier based on age-
adjusted weighted errors. This smart voting mechanism allows
base classifiers to consult with each other (i.e., cross-reference their
decisions with the class labels used during their training sessions)
and dynamically adjust their voting weight for each pattern
(Muhlbaier et al., 2009). The final decision is, then, obtained as the
weighted majority voting of all classifiers. The detailed explanation
of the algorithm and its pseudo-codes are formally presented in
Razavi-Far and Kinnaert (2013).

2.3. Problem description

The pre-processing module, which is placed between the resid-
ual generation and decision modules, prepares the feature space for
the fault classifiers by resampling and combining the residual
components (Razavi-Far & Kinnaert, 2012, 2013). It resamples
down-sampled residuals (ri=r1; r2; . . . ; r9) and, then, combined
residual vectors (i.e., each residual contains two vectors) to form a
feature space of size 18.

The pre-processed residuals were progressively fed to the
dynamic weighting ensemble of fault classifiers to match each pat-
tern from the feature space of size 18 with a pre-assigned class out
of 10 (i.e., the fault-free ff and 9 classes of faults f1; f2; . . . ; f9). The
decision module in Razavi-Far and Kinnaert (2012, 2013), then, was
able to dynamically learn and isolate all classes including unseen
classes of faults in the subsequent residual datasets.

This work focuses on the pre-processing module to provide
informative features of smaller size for fault classification. The pre-
processing module is mainly the Wold cross-validation algo-rithm
along with the NIPALS algorithm. Fig. 2 presents the fault diagnosis
scheme with focus on the pre-processing module.

The batches of residuals are progressively fed to the pre-
processing module. Each residual dataset is projected to the new
feature space and the latent information among the residuals is
extracted. The Wold cross-validation also estimates the optimal
number of principal components latent residuals to form the new
feature space. This reduces the dimension of the feature space by
extracting latent information and canceling the noise among resid-
ual data, which allows faster incremental update of the ensemble
of fault classifiers and improves the classification accuracy of some
faults. This module can also process the incomplete batches of
residuals (e.g., missing data in the generated residuals due to sen-
sor failures).

Additionally, the WOLD cross-validation NIPALS algorithm cre-
ates and preserves a PCA model for each batch of residuals which
projects the raw residuals fS1

raw; S2
raw; S3

rawg onto the latent residu-
als fS1; S2; S3g.

During the test, these models fPCA1; PCA2; PCA3g will be used
as pre-processing modules of the corresponding ensemble
(E1; E2; E3). Thus, any subsequent test pattern is firstly predicted
by means of different preserved PCA models that project the test
pattern onto different feature spaces (i.e., PCA models extract dif-
ferent numbers of principal components from an unprocessed test
scenario Sc, to form Sc1; Sc2; Sc3), and, then, feed them to the cor-
responding member of the ensemble.
3. Principal component analysis

Principal component analysis (PCA) is a popular method of data
analysis. PCA is a simple, non-parametric method to extract rele-
vant information from datasets. It can be used therefore to reduce
the data dimension and reveal the latent knowledge and simplified
underlying dynamics.

To perform the principal component analysis, the data is cen-
tered and scaled. The data is mean-centered, i.e., xij ¼ xij � �xi. By
centering, the coordinate system is shifted to a new reference point
which is the origin of the coordinate system in a n-dimensional
space. Next, the data is simply scaled through dividing each col-
umn by its standard deviation. Thus variance and standard devia-
tion of each column turn out to be 1, providing an equal
opportunity of contribution to the model for each variable.

PCA is an orthogonal linear transformation of the data to a new
coordinate system such that the maximum variance by any projec-
tion of the data lies on the first coordinate (the first principal com-
ponent), the second greatest variance on the second coordinate,
and so on.

The data matrix Xðm� nÞ can be explained by the summation of
a structure and a residual as follows:

X ¼ TP0 þ E ð1Þ

The structure is the matrix product of TP0, where T and P denote
the scores and the loadings, respectively, and E stands for residuals.
The scores explain how the different rows of X (patterns) are

related to each other. The loadings are the weights of the variables
in X on the scores T. The matrix residuals, Eðm � nÞ, is the part of X
which is not explained by the PCA model TP0.

The principal components of X are, then, the eigenvectors of X0X
or the rows of P, where X is a centered m � n data matrix. The size
of E is explained in terms of squared variance.

There exist different PCA algorithms, such as the singular value
decomposition (SVD) and non-linear iterative partial least-squares
(NIPALS) (Wold, 1966; Wold, Esbensen, & Geladi, 1987). The
NIPALS algorithm is a sequential technique to compute the princi-
pal components.

Here the NIPALS algorithm is used to find principal components
of the raw residual matrix and to select proper features for the
dynamic weighting ensemble of fault classifiers. The reason for
considering the NIPALS algorithm here is threefold: it handles
missing data, it works well for huge data and it calculates the com-
ponents sequentially.

The pre-processing of the residuals can benefit from the above
stated features of the NIPALS algorithm, since the recorded data
from residual vectors form a huge dataset due to high sampling
frequency in wind turbine applications, and may contain missing
values due to sensor failures.

The algorithm extracts each principal component successively,
starting with the first component having the maximum variance,
and then the second component, and so on.

3.1. The NIPALS algorithm

The NIPALS algorithm (Geladi & Kowalski, 1986) aims to find the
principal components. It can be limited to finding the first l
principal components of X0X, starting with the largest eigenvalue
PC1 and further. l must be less than or equal to the number of prin-
cipal components n. The pseudo-code of the standard NIPALS is
presented in Algorithm 1 (see Appendix A).

Upon convergence at each iteration of the NIPALS algorithm, the
score tk and loading pk vectors are stored as the kth column in
matrix T and P, respectively. Then, the final crucial step of the
NIPALS algorithm deflates the residual data matrix; it takes away
the captured variability by the component PCk from X.

The last step, so called deflation, guarantees mutual orthogonal-
ity of the extracted components since each subsequent component
can merely see the remained variations after eliminating all the
preceding components. Thus, there exists no variability of the same
type that could be explained by two principal components. Upon
deflation, this procedure is repeated from step 1 to capture the next
component. The algorithm can decide whether to keep that
component or not.

The algorithm can be terminated once a certain number l of
components are captured; this can be defined by rule of thumb.
However, it is important to estimate a proper number of compo-
nents since the captured components will be used as extracted fea-
tures for the fault classification.

Undoubtedly, having a large number of principal components
increases the number of extracted features but also the complexity.
On the contrary, capturing few principal components decreases the
number of extracted features and may lead to lower classification
performance of the fault classifier.

3.2. How many principal components?

Indeed, it is crucial to know how many principal components
should be retained to capture most of the data variability. Different
methods have been proposed to find the actual dimensionality of
the data (Bartlett, 1950; Cattel, 1996; Jackson, 1991; Jolliffe, 1986;
Kaiser, 1960; Malinowski, 1977). However, these methods depend
on subjective choices or non-realistic assumptions.
Regardless of conventional criteria and methods, cross-validation
is an objective method that does not need any assumption.

A cross-validatory PCA estimation is not based on the eigen-
values of the covariance matrix but on the predictive ability of
the different principal components.

Cross-validation is an efficient and popular approach that has
been successfully used in literature to determine the number of
underlying features and to estimate the average prediction error.
The basic principle of cross-validation is to split the data and leave
out a portion, construct a model, and then predict the left-out pat-
terns by means of the constructed model.

Cross-validation is a standard resampling technique. A cross-
validation procedure has been used along with the SVD to estimate
the number of principal components (Eastment & Krzanowski,
1982; Krzanowski, 1983, 1987) on which at each step the
evaluation set is formed only by one item of the data matrix, so
called the leave-one-out. In this method, the maximum amount
of information is used for estimation, that is computationally
expensive.

In Wold (1976, 1978), an efficient technique, so-called Wold
cross-validation, has been proposed along with the NIPALS algo-
rithm to identify the dimensions that best explain the systematic
variations in data. In Diana and Tommasi (2002), different varia-
tion of cross-validation, single cross-validation (SCV) (Wold, 1976),
double cross-validation (DCV) (Wold, 1978) and full cross-
validation (FCV) (Forina, Lanteri, Boggia, & Bertran, 1993) are
studied and compared. This comparative study shows that cross-
validation is an efficient technique in determining the number of
principal components, albeit the number of principal components
captured by each method is slightly different (Diana & Tommasi,
2002). In Bro, Kjeldahl, Smilde, and Kiers (2008), the efficiency and
performance of the Wold cross-validation in finding the num-ber of
principal components is studied and compared with other cross-
validation techniques.

Here, the Wold cross-validation is used to determine a proper
number of components for the PCA model that best explain the
variation in the data and if possible not the noise. The Wold cross-
validation aims to determine the number of principal com-ponents
that extract all systematic variance from X, leaving unstructured
residual variance in E, in a way that fitting any addi-tional
components will not improve variability of the data and, rather,
start to fit this noise and unstructured variance in E.

Since the Wold cross-validation relies on the special property of
the NIPALS algorithm to cope with missing data (Rubin, 1976;
Nelson, Taylor, & MacGregor, 1996), the NIPALS algorithm is refor-
mulated to handle the missing values.
3.3. The NIPALS algorithm with missing values

To find the principal components, the NIPALS algorithm mini-
mizes the following objective function:

F ¼
X

ij

xij �
Xn

k¼1

tikpjk

!2

ð2Þ

,
PP jpjkpjl ¼ dkl, the so called Kronecker

itiktil ¼ 0 8 k – l) conditions (Grung
under the orthonormality (i.e.
delta) and orthogonality (i.e.,
& Manne, 1998).

P The missing values of xij along with their model representations
ktikpjk should be deflated from the objective function (2). Assume

that Y is a full matrix and X is the known portion of Y. In the matrix
X, the element with the same index of missing positions in Y are
substituted with zeros. With this notation, the symbol of X can still
be utilized for the matrix values applied as input to the
computation.

These two matrices (i.e., X and Y) are related together by means
of an incidence matrix W. The matrix W is, with the same dimen-
sion of X and Y, defined as follows:
wij ¼
1 if yij is known
0 if yij is missing ði:e:; unknownÞ

(
ð3Þ

These matrices are linked together as xij=wijyij and w2
ij=wij. Thus,

the objective function in Eq. (2) can be rewritten as follows:
F ¼
X

ij

wij yij �
Xn

k¼1

tikpjk

!2

¼
X

ij

xij �
Xn

k¼1

tikwijpjk

!2

ð4Þ

Thus, to find principal components, the modified objective func-
tion should be minimized (Grung & Manne, 1998). This can be done
by setting the partial derivatives (@F=@ti and @F=@pj) equal
to zero. Consequently, the achieved equations for the score and the
loading along with the normalization condition can be solved
iteratively. Algorithm 2 presents the pseudo-code of the modified
NIPALS with missing values (see Appendix A). In other words, the
standard NIPALS algorithm without missing values is achieved with
all wij ¼ 1.
3.4. Cross-validatory estimation of the number of components

The Wold cross-validation algorithm (Wold, 1978) along with
the NIPALS steps is presented in Fig. A.1 (see Appendix A). This
algorithm splits the data matrix X into C cancellation groups. In
each iteration, one group is deleted from X to form the train and
test subsets. Consequently, a model is fitted to the remaining data
by means of the NIPALS algorithm and, then, the fit of the model to
the corresponding left-out elements is evaluated.

Each cancellation matrix is achieved through deleting a
sequence of individual elements xij in a diagonal scheme. For
instance, in the cth group, c ¼ 1; 2; . . . ; C, the missing sequence is
achieved through deleting the element numbers fc; c þ C;
c þ 2C; etcg in a row-wise scheme. This guarantees that all ele-
ments are left out once, upon completing C groups. These deleted
individual elements are marked as ‘missing values’. Thanks to the
incidence matrix, as explained in the previous section, the NIPALS
algorithm handles the generated missing values. The number of
groups C is an arbitrary choice between 4 and 7 with the condition
that C is not a divisor of m or n.

The Wold cross-validation finds one component at each recur-
rence. Next, the algorithm evaluates the first component and sub-
tracts the valid component from the data. Consequently, the
generated residuals are only used to evaluate the next principal
component.
Table 1
Faulty situations.

ff Normal Normal or Fault-free situation

f1 fu�sa Fault in stator voltage phase a
f2 fu�sb Fault in stator voltage phase b
f3 fu�sc Fault in stator voltage phase c
f4 fi�sa Fault in stator current phase a
f5 fi�sb Fault in stator current phase b
f6 fi�sc Fault in stator current phase c
f7 fi�ra Fault in rotor current phase a
f8 fi�rb Fault in rotor current phase b
f9 fi�rc Fault in rotor current phase c
4. Sensor fault diagnosis of a DFIG-based wind turbine

In this section, the capability of the proposed scheme is tested
with respect to the early diagnosis of sensor faults in a DFIG-based
wind turbine. These faults regard malfunctions in the sensors of
the DFIG. The list of faults is reported in Table 1.
4.1. Design of the diagnostic system

The simulation environment and conditions for training is
explained in Razavi-Far and Kinnaert (2012, 2013) in order to have
a fair comparison.

Here, three steps of simulation consisting of different classes of
faults have been performed. The generated residuals by the bank of
observers are collected in different sets of residual data and, then,
fed to the Wold cross validatin algorithm as input. The batch of
residuals consists of three residual datasets. Each one includes pat-
terns of simulated scenarios (i.e., normal and some faults). The first
step of the simulations includes patterns of the normal status and
three faults (i.e., f1; f 2; f 3) in S1

raw.
The second (third) simulation creates S2

raw (S3
raw), made of differ-

ent patterns of normal status and six (nine) classes of faults, i.e.,
f1; . . . ; f6 (f9), introducing another three (six) new classes.

These residual datasets S1
raw; S

2
raw; S

3
raw, become available progres-

sively in the course of time. Each one consists of 9 residuals (ri=r1;
r2; . . . ; r9) and each residual is a two-dimensional vector which
yields a feature space of 18 variables. Each residual dataset is firstly
preceded by the pre-processing module (i.e., the Wold cross-
validation and NIPALS) to project the residual to the new fea-ture
space and extract the principal components to form the latent
residual datasets in S1; S2; S3. Each latent residual dataset is used to
train a member of the ensemble E1; E2; E3.

The Wold cross-validation along with the NIPALS algorithm is
used to reduce the dimension of the residual datasets
S1

raw; S
2
raw; S

3
raw to smaller sets of features, i.e., the ‘latent residuals’.

Each set contains most of the information in the large residual set.
The number of principal components ‘selected features’ is less

than or equal to the number of original variables ‘residual vectors’.
The NIPALS projects the patterns of the raw set of residuals in a way
that the first principal component has the largest possible variance
(i.e., variability in the raw set), and each subsequent principal
component in turn has the highest variance possible under the
orthogonality constraint, i.e., uncorrelated with the preceding prin-
cipal components.
4.2. Latent residuals characteristics

The latent residuals are principal components extracted by the
Wold cross-validation algorithm. The residuals successively
become available at different snapshots (i.e., S1

raw; S
2
raw; S

3
raw). Conse-

quently, the number of extracted components (i.e., features) can
vary for each incoming dataset.

This may lead to pre-processed datasets (i.e., S1; S2; S3) with dif-
ferent number of features. Therefore the individual classifiers of
each ensemble (E1; E2; E3) are trained with different datasets (i.e., S1;
S2; S3), which contain different numbers of features.

Thus, it is necessary to preserve the PCA model constructed for
each dataset (i.e., S1; S2; S3) as a pre-processing module of the cor-
responding ensemble (E1; E2; E3). Consequently, any upcoming test
pattern (i.e., a test scenario Sc of size m0 � n) is firstly pre-dicted by
means of different PCA models (e.g., PCA1; PCA2; PCA3) that project
the test pattern to different feature spaces (i.e., Sc1, Sc2, Sc3) and
feed to the corresponding ensemble of fault classifiers.

1 2 3 4 5 6 7 8
0

20

40

60

80

100

C
um

ul
at

iv
e

Pe
rc

en
t o

f V
ar

ia
tio

ns

Principal Component

 R2

 Q2

Fig. 3. The explained cumulative variance upon extraction of each principal
component.

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6
PC

1

Variables

C
on

tr
ib

ut
io

n
C

oe
ff

ic
ie

nt
s

14 16 13 18 12 08 10 07 01 06 05 03 02 04 11 09 15 17

Fig. 4. Contribution plot for the first principal component t1.
i.e., the goodness of prediction.
R2 and Q 2 for each component can be computed as follows:

Each member of the ensemble, i.e., E1 (E2) (E3), which is trained
by the dataset S1 (S2) (S3) of size m0 � l1 ðl2Þ ðl3Þ then evaluates the
corresponding projection of the test scenario Sc1 (Sc2) (Sc3) of size
m0 � l1 ðl2Þ ðl3Þ (Fig. 2).

The Wold cross-validation projects the residual datasets (i.e.,
S1

raw; S
2
raw and S3

raw, each one containing 18 features) to the new fea-
ture spaces of size 7; 7 and 8; stored in S1; S2 and S3, respectively.

For instance, the Wold cross-validation extracts only 8 principal
components from the third dataset S3

raw. These 8 principal compo-
nents explain 99:2% of the variability in S3

raw. Fig. 3 displays the
cumulative R2 and Q2 (see Eqs. (5) and (6)) for the S3

raw dataset,
after each principal component.

R2
cum is the percent of the variation of all the data explained by

the PCA model, i.e., the goodness of fit. Q2
cum is the percent of the

variation of all the data that can be predicted by the PCA model,
R2 ¼ 1� VarðeEkÞ
VarðXÞ ð5Þ

Q 2 ¼ 1� VarðpredictedeEkÞ
VarðXÞ ð6Þ
4

6

8

10
where VarðpredictedeEkÞ stands for the prediction error sum of
squares PRESSðkÞ.

Consequently the cumulative R2 and Q2 of the l� th component
are calculated as follows:
−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

T1

T 2

Fig. 5. Scores t1 versus t2; the solid ellipse represents a 95% confidence interval of
the data.
R2
cum ¼ 1�

Yl

k¼1

VarðeEkÞ
VarðXÞ ð7Þ

Q 2
cum ¼ 1�

Yl

k¼1

PRESSðkÞ
VarðXÞ ð8Þ

R2 is always larger than Q 2. If R2 = Q 2, it means that the principal
component is predictive in the PCA model, whereas small value of
Q2 indicates that principal component is likely fitting the noise.

The first extracted principal component explains 16:67% of the
variability in S3

raw (see Fig. 3). It is important to see how this com-
ponent is affected by different residual vectors of S3

raw. This issue
can be studied by means of contribution plots.
A contribution plot shows the impact of each variable on each
score and also identifies which variables are pushing the statistics
out of their control limits (Kourti & MacGregor, 1996).

The contributions in Fig. 4 show the explained variation for the
first principal component t1, i.e., how different variables ‘residual
vectors’ contribute to the first principal component ‘projected
residual’. Fig. 4 shows that variables 15; 17; 14 and 16 have the
highest contribution in the first principal component. These values
correspond to the rotor current residual vectors at phase a; b; b and
c, respectively. These residuals vectors have the maximum varia-
tion and sensitivity to the faults at the rotor current sensor, which
are introduced in the third dataset S3

raw.
The projected latent residuals are also discussed in terms of

component scores, i.e., the projected variable values corresponding
to a particular pattern, and loadings, i.e., the weight by which each
standardized original variable should be multiplied to get the com-
ponent score (Shaw, 2003).
Fig. 5 shows the scores t1 versus t2, which are the most informative

among projected residuals. This Figure shows how patterns of

Table 2
Number of patterns in each dataset, for each class.

Dataset Number of patterns

Total ff f1 f2 f3 f4 f5 f6 f7 f8 f9

Train-set1 232 58 58 58 58 – – – – – –

Train-set2 500 59 59 59 59 88 88 88 – – –

Train-set3 1028 59 59 59 59 88 88 88 176 176 176

Test-set1 48 12 12 12 12 – – – – – –

Test-set2 109 13 13 13 13 19 19 19 – – –

Test-set3 223 13 13 13 13 19 19 19 38 38 38
the first two projected residuals summarize the variability of the
original residual data. The score t1 (first component) explains the
largest variation of the residual space, followed by t2, etc. Hence,
the scatter plot of t1 versus t2 displays how the patterns are situ-
ated with respect to each other.

The score plot, Fig. 5, presents different groups, similarities, out-
liers and other patterns in the residual data. Patterns near each
other are similar.

In PCA, an outlier is a pattern that lies outside the confidence
limits of the PCA model. Outliers can be detected on the scores plot,
i.e., the patterns outside of the red circle in Fig. 5. These outliers
correspond to the faulty patterns.

The loadings explain the structure of the residual data in terms
of variable correlations. Each variable has a loading on each
principal component. It reveals how much the variable contributes
to that principal component, and how well that principal compo-
nent takes into account the variation of that variable over the
residual data.

The loadings can be explained as the correlation of the variables
‘residual vectors’ with the scores T (i.e., t1; t2; . . . ; tn). Fig. 6 shows
the circle of correlations and the plot of the loadings of the
variables with the first two principal components.

Variables (15; 17), (14; 16) and (13; 18) are mutually correlated
(see their positions on the solid circle of correlation). These
variables are of paramount importance for the first two principal
components, since other variables are located around the origin
and have low value with respect to p1 and p2.

Variables (15;17) and (14;16) have the highest values on p1

(Fig. 6) and and correspondingly the most contribution on the first
principal component (Fig. 4). Variables (15; 17) are negative on the
first loading vector p1 (Fig. 6) and and have negative contribution on
the first principal component (Fig. 4). On the contrary, variables
(14; 16) are positive on the first loading vector p1 (Fig. 6) and,
correspondingly, have positive contribution on the first principal
component (Fig. 4).

Variables (13; 18) are highly correlated and placed on the solid
circle (Fig. 6), and highly contribute to the first two princi-pal
components. Their contributions on the first two principal
components are positive, but their contribution on the second
principal component is higher than the first principal component,
since their values in the second loading vector p2 is higher than in
p1.
-1.0 -0.5 0.0 0.5 1.0
-1.0

-0.5

0.0

0.5

1.0

09 02 01 08
05 04 03

12 11 10

13 18

16
14

17

06 07
15

P 2

P
1

Fig. 6. Principle components loadings, p1 versus p2.
4.3. Dynamic learning of the latent residuals

The latent residuals S1 (S2) (S3) with 7 (7) (8) features are pat-
tern-wise down-sampled and, then, fed to the dynamic weighting
ensembles (DWE).

In the first step, while S1 becomes available, the DWE splits the
data into Train-set1 and Test-set1. A summary of the datasets char-
acteristics is reported in Table 2.

Train-set1 and Test-set1 consist of different patterns of the nor-
mal status and three faults (f1; f2; f3).

The DWE algorithm, first creates an ensemble E1 of ten classifi-
ers which are trained on Train-set1 and then evaluated with Test-
set1.

Similarly, in the second (third) step, once S2 (S3) becomes avail-
able, the DWE splits the latent residuals into Train-set2 (Train-set3)
and Test-set2 (Test-set3).

Train-set2 (Train-set3) and Test-set2 (Test-set3) are made of dif-
ferent patterns of normal status and six (nine) classes of faults,
introducing new classes. Upon data split, the DWE creates an
ensemble E2 (E3) of ten new classifiers, which are trained on Train-
set2 (Train-set3) and, then, tested with Test-set2 (Test-set3).

The MLP networks are weakly trained (i.e., error goal of 5%) to
guarantee the diversity among the base classifiers, which leads to
achieve a higher performance by the ensemble. Each MLP classifier
in the first and second ensembles E1 and E2 has 70 neurons in the
hidden layer. The MLP classifiers of the third ensemble E3 contains
80 neurons in the hidden layer.

Table 3 shows that the performance of the diagnostic system
trained with latent residuals is improved compared with the per-
formance of the diagnostic system, which was trained with
residuals. The classification performance of the first step is reported
in the first row of Table 3. The DWE at first step, i.e., E1 classifies the
Test-set1 with high accuracy; however, the clas-sification
performance is decreased with respect to the classifica-tion of the
Test-set2 and Test-set3. This is due to the presence of patterns of
unseen classes during the training with Train-set1 in the test data.

The second row of Table 3 corresponds to the second step, while
the second dataset S2 becomes available.
 The DWE at this step adds ten new classifiers to the ensemble E2.
E2 classifies the Test-set1 and Test-set2 with high accuracy, but
Table 3
Performances of the ensembles to the test datasets by means of latent residuals (with
raw residuals).

Test-set1 Test-set2 Test-set3

E1; Train-set1 98:3% (97:9%) 47:3% (46:7%) 25:1% (22:4%)

E2; Train-set1&2 98:3% (97:9%) 98:6% (98:1%) 51:6% (48:8%)

E3; Train-set1&2&3 100% (100%) 100% (100%) 100% (99:5%)

still the performance on the Test-set3 is low, which is due to unseen
patterns of faults (f7; f8; f9) in the Test-set3.

The DWE evaluates the Test-set2 in a way that for the patterns of
new classes (f4; f5; f6), the DW-CAV subroutine decreases the voting
weight of the classifiers of the first ensemble E1, which are trained
with Train-set1 and did not learn any patterns of (f4; f5; f6) during
their training, and at the same time increases the voting weight of
the new classifiers which are trained with Train-set2. Adjusting the
voting weights increases the classifica-tion performance.

The last row of the Table 3 corresponds to the third step, on
which S3 becomes available. The classification performances of the
ensemble E3 with respect to all test datasets are high. This is due to
the fact that in the last training session, E3 is trained on Train-set3,
which is made of patterns of all classes.

The bold entries in Table 3 are used for decision making. The
entries inside the parentheses in the Table 3 are classification
performances achieved by the diagnostic system without pre-pro-
cessing, i.e., the pre-processing module dose not includes the Wold
cross-validation and NIPALS (Razavi-Far & Kinnaert, 2012, 2013).

The reported results in Table 3 show that the classification
performances are improved by means of the proposed pre-pro-
cessing module (i.e., latent residuals). This improvement can be
seen in almost all scenarios in the Table 3, particularly, when the
faults in the rotor current sensor are introduced (the last row of the
Table). This improvement is more significant for the Test-set3,
which contains patterns of f7; f8; f9. This is due to high correlation of
their corresponding residuals in the raw residual sets.

The final row of the Table shows a performance of 100% for all
test-sets that cannot be achieved without pre-processing by all
means. The reason for the slight improvement in the other cases is
twofold:
TS1 TS2 TS3 TS1 TS2 TS3
-50

0

50

100

150

TS3TS2TS1TS3TS2TS1

Pe
rf

or
m

an
ce

s

Training Session

Fig. 7. Box plots representing the distribution of class-specific performances (%)
with respect to the patterns of the Test-set1þ2þ3 in different training sessions. The
vertical line ‘red dash’ splits the training sessions, left boxes correspond to the
method without latent residuals and right boxes correspond to the proposed
method with latent residuals. Solid circles represent the distribution of class-
specific performances in each training session. The red dashes stand for maximum
and minimum performance values and the solid squares denote the average
performance in each training session. The red crosses stand for 1 and 99 percentiles
of the performance values. (For interpretation of the references to colour in this
figure, the reader is referred to the web version of this article.)
(a) It is mostly due to the fact that the patterns of transients cor-
responding to changes in operating conditions are assigned
to the fault-free class, whereas their signature trends are
very similar to those of the faulty scenarios. Since the data
are randomly drawn into train and test sets, some of the
classifiers are not trained with the patterns of transients or
have seen only few of them during their training, whereas
there exists a large number of transient patterns in the cor-
responding test-set and thus they are doomed to misclassify
these patterns (all the entries below the main diagonal in the
Table including the main diagonal entries).

(b) There is not any improvement on the patterns of unseen
class, i.e., patterns of a new class of fault on which they have
not been trained (all the entries above the main diagonal in
the Table).

Fig. 7 presents class-specific performances, with respect to the
combined Test-set1þ2þ3 at the end of each training session TSK,
where the current residual data SK is merely used to train T K fault
classifiers (without access to previously learned datasets). K is the
number of residual datasets ‘3’ introduced to the DWE and T K

stands for the number of MLP classifiers ‘10’ added to the ensemble
for each residual dataset SK.

The first three boxes in the left side belong to the training ses-
sions without pre-processing (i.e., raw residuals) and the last three
boxes in the right side belong to the training session with pre-
processing (i.e., with latent residuals).

In both methods, by moving from TS1 to TS2 more classes of faults
are correctly classified since TS2 and TS3 have seen more classes
during the training.

During the first training session TS1, the first ten MLP classifiers
are merely trained on Train-set1 and, thus, they are doomed to mis-
classify the patterns of class f4 to f9 (see the six zeros corresponding
to the first box, TS1). The patterns of the first three faults (f1; f2; f3)
are correctly classified with high performances: 94:7%; 92:1% and
97:3%, respectively.

The classification performance with respect to the patterns of
fault-free ff is 100%, since the ff patterns in the Train-set1 include
normal status in addition to patterns of transient due to changes in
operating conditions.

Here, some patterns of transients are included in Train-set1 and
used during the first training session TS1, thus the classification
performance of the first ten classifiers with respect to the ff fraction
of the combined Test-set1þ2þ3 is 100%.

The second box corresponds to the second training session TS2

and shows that the number of correctly classified faults are
increased (i.e., the classification performances with respect to f1 to
f6 are high), however the second ten classifiers misclassify the
patterns of f7 to f9.

Besides, the patterns of transients are not seen during the sec-
ond training session, thus the performance of TS2 with respect to
the ff fraction of the combined Test-set1þ2þ3 is decreased to 21%.

The third box TS3 shows that the classification performances
with respect to all classes of faults are high since the last ten clas-
sifiers are trained on Train-set3, which includes the patterns of all
faulty classes. The classification performances with respect to
almost all classes are high, � 95%, however the classification per-
formances with respect to ff and f8 are 84:2%.

The former is due to the fact that only few transient patterns are
used for training in the last session and, consequently, the perfor-
mance of TS3 with respect to the ff class of the combined
Test-set1þ2þ3 is slightly better.

The same interpretation is valid for the next three boxes in the
Fig. 7, that correspond to the training sessions TSK in the proposed
method, which include pre-processing (latent residuals).

0 2 4 6 8 10 12 14 16 18 20
8.0

8.2

8.4

8.6

8.8

9.0

9.2

9.4

9.6

9.8

10.0

 Wind Sequence
 Faulty Scenario

W
in

d
Sp

ee
d

Fl
uc

tu
at

io
ns

 [m
/s

]

f9

f8

f7

f6

f5

f4

f3

f2

f1

ff

C
la

ss
 o

f F
au

lt

time [s]

Fig. 8. The wind speed sequence (left vertical axis) and the simulated faulty
scenario (right vertical axis) (Razavi-Far & Kinnaert, 2013).

,

The pair wise comparison between the first and second training
sessions of each method, boxes (1, 4) and (2, 5), shows the same
distribution of classification performances. Moreover, it shows that
the performances achieved by the proposed method is slightly
increased during the TS1 and TS2.

This improvement is significant for the last training session TS3

boxes (3, 6), where the performances are improved about 3% on
average. This is due to the high correlation between the residual
vectors corresponding to the faults in the rotor current sensors (f7;

f8; f9).

4.4. Validation of the diagnostic system

The robustness of the diagnostic scheme with respect to wind
speed fluctuations is studied in Razavi-Far and Kinnaert (2013). A
realistic wind speed sequence has been used to generate the volt-
age, current and generator speed signals that enter the fault diag-
nosis system. This wind sequence is characterized by an average
wind speed equal to 9.17 m/s and a turbulence intensity equal to
6:7%.

The simulation lasts for 20 s; the first 11 s correspond to normal
mode ff and then a step-like fault appears at t ¼ 11 s and disappears
at t ¼ 12 s in the measurement of ir�b (corresponding to f8). The fault
has a magnitude of 5% of the rated rotor current (peak value). The
second step-like fault is injected for a time interval between t ¼ 14 s
and t ¼ 15 s in the measurement of
Table 4
Missing data pattern in the incomplete scenario.
us�a (corresponding to f1). This fault also has a magnitude of 5%

of the rated stator voltage (peak value). Lastly, a step-like fault
appears at time t ¼ 18:5 s and disappears at t ¼ 19:5 s in the
measurement of is�c (corresponding to f6). The last fault has a mag-
nitude of 5% of the rated stator current (peak value). This scenario
is presented in Fig. 8 along with the wind speed sequence.

The test scenario Sc containing the raw residuals are firstly pre-
dicted by the preserved PCA models in the pre-processing module
to generate different sets of latent residuals (Sc1; Sc2; Sc3). Each set
of latent residuals Sc1 (Sc2) (Sc3) is fed to the corresponding mem-
ber of the ensemble E1 (E2) (E3). The aggregated outcome of the base
classifiers in the ensembles correctly classifies most of the patterns
associated to the different classes during the considered scenario
except some chattering in the output and misclassification due to
unexpected fluctuations in residuals that have not been seen during
the training sessions.

The missed alarm rate is equal to zero and false alarm rate is
3:43%. The percentage of the missed and false alarms shows a sat-
isfactory generalization performance of the dynamic weighting
ensemble of fault classifiers with respect to the test patterns of the
wind sequence. The obtained results by means of the proposed pre-
processing module show a significant reduction of false alarm rate,
of 3:78% compared to the preceding work (Razavi-Far & Kinnaert,
2013) without pre-processing (i.e., the false alarm rate was 7:21%).
4.4.1. Incomplete scenario
The decision module relies on the trained ensembles using

residual data, which is extremely dependent on data collection,
storage and analysis. The collected residual data often have
missing data due to disconnections, transient failures in the
sensors, etc.

Sensors are subject to different risks and occasional failures due
to wear and tear, severe environmental conditions (e.g., covered in
water or snow) or exposure to physical damage; causing a sudden
temporary failure until being replaced. Additionally, usually
sensors rely on batteries, and are inaccessible during operation
runtimes. Under such circumstances, it is possible to have miss
reading from some sensors in different time intervals. This
generally implies significant reduction in the diagnostic perfor-
mance, since the base classifiers of the ensembles are doomed to
classify the missing data, i.e., patterns with one or more miss-ing
features. Concurrently, the diagnostic system needs to operate
continuously and make decisions online without drastic reduction
in the classification performance due to temporary missing sensor
readings.

To analyze the performance of the diagnostic system in the
presence of the missing data, an incomplete scenario has been

0.4

0.5

0.6

0.7

0.8

0.9

1.0

f
6

f
1

f
8ff

Pe
rf

or
m

an
ce

Classes

 I
 II
 III

Fig. 9. Class-specific performance comparison on the faulty scenario Sc.
simulated. To form the incomplete scenario, the previous faulty
scenario (see Fig. 8) has been simulated for 20s, but it is
assumed that the sensor reading that measures the ir�b (us�a)
(is�c) is missing in the second half of the corresponding faulty
interval, i.e., from t ¼ 11:5 s (14:5 s) (19 s) to t ¼ 12 s (15 s)
(19:5 s).

Any failure in a sensor reading leads to missing data in the four
corresponding residual vectors due to mutual relations between
the sensor measurements and residual vectors (Razavi-Far &
Kinnaert, 2013). For instance, failure in sensor reading of the us�a

leads to missing data in r2 and r3 (i.e., corresponding residual
vectors r2;1; r2;2; r3;1; r3;2).

Thus, the imposed failures in sensor reading induce a missing-
ness in the residual data, and form 250 monotone missing pat-
terns and 500 non-monotone missing patterns in the simulated
scenario.

Table 4 illustrates the missing data pattern in the incomplete
scenario. The grey squares represents the missing values. The
incomplete scenario contains 10,000 patterns (the left most col-
umn in the last row), and Table 4 presents the missing data pat-
terns into the minimum number of rows possible. Thus, the
10,000 rows of the data patterns are collapsed into 4 main rows
(rows 3 to 6 in the Table). The last row of the Table presents the
number of missing data of each residual vector in the scenario.
For instance, the residual vector of r2;1 has been missed in 250 pat-
terns. The number of the complete patterns is 9250 (the third row
of the Table). The 4th (5th) (6th) row shows a pattern where the
residual vectors of r7;1; r7;2; r9;1; r9;2 (r2;1; r2;2; r3;1; r3;2)
(r4;1; r4;2; r5;1; r5;2) are missing together and this type of missing data
patterns occurs 250 (250) (250) times in the incomplete scenario,
as can be seen from the left most column.

The incomplete set of residuals Sc cannot be fed to the dynamic
weighing ensemble, since the base classifiers of the ensembles are
not able to handle the missing data in Sc. Thus, the preceding diag-
nostic scheme in Razavi-Far and Kinnaert (2013) fails to classify the
incomplete scenario Sc.

One alternative is to discard the incoming patterns that contain
missing values (I) which leads to a very rapid deterioration of the
performance, since there will be no classification for continuous
periods of time.
Another remedy is to impute, the missing data by the mean
value of the missing feature (II) which is a popular and fast tech-
nique for online applications. Data imputation techniques have
been extensively used in different applications and offer an
imperative avenue for future research in fault diagnosis under
missing data assumption. However, the iterative multiple imputa-
tion techniques are computationally expensive and further
research is needed to prove their efficiency for online monitoring
applications.

Here, the pre-processing module projects the incomplete sce-
nario (i.e., the raw residuals Sc with missing data) to complete sets
of latent residuals (Sc1; Sc2; Sc3), due to the inherent capability of
the NIPALS algorithm in handling the missing data (see Section 3.3).
Then, the complete sets of latent residuals Sc1; Sc2; Sc3 are fed to
their corresponding member of the ensemble E1; E2; E3, respec-
tively, for fault classification purposes (III). Fig. 9 shows the class-
specific performances, with respect to the faulty scenario, achieved
by each technique (I, II, III).

The obtained results show a good classification performance on
the fault-free class, since all the patterns of the ff class are complete
(i.e., no missing feature in the ff class patterns). However, the pro-
posed method (III) outperforms other two techniques, with more
than 5% of improvement.

Method (I) has the lowest performance (50%) for the faulty
classes since the missing data are totally discarded. The proposed
method (III) significantly improves the classification performance
for the faulty classes in the stator voltage and the rotor current and
outperforms the mean imputation method (II) by about 3% and 7%,
respectively. However, the classification performance with respect
to the faults in the stator current is not improved.

The classification performance achieved by the methods I, II, III,
with respect to all patterns of the test scenario (including missing
patterns), are 84%; 86%; 91%, respectively. Thus, the proposed
method not only can improve the classification accuracy when all
the patterns are available, but also when readings from some
sensors are missing for continuous periods of time.

The computational time needed by the pre-processing methods
(i.e., down-sampling, discarding, mean imputation, and the Wold
cross-validation NIPALS algorithm) is small and can be ignored.

The main difference is in the training of the diagnostic classifier
and incremental update of the ensemble. All of the pre-processing
methods except the Wold cross-validation NIPALS algorithm
provide a full set of residual vectors for the dynamic weighting
ensemble of fault classifiers, while the Wold cross-validation
extract the latent residuals (i.e., less number of features) and, thus,
the computational time to train the T K MLP base classifiers of the
dynamic weighting ensemble is reduced about 7 min.
5. Conclusions

This paper has proposed an efficient pre-processing method
to generate the latent residuals for the diagnosis of new classes
of faults in the controlled DFIG sensors. The proposed scheme
has been validated on a three-phase simulation and the gener-
ated residuals by means of multiple observers are successively
collected in different batches by performing each step of the
simulation. These residuals correspond to the stator voltage, cur-
rent and rotor current sensors. Each set of raw residual data con-
tains patterns of new classes of faults, i.e., unseen classes in the
previous datasets.

The raw residual datasets are firstly processed by the Wold
cross-validation NIPALS algorithm, which estimates the optimal

number of principal components, in order to extract the latent
information among the residuals and reduce the feature space.
Consequently, the fault classification module, which is a Dynamic
Weighting Ensemble algorithm, incrementally learns the latent
residuals-faults relations, dynamically adjusts the voting weights
of the base classifiers and diagnoses the faults including multiple
new classes.

The novelty of the work stands in improving the fault classi-
fication performance and decision making under missing data
assumption. The Wold cross-validation NIPALS algorithm is fast
and suitable for online application, it extracts the latent residu-
als from the raw residual datasets, and it handles the missing
data. The proposed pre-processing module projects the raw
residuals onto the new feature space of a smaller size, i.e., latent
residuals, and it preserves the constructed PCA models to pro-
ject any upcoming test patterns onto the pattern with the same
number of features for the corresponding member of the
ensemble.

The attained results on three-phase simulation show that the
pre-processing module improves the fault classification perfor-
mance by extracting informative latent residuals. This improve-
ment is substantial for the faults in the rotor current sensors,
where there exists a high correlation between their corresponding
residual vectors.

Moreover, the computational time is reduced, which is a vital
factor in online monitoring systems. This fast online training and
incremental update is due to the use of training sets of smaller
sizes (i.e., set of latent residuals which includes fewer number of
features).

More importantly, the Wold cross-validation NIPALS algo-
rithm can handle the missing data and it allows the diagnosis
of missing patterns in the incomplete scenarios and, thus, the
decision module significantly outperforms diagnostic schemes
which discards or substitutes the missing patterns with the
mean values.

Since missing data are inevitable, there is a need for further
study and implementation of accurate and fast data imputation
techniques for online monitoring and fault diagnosis applications.
Moreover, iterative multiple imputation techniques create several
values for each missing data. The uncertainties and confidence
intervals of the imputed variables can control the diversity
in the ensemble learning and improve the classification
performance, which looks to be a valuable direction for future
research.
Acknowledgment

The authors would like to thank cordially to Professor Michel
Kinnaert, Department of Control Engineering and System Analysis
at Université Libre de Bruxelles, for valuable discussions in the
early stage of this work and anonymous reviewers for their valu-
able comments.

Appendix A. The NIPALS and Wold cross-validation algorithms

For the completeness of the paper, the pseudo-codes of
the NIPALS algorithm without missing values, the NIPALS
algorithm with missing values, and the Wold cross-validation
algorithm are presented in Algorithms 1, 2, and Fig. A.1,
respectively.
Algorithm 1. The NIPALS algorithm without missing values.
Algorithm 2. The NIPALS algorithm with missing values.

Fig. A.1. The pseudo-code for the Wold cross-validation algorithm (Wold, 1978; Diana & Tommasi, 2002).
References

Baraldi, P., Razavi-Far, R., & Zio, E. (2010). A method for estimating the confidence in
the identification of nuclear transients by a bagged ensemble of FCM classifiers.
In 7th international topical meeting on nuclear plant instrumentation, control, and
human-machine interface technologies (NPIC&HMIT) (pp. 283–293). Las Vegas,
Nevada: American Nuclear Society.
Baraldi, P., Razavi-Far, R., & Zio, E. (2011a). Bagged ensemble of FCM classifier for
nuclear transient identification. Annals of Nuclear Energy, 38(5), 1161–1171. Baraldi,

P., Razavi-Far, R., & Zio, E. (2011b). Classifier-ensemble incremental-
learning procedure for nuclear transient identification at different operational

conditions. Reliabilty Engineering and System Safety, 96(4), 480–488.
Bartlett, M. (1950). Tests of significance in factor analysis. British Journal of Statistical

Psychology, 3, 77–85.

http://refhub.elsevier.com/S0957-4174(14)00208-5/h0030
http://refhub.elsevier.com/S0957-4174(14)00208-5/h0030
http://refhub.elsevier.com/S0957-4174(14)00208-5/h0030
http://refhub.elsevier.com/S0957-4174(14)00208-5/h0030
http://refhub.elsevier.com/S0957-4174(14)00208-5/h0030
http://refhub.elsevier.com/S0957-4174(14)00208-5/h0035
http://refhub.elsevier.com/S0957-4174(14)00208-5/h0035
http://refhub.elsevier.com/S0957-4174(14)00208-5/h0040
http://refhub.elsevier.com/S0957-4174(14)00208-5/h0040
http://refhub.elsevier.com/S0957-4174(14)00208-5/h0040
http://refhub.elsevier.com/S0957-4174(14)00208-5/h0045
http://refhub.elsevier.com/S0957-4174(14)00208-5/h0045

Boulkroune, B., Galvez-Carrillo, M., & Kinnaert, M. (2010). Robust sensor fault
detection and isolation for a doubly-fed induction generator. In 50th IEEE

conference on decision and control (pp. 1600–1606).
Bro, R., Kjeldahl, K., Smilde, A., & Kiers, H. (2008). Cross-validation of component

models: A critical look at current methods. Analytical and Bioanalytical
Chemistry, 390(5), 1241–1251.

Bruzzese, C. (2014). Diagnosis of eccentric rotor in synchronous machines by
analysis of split-phase currents; part II: Experimental analysis. IEEE Transactions

on Industrial Electronics, 61, 4206–4216.
Cattel, R. (1996). The scree test for the number of factors. Multivariate Behavioral

Research, 1, 245–276.
Diana, G., & Tommasi, C. (2002). Cross-validation methods in principal component

analysis: A comparison. Statistical Methods and Applications, 11, 71–82.
Eastment, H., & Krzanowski, W. (1982). Cross-validatory choice of the number of

component analysis. Technometrics, 24, 73–77.
Forina, M., Lanteri, S., Boggia, R., & Bertran, E. (1993). Double cross full validation.

Quimica Analitica, 12, 128–135.
Galvez-Carrillo, M., & Kinnaert, M. (2010). Sensor fault detection and isolation in

three-phase systems using a signal-based approach. IET Control Theory and
Applications, 4(9), 1838–1848.
Geladi, P., & Kowalski, B. R. (1986). Partial least-squares regression: A tutorial.

Analytica Chimica Acta, 185, 1–17.
Gheyas, I. A., & Smith, L. S. (2010). A neural network-based framework for the

reconstruction of incomplete data sets. Neurocomputing, 73, 3039–3065.
Grung, B., & Manne, R. (1998). Missing values in principal component analysis.

Chemometrics and Intelligent Laboratory Systems, 42(1-2), 125–139.
Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection.

Journal of Machine Learning Research, 3, 1157–1182.
Hansen, A., & Michalke, G. (2007). Fault ride-through capability of DFIG wind bines.

Renewable Energy, 32(9), 1594–1610.
Jackson, J. (1991). A user’s guide to principal components. New York: Wiley. Jolliffe,
I. (1986). Principal component analysis. Berlin Heidelberg New York:

Springer.
Kaiser, H. (1960). The application of electronic computers to factor analysis.

Educational and Psychological Measurement, 20, 141–151.
Kourti, T., & MacGregor, J. F. (1996). Multivariate SPC methods for process and

product monitoring. Journal of Quality Technology, 28, 409–428.
Krzanowski, W. (1983). Cross-validatory choice in principal component analysis;

some sampling results. Journal of Statistical Computation and Simulation, 18,
299–314.
Krzanowski, W. (1987). Cross-validation in principal component analysis.

Biometrics, 43, 575–584.
Malinowski, E. (1977). Theory of error in factor analysis. Analytical Chemistry, 49,

606–612.
Muhlbaier, M., Topalis, A., & Polikar, R. (2009). Learn++.NC: Combining ensemble of

classifiers with dynamically weighted consult-and-vote for efficient incremental
learning of new classes. IEEE Transactions on Neural Networks, 20(1), 152–168.
Nelson, P., Taylor, P., & MacGregor, J. (1996). Missing data methods in PCA and PLS:
Score calculations with incomplete observations. Chemometrics and Intelligent

Laboratory Systems, 35, 45–65.
Rassler, S., Rubin, D. B., & Zell, E. R. (2013). Imputation. Wiley Interdisciplinary

Reviews: Computational Statistics, 5, 20–29.
Razavi-Far, R., & Kinnaert, M. (2012). Incremental design of a decision system for

residual evaluation: A wind turbine application. In 8th IFAC conference fault
detection, supervision and safety of technical processes (Vol. 8(1), pp. 343–348).

Razavi-Far, R., Baraldi, P., & Zio, E. (2012a). Dynamic weighting ensembles for
incremental learning and diagnosing new concept class faults in nuclear power
systems. IEEE Transactions on Nuclear Science, 59(5), 2520–2530.

Razavi-Far, R., Davilu, H., Palade, V., & Lucas, C. (2009a). Model based fault detection
and isolation of a steam generator using neuro-fuzzy networks. Neurocomputing

Journal, 72, 2939–2951.
Razavi-Far, R., Davilu, H., Palade, V., & Lucas, C. (2009b). Neuro-fuzzy based fault

diagnosis of a steam generator. In 7th IFAC conference on fault detection,
supervision and safety of technical processes (pp. 1180–1185).

Razavi-Far, R., Baraldi, P., & Zio, E. (2012b). Ensemble of neural networks for
detection and classification of faults in nuclear power systems. In World scientific
proceedings series on computer engineering and information science 7; uncertainty
modeling in knowledge engineering and decision making – proceedings of the 10th
international FLINS conference (Vol. 7, pp. 1202–1207). Istanbul, Turkey.

Razavi-Far, R., & Kinnaert, M. (2013). A multiple observers and dynamic weighting
ensembles scheme for diagnosing new class faults in wind turbines. Control
Engineering Practice, 21(9), 1165–1177.

Ribrant, J., & Bertling, L. (2007). Survey of failures in wind power systems with focus
on swedish wind power plants during 1997–2005. In IEEE power engineering
society general meeting, Tampa, USA.

Rubin, D. (1976). Inference and missing data. Biometrika, 63, 581–592.
Shaw, P. (2003). Multivariate statistics for the environmental sciences. 0-340-80763-6.

Hodder-Arnold.
Vong, C., & Wong, P. (2011). Engine ignition signal diagnosis with wavelet packet

transform and multi-class least squares support vector machines. Expert
Systems with Applications, 38, 8563–8570.
Vong, C.-M., Wong, P.-K., & Ip, W.-F. (2013). A new framework of simultaneous-fault

diagnosis using pairwise probabilistic multi-label classification for time-
dependent patterns. IEEE Transactions on Industrial Electronics, 60, 3372–3385.

Wold, H. (1966). Estimation of principal components and related models by
iterative least squares. Multivariate Analysis. NY: Academic Press.

Wold, S. (1976). Pattern recognition by means of disjoint principal components
models. Pattern Recognition, 8(3), 127–139.

Wold, S. (1978). Cross-validatory estimation of the number of components in factor
and principal component models. Technometrics, 20, 397–405.

Wold, S., Esbensen, K., & Geladi, P. (1987). Principal component analysis.
Chemometrics and Intelligent Laboratory Systems, 2, 37–52.

http://refhub.elsevier.com/S0957-4174(14)00208-5/h0050
http://refhub.elsevier.com/S0957-4174(14)00208-5/h0050
http://refhub.elsevier.com/S0957-4174(14)00208-5/h0050
http://refhub.elsevier.com/S0957-4174(14)00208-5/h0055
http://refhub.elsevier.com/S0957-4174(14)00208-5/h0055
http://refhub.elsevier.com/S0957-4174(14)00208-5/h0055
http://refhub.elsevier.com/S0957-4174(14)00208-5/h0060
http://refhub.elsevier.com/S0957-4174(14)00208-5/h0060
http://refhub.elsevier.com/S0957-4174(14)00208-5/h0065
http://refhub.elsevier.com/S0957-4174(14)00208-5/h0065
http://refhub.elsevier.com/S0957-4174(14)00208-5/h0070
http://refhub.elsevier.com/S0957-4174(14)00208-5/h0070
http://refhub.elsevier.com/S0957-4174(14)00208-5/h0075
http://refhub.elsevier.com/S0957-4174(14)00208-5/h0075
http://refhub.elsevier.com/S0957-4174(14)00208-5/h0080
http://refhub.elsevier.com/S0957-4174(14)00208-5/h0080
http://refhub.elsevier.com/S0957-4174(14)00208-5/h0080
http://refhub.elsevier.com/S0957-4174(14)00208-5/h0085
http://refhub.elsevier.com/S0957-4174(14)00208-5/h0085
http://refhub.elsevier.com/S0957-4174(14)00208-5/h0090
http://refhub.elsevier.com/S0957-4174(14)00208-5/h0090
http://refhub.elsevier.com/S0957-4174(14)00208-5/h0095
http://refhub.elsevier.com/S0957-4174(14)00208-5/h0095
http://refhub.elsevier.com/S0957-4174(14)00208-5/h0100
http://refhub.elsevier.com/S0957-4174(14)00208-5/h0100
http://refhub.elsevier.com/S0957-4174(14)00208-5/h0105
http://refhub.elsevier.com/S0957-4174(14)00208-5/h0105
http://refhub.elsevier.com/S0957-4174(14)00208-5/h0110
http://refhub.elsevier.com/S0957-4174(14)00208-5/h0115
http://refhub.elsevier.com/S0957-4174(14)00208-5/h0115
http://refhub.elsevier.com/S0957-4174(14)00208-5/h0120
http://refhub.elsevier.com/S0957-4174(14)00208-5/h0120
http://refhub.elsevier.com/S0957-4174(14)00208-5/h0125
http://refhub.elsevier.com/S0957-4174(14)00208-5/h0125
http://refhub.elsevier.com/S0957-4174(14)00208-5/h0130
http://refhub.elsevier.com/S0957-4174(14)00208-5/h0130
http://refhub.elsevier.com/S0957-4174(14)00208-5/h0130
http://refhub.elsevier.com/S0957-4174(14)00208-5/h0135
http://refhub.elsevier.com/S0957-4174(14)00208-5/h0135
http://refhub.elsevier.com/S0957-4174(14)00208-5/h0140
http://refhub.elsevier.com/S0957-4174(14)00208-5/h0140
http://refhub.elsevier.com/S0957-4174(14)00208-5/h0145
http://refhub.elsevier.com/S0957-4174(14)00208-5/h0145
http://refhub.elsevier.com/S0957-4174(14)00208-5/h0145
http://refhub.elsevier.com/S0957-4174(14)00208-5/h0145
http://refhub.elsevier.com/S0957-4174(14)00208-5/h0150
http://refhub.elsevier.com/S0957-4174(14)00208-5/h0150
http://refhub.elsevier.com/S0957-4174(14)00208-5/h0150
http://refhub.elsevier.com/S0957-4174(14)00208-5/h0155
http://refhub.elsevier.com/S0957-4174(14)00208-5/h0155
http://refhub.elsevier.com/S0957-4174(14)00208-5/h0160
http://refhub.elsevier.com/S0957-4174(14)00208-5/h0160
http://refhub.elsevier.com/S0957-4174(14)00208-5/h0160
http://refhub.elsevier.com/S0957-4174(14)00208-5/h0165
http://refhub.elsevier.com/S0957-4174(14)00208-5/h0165
http://refhub.elsevier.com/S0957-4174(14)00208-5/h0165
http://refhub.elsevier.com/S0957-4174(14)00208-5/h0170
http://refhub.elsevier.com/S0957-4174(14)00208-5/h0170
http://refhub.elsevier.com/S0957-4174(14)00208-5/h0170
http://refhub.elsevier.com/S0957-4174(14)00208-5/h0175
http://refhub.elsevier.com/S0957-4174(14)00208-5/h0180
http://refhub.elsevier.com/S0957-4174(14)00208-5/h0180
http://refhub.elsevier.com/S0957-4174(14)00208-5/h0185
http://refhub.elsevier.com/S0957-4174(14)00208-5/h0185
http://refhub.elsevier.com/S0957-4174(14)00208-5/h0185
http://refhub.elsevier.com/S0957-4174(14)00208-5/h0190
http://refhub.elsevier.com/S0957-4174(14)00208-5/h0190
http://refhub.elsevier.com/S0957-4174(14)00208-5/h0190
http://refhub.elsevier.com/S0957-4174(14)00208-5/h0195
http://refhub.elsevier.com/S0957-4174(14)00208-5/h0195
http://refhub.elsevier.com/S0957-4174(14)00208-5/h0200
http://refhub.elsevier.com/S0957-4174(14)00208-5/h0200
http://refhub.elsevier.com/S0957-4174(14)00208-5/h0205
http://refhub.elsevier.com/S0957-4174(14)00208-5/h0205
http://refhub.elsevier.com/S0957-4174(14)00208-5/h0210
http://refhub.elsevier.com/S0957-4174(14)00208-5/h0210

	Efficient residuals pre-processing for diagnosing multi-class faults in a doubly fed induction generator, under missing data scenarios
	1 Introduction
	2 System description and problem statement
	2.1 The DFIG-based wind turbine
	2.2 Fault diagnosis scheme
	2.2.1 Residual generation
	2.2.2 Fault classification

	2.3 Problem description

	3 Principal component analysis
	3.1 The NIPALS algorithm
	3.2 How many principal components?
	3.3 The NIPALS algorithm with missing values
	3.4 Cross-validatory estimation of the number of components

	4 Sensor fault diagnosis of a DFIG-based wind turbine
	4.1 Design of the diagnostic system
	4.2 Latent residuals characteristics
	4.3 Dynamic learning of the latent residuals
	4.4 Validation of the diagnostic system
	4.4.1 Incomplete scenario

	5 Conclusions
	Acknowledgment
	Appendix A The NIPALS and Wold cross-validation algorithms
	References

