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Abstract 

Purpose – This study aims to investigate the influence of supply chain (SC) complexity 

on the effectiveness of resilience capabilities in mitigating supply chain disruptions. 

Hypotheses about direct and moderating influences of complexity on resilience 

capabilities and performance change after disruption are built and quantitatively tested. 

Design/methodology/approach – Partial least square-based Structural Equation 

Modelling (SEM) with formative constructs was employed as an overall approach. 

Secondary data on SC disruptions, related performance change and resilience practices 

was collected from multiple sources through a systematic procedure. The data 

pertaining to independent, moderating and dependent variables was systematically 

encoded prior to performing regression analysis. 

Findings – SC structural complexity is found to have a significant positive relation with 

performance improvement after disruption, along with resilience capability; it also 

positively moderates the resilience-performance link. 

Research limitations/implications – The complexity factors we considered in this 

study do not include dynamic forms due to the nature of data collected. Future research 

may attempt to include and test if the results of this study could hold also when 

additional complexity parameters are taken into account. 

Practical implications – Managers are often trying to reduce supply chain complexity. 

This study implies that some level of complexity is beneficial also for a better recovery 

of operational performance affected due to disruption. Resilience capabilities become 

more effective when leveraged on higher resources and complexity in the supply chain. 



Originality/value – This is the first study to empirically investigate the influence of SC 

complexity on the resilience-performance link. 

Keywords – Complexity, disruption, dynamic capabilities resilience, resource based 

view, structural equation model 

Article classification – Research paper  
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Introduction 

Global businesses implement different operations management strategies to improve 

performance under turbulent business conditions. The performance benefit of such 

strategies and practices is argued to be dependent on the environmental context (e.g. 

Sousa and Voss, 2008). Thus, firms attempt to employ practices thought to help in 

achieving higher performance in a given business context, and change or adapt them as 

the context changes.  

The increase in frequency and severity of unanticipated supply chain disruptions in 

recent years are indications of continued change in the global business context. A supply 

chain disruption can be thought of as a mismatch between supply and demand in an 

unexpected manner that can affect the short and long term operation as well as 

profitability of the firm (Hendricks and Singhal, 2003). Disruptions may occur due to 

different triggering events pertaining to supply, demand or internal processes. Melnyk et 

al. (2009) define a supply chain disruption as “the outcome of a process whereby one or 

more [triggering] events taking place at one point in the supply chain adversely affect the 

performance of one or more actors located elsewhere in the supply chain”. 

Several recent studies have argued that resilience capabilities help firms re-attain lost 

performance due to supply chain disruptions (e.g. Ambulkar et al., 2015; Grötsch et al., 

2013; Knemeyer et al., 2009). Resilience can be conceptualised as an adaptive capability 

to prepare for unexpected events, and respond and recover from disruptions while 

sustaining operations (Ponomarov and Holcomb, 2009). It results from proactive and 

reactive capabilities (Kleindorfer and Saad, 2005; Knemeyer et al., 2009) that are formed 

from bundles of routine practices. 

Managing supply chain disruptions in the current global business environment with 

resilience capabilities requires consideration of different forms of complexity. 

Complexity describes the number and heterogeneity of decision elements in a business 

environment and how these change over time (Duncan, 1972). In a supply chain, the 

firms’ organisational design, SC network, product portfolio and other related factors are 

considered as sources of complexity (Bode and Wagner, 2015; Collinson and Jay, 2012; 

Manuj and Sahin, 2011). Different researchers have noted that complexity needs to be 



considered in dealing with supply disruptions (e.g. Bode and Wagner, 2015; Craighead 

et al., 2007). However, little has been investigated on how supply chain (SC) complexity 

as context factor might influence the relationship between resilience capabilities and 

performance. Moreover, prior research has focused on the role that complexity can play 

in triggering disruptions (Brandon-Jones, Squire and Van Rossenberg, 2014) and has not 

yet well investigated the potential influence of complexity on disruption management. 

This paper aims to systematically address this research gap. 

The paper is organised as follows. The next section briefly reviews the adopted 

theoretical framework for discussing resilience, complexity and operations performance; 

it also highlights the interactions among these three concepts reported in earlier research. 

Based on this discussion, the research questions are introduced. A description of the 

research design and methodology is provided subsequent to that. Findings with regard to 

the research questions are presented, and a final section concludes summarising the main 

results obtained as well as highlighting their major implications and research limitations. 

Theoretical framework 

Theoretical background 

Contingency theory posits that strategies and decisions in a business environment should 

take the context into account in order to create proper alignment at different levels and be 

effective in what they do (Duncan, 1972; Ketokivi, 2006). This makes it a suitable frame 

in discussing proactive supply chain management strategies for mitigating unanticipated 

disruptions (Grötsch et al., 2013). Likewise, contingent resource-based view (RBV) 

argues that sustained competitive advantage is created through building resources and 

creating (or regenerating) bundles of capabilities from existing ones (Ambrosini et al., 

2009; Brandon-Jones, Squire, Autry, et al., 2014) based on prevailing conditions. Firms 

are facing disruptions in their supply chains that could have severe consequences on 

performance unless well prepared for and managed well on occurrence (e.g. Knemeyer 

et al., 2009). Practices that are routinely performed by a business firm can help them 

develop dynamic capabilities that are sources of resilience in supply chains (Ambulkar et 

al., 2015; Dabhilkar et al., 2016). 

Empirical studies of supply chain disruption analysis discuss that proactive and 

reactive resilience capabilities enable better chance of surviving supply chain disruptions 

with relatively smaller extent of performance reduction (e.g. Dabhilkar et al., 2016). 

However, little is empirically investigated on how the supply chain context may affect 



the relationship between resilience and operational performance. This research attempts 

to re-evaluate the relationship between operational resilience capabilities and 

performance upon disruption by taking into account prevailing complexity issues. 

Operational resilience 

Resilience can be regarded as an adaptive capability to prepare for, respond and recover 

from disruptions while sustaining operations (Ponomarov and Holcomb, 2009). As such, 

it includes proactive and reactive strategies (Tukamuhabwa et al., 2015). To have better 

operational resilience, firms need to be prepared beforehand (Kleindorfer and Saad, 

2005), and be able to reconfigure their assets, processes and resources according to 

prevailing disruption characteristics (Ambulkar et al., 2015). 

Disruptions can be triggered by unanticipated and unplanned events that affect the 

normal flow of goods [and information] leading to severe unwanted consequences 

(Kleindorfer and Saad, 2005). A disruption can be an outcome of a chain of events. 

Natural disasters, supply shortages, demand shifts, quality problems, worker strikes are 

some popular triggering events for supply chain disruptions (Chopra and Sodhi, 2004). 

The primary triggering event and location could be close and direct or distant and indirect 

from where the final business consequence is observed. For example, the 2011 Japan 

triple disaster (a triggering event) has affected automotive and electronics supply chains 

across the globe as suppliers and manufacturing sites have been affected in terms of 

production discontinuity, shortage of parts, or delay of inventory on transit, etc. (e.g. 

Matsuo, 2015). The migration crisis in Europe in 2015 has severely affected cargo 

transportation across the continent; contamination, loss and delay have caused big 

damage especially to the food and pharmaceutical industries (e.g. BSI 2015). Deliveries 

for refugee aid were affected as well. 

Several forms of conceptualising resilience exist in literature (Bhamra et al., 2011). 

For example, Johnson et al. (2013) and Jüttner and Maklan (2011) frame resilience in 

terms of formative elements of flexibility, velocity, visibility and collaboration. Dabhilkar 

et al. (2016) used temporal and locus dimensions to classify how dynamic resilience 

capabilities are formed from routine practices implemented within the firm or by 

interaction with external actors. These capabilities can be developed prior to or after 

occurrence of a disruptive incident, forming four bundles: proactive-internal, proactive-

external, reactive-internal, and reactive-external. A list of practices identified to form 

resilience capability used in this study can be found in Appendix A. Resilience practices 



can also be seen in terms of the core functions of resilience they are supposed to 

accomplish: sense, build, reconfigure, re-enhance, and sustain (Birkie, 2016). While both 

are possible alternatives, we opted to proceed with that of Dabhilkar et al.’s (2016) as 

they provide some evidence of statistical analysis which makes it suitable to test with a 

different sample collected using a different methodology. 

Supply chain complexity 

Complex systems consist of a large number of different types of subsystems or underlying 

parts that interact with each other (Choi and Krause, 2006; Perona and Miragliotta, 2004; 

Simon, 1962). The complexity of a system may be examined adopting a structural (static) 

perspective or a dynamic one (Bozarth et al., 2009; Casti, 1979; Serdarasan, 2013; 

Sivadasan et al., 2002). Structural (static) complexity refers to the complexity of the 

systems structure, and thus accounts for the variety and dependencies within system 

components. Dynamic complexity refers to the dynamics that unveils or can arise over 

time due to uncertainties, randomness or changes within the system. While the relevance 

of dynamic complexity has been underlined theoretically and empirically in the SC 

complexity literature (Bozarth et al., 2009; Serdarasan, 2013), most empirical research 

accounted only for structural complexity. This work is no exception as, due to the nature 

of the methodology and data used, it must focus mostly on structural complexity. 

SC Complexity is driven by several factors such as the range and characteristics of 

customers (Bozarth et al., 2009), supply base (e.g. Choi and Krause, 2006), product 

portfolio (e.g. Closs et al., 2010), aspects related to organisational (re)structuring and size 

(Ashkenas, 2007; Heywood et al., 2007). This paper relies on these SC complexity factors 

and their underlying indicators in the investigated relation between complexity, resilience 

and operations performance. As such, SC complexity is described in terms of product 

portfolio (number and variety of product lines, brands), supply base dispersion (number 

and geographical dispersion of production facilities and legal entities), size (turnover and 

number of employees) and restructuring (mergers, acquisition and sellouts). 

Operations performance and the effects of complexity 

Operations performance refers to the measurable aspects of the outcomes with regard to 

cost, quality, delivery (speed), flexibility, and dependability (Wong et al., 2011; Zhang et 

al., 2012). Multiple measures of each of the five objectives, indicated in Appendix B, are 

used in this study to capture change in values as described in the methodology section. 



Complexity is recognised as both a source of competitive advantage and a hurdle for 

performance in the SC literature. A survey by researchers at MIT found that complexity 

was viewed as creating a competitive advantage by 30% of respondents while deemed of 

as a competitive liability by about 60% of managers (Mocker et al., 2016). Some 

researchers argue that complexity increases costs, lead times, inventories and variability 

of production processes (e.g. Bozarth et al., 2009; Mariotti, 2008; Perona and Miragliotta, 

2004). Others underline that complexity is not always detrimental to performance (e.g. 

Manuj and Sahin, 2011; Mocker et al., 2014). Collinson and Jay (2012) found a negative 

quadratic relationship (i.e. inversed U-shape) between complexity and financial 

performance and argue that below a critical level firms may embrace complexity to 

improve their performance. This is in line with the claim that SC managers need not to 

reduce complexity to the lowest level possible (Bozarth et al., 2009; Manuj and Sahin, 

2011). In the same vein, Perona and Miragliotta (2004) and Mocker et al. (2014) note that 

structural complexity can imply trade-offs between performance objectives and may be 

leveraged in pursuit of effectiveness.  

 



Table 1. Summary of SC complexity drivers and impact on performance 

Complexity factors Impact on performance References 

Number of suppliers Not significant but positively directed influence 

on competitive performance (consisting of 

measures of manufacturing cost, delivery 

flexibility, lead-time and timeliness, quality and 

dependability); Not significant but negatively 

directed influence on cost of manufacturing 

Bozarth et al. 

(2009) 

Number of suppliers Conceptually propose supply base complexity to 

be positively associated with the transactional 

cost (with its supply base) that the focal company 

incurs 

Choi and Krause 

(2006) 

Supply-base 

complexity 

Significant positive impact on frequency of 

disruptions and plant performance (cost, 

inventory turnover, quality, delivery 

performance and flexibility). The effect is 

mediated by frequency of disruptions in the 

model 

Brandon-Jones, 

Squire and Van 

Rossenberg 

(2014) 

Number of products 

and parts 

Not significant but positively directed influence 

on both competitive performance and cost of 

manufacturing 

Bozarth et al. 

(2009) 

Product complexity Significant negative effect on unit and order fill 

rate service performance 

Closs et al. 

(2010) 

Product and SC 

network complexity 

Drawing from the empirical findings: the level of 

complexity of an operative system was found 

connected to both its efficiency and effectiveness, 

other things being equal 

Perona and 

Miragliotta 

(2004) 

Number of 

customers 

Not significant but positively directed influence 

on competitive performance and cost of 

manufacturing 

Bozarth et al. 

(2009) 

SC complexity: size, 

structure, geographic 

dispersion, 

restructuring 

Based on case studies proposed positive impact 

on undesired outcomes (i.e. lower performance: 

cost, quality, speed) 

Manuj and Sahin 

(2011) 

Inter-relationships 

among suppliers 

Propose negative quadratic relationship between 

supply base complexity and supplier innovation 

Choi and Krause 

(2006) 



Complexity factors Impact on performance References 

Level of 

differentiation 

between suppliers 

Significant positive impact on the frequency of 

disruptions and on plant performance (cost, 

inventory turnover, quality, delivery 

performance and flexibility) 

Brandon-Jones, 

Squire and Van 

Rossenberg 

(2014) 

Differentiation of 

suppliers 

Conceptually propose supply base complexity to 

be negatively associated with supplier 

responsiveness 

Choi and Krause 

(2006) 

 

While prior studies have looked at the effect of SC complexity on some aspects of 

supply chain disruptions (Bode and Wagner, 2015; Craighead et al., 2007), there is lack 

of empirical research examining the potential influence of complexity factors on the 

resilience-performance link. Nonetheless, there are several results which suggest that 

complexity and resilience may interact when influencing performance under disruption. 

For example, product portfolio and supply base dispersion complexity factors are argued 

to reduce the effectiveness of managers’ decisions  (Collinson and Jay, 2012; Mariotti, 

2008). On the other hand, complexity has been argued to have a negative effect on 

integration and collaboration with suppliers (Sheffi, 2007), and to reduce agility and 

responsiveness (Ashkenas, 2007; Collinson and Jay, 2012). Manuj and Sahin (2011) 

argue that diverse supply and customer bases increase process outcome variability and 

drive workforce disengagement which may influence effectiveness of some resilience 

practices. Besides, the adoption of resilience practices can result in additional process 

complexity (Collinson and Jay, 2012). Table 1 provides summary of some relationships 

found in extant SC literature pertaining to structural and dynamic supply chain 

complexity items and operations performance measures. 

Research question and hypotheses 

Interrelationships among the concept of resilience and other organisational and 

infrastructure related phenomena have been among possible research directions suggested 

in extant literature (e.g. Bhamra et al., 2011). Drawing from the theoretical discussion in 

the preceding sub-sections, we argue that complexity could influence how resilience 

practices help restore performance upon disruption via two different mechanisms. On one 

hand, it is reasonable to argue that firms that suffer from a specific complexity outcome 

(e.g. increased frequency of supply disruptions) may respond by adopting practices which 

can mitigate these effects (e.g. setting redundancies such as dual sourcing or safety 



stocks). On the other hand, however, it is equally reasonable to argue that complexity 

may influence the outcomes of the firm’s adopted practices; i.e., a firm with a more 

complex supply base achieves a lesser degree of collaboration than one implementing 

same practices but with a less complex supply base. Based on this consideration, we posit 

the following generic research question. 

RQ: How does complexity influence resilience capability in mitigating supply chain 

disruptions? 

 

Contingent RBV generally views resilience as an outcome of assets built and 

capabilities created with an ultimate aim of mitigating the unwanted economic impact of 

disruptions (Brandon-Jones, Squire, Autry, et al., 2014). Consequently, resilience 

capabilities are broadly discussed by different researchers to have helped companies 

recuperate performance affected by supply chain disruption (e.g. Birkie, 2016; Dabhilkar 

et al., 2016; Rice and Caniato, 2003; Sheffi, 2007). Following this line of argument, we 

propose the first hypothesis as follows: 

H1: Resilience positively affects recovery of operations performance after disruption. 

 

Based on qualitative observations, Manuj and Sahin (2011) propose that supply chain 

complexity is positively related to unexpected and unwanted outcomes, i.e., reduction of 

performance. In terms of performance under supply chain disruption, these unwanted 

outcomes could be viewed as reduction in different dimensions of performance. Bozarth 

et al. (2009) observe that some supply chain complexity factors negatively impact 

operational performance. While such studies investigated these relations presuming 

“normal” day-to-day functioning, relevant implications on how performance might be 

influenced by supply chain complexity and its antecedents can be perceived. Likewise, 

quantitative studies have examined the role that SC complexity may have in increasing 

the frequency of disruptions (e.g. Bode and Wagner, 2015).  

Taking the focus of this study on SC disruptions into account, we state the second 

hypothesis: 

H2: Supply chain complexity influences performance recovery after supply chain 

disruption. 

 

We could not immediately disregard the possibility of both negative and positive 

impacts of SC complexity on performance as both have been argued in earlier research. 



A large literature base discusses that too much complexity destroys these benefits and has 

to be strategically managed, while many activities that can drive complexity can be 

sources of competitive edge (Bozarth et al., 2009; Collinson and Jay, 2012; Mocker et al., 

2014; Serdarasan, 2013). In the same vein, Perona and Miragliotta (2004) and Mariotti 

(2008) argue that while complexity can drive competitiveness and financial performance 

(e.g. increasing the firm’s product portfolio), they may do so at the expense of costlier 

coordination and management processes which may balance out the intended benefits. 

Together, these arguments suggest that firms should acknowledge the potentially opposite 

effects of complexity on different performance objectives and examine the extent to 

which they can benefit from reducing or enhancing complexity in their SCs. 

Acknowledging these results, we consider a linear (positive) and an opposing nonlinear 

(specifically quadratic) form of influence from complexity on performance. 

H2a: Supply chain complexity positively affects recovery of operations performance 

after supply chain disruption. 

H2b: Supply chain complexity has negative quadratic effect on operations 

performance recovery after supply chain disruption. 

 

Morieux (2011) argues that complexity brings both opportunities as well as challenges. 

This means, for example, that firms have the opportunity to more flexibly handle 

disruptions leveraging on a wider supply base, or broader range of product offering. The 

positive and negative impacts, including non-linear ones, of some complexity drivers 

discussed in literature are indicated in Table 1. The moderating influence of complexity 

on the resilience-performance relationship has been investigated, for example, in 

Brandon-Jones, Squire, Autry, et al. (2014). Investigating if complexity provides 

sufficient opportunity for moderating the resilience-performance link is part of the aim of 

this study. As described in earlier sub-sections, supply chain complexity comprises of 

structural and dynamic factors. Given the design of this study (described in section 3) and 

treatment of complexity as formative construct, we limit the investigation of the 

moderation effect to the structural dimension only and propose the following hypothesis. 

H3: Supply chain complexity has a positive moderating effect on the relationship 

between resilience and performance upon supply chain disruption. 

 

Given the divergent opinions in literature regarding the influence of SC complexity, 

we consider that it is worth doing further exploration on the hypothesis through 



investigation of which underlying constructs of complexity provide the dominant or 

(possibly) divergent influences. 

Research methodology 

Overall approach 

In this study we use the partial least square (PLS) approach-based Structural Equation 

Modelling (SEM). In fact, the application of the PLS approach in complexity analysis is 

not uncommon; several research papers have applied it in recent years (e.g. Braunscheidel 

and Suresh, 2009; Hanisch and Wald, 2014). The main reasons for choosing PLS over 

covariance-based SEM are that PLS: (1) is suitable for small sample size data analysis 

(e.g. Grötsch et al., 2013); (2) is relatively more effective to perform moderation effects 

analysis (Witzels et al., 2009); (3) enables to deal with formative multilevel constructs 

that are not easy to be dealt with in a single covariance-based SEM model (e.g. Peng and 

Lai, 2012); (4) does not require multivariate normal distribution of data. We employed 

the SmartPLS software package version 3 (Ringle et al., 2015) for our analysis. Bias 

corrected bootstrapping with 500 random samples is used to estimate the significance of 

path coefficients and item weights. 

Earlier studies treated complexity as consisting of several dimensions or facets that 

can be aggregated into multiple sub-constructs, each of which consist of multiple 

measurement items, as described in the theoretical framework section. This clearly 

justifies that supply chain complexity can be viewed as a second order construct. 

Methodologically, second-order constructs are argued to provide more theoretical 

parsimony and reduce model complexity (Witzels et al., 2009). Antecedents of a concept 

represent formative measures especially when judgement (retrospectively) is made based 

on actual actions rather than hypothetical action (Wilcox et al., 2008). For example, 

Wieland and Wallenburg (2013) used communication, cooperation and integration 

competencies as (formative) antecedents of agility and responsiveness that represent 

proactive and reactive resilience capabilities; Scholten and Schilder (2015) observe that 

visibility, flexibility, velocity and collaboration are formative antecedents of supply chain 

resilience, each of which can have more than one underlying constructs. The theoretical 

justification of formative measures is that the measures are the “cause” rather than being 

caused by the latent variable (e.g. Diamantopoulos and Winklhofer, 2001). The process 

of forming a composite latent variable using formative measures is called index 

construction (rather than scale formation as with reflective measures). Figure 1 shows the 



first-order and second-order constructs for resilience and complexity. The inner model 

(shaded region) represents the relationships among resilience, complexity and weighted 

performance described in the hypotheses. 

 

----------------------------------------------------- 

Please insert Figure 1 about here 

----------------------------------------------------- 

 

Due to the varying nature of index construction from scale development, the common 

procedures and tests for the latter cannot be directly applied for the former. We followed 

the suggested steps in supply chain complexity index development proposed by experts 

in the domain (Diamantopoulos and Winklhofer, 2001) throughout our analysis. 

Weighting or summing is also another alternative way of formulating formative 

indices (Wilcox et al., 2008), as is done in this research for resilience and weighted 

performance variables. A similar approach could have been taken for complexity if we 

were not interested in understanding the contribution of each complexity sub-index to 

overall supply chain complexity. 

Data collection 

The study used secondary data from companies that have faced at least one SC disruption 

between the years 2002 and 2015. This approach has not been common in resilience 

studies in operations and supply chain domain as recent literature reviews outlined (e.g. 

Bhamra et al., 2011; Tukamuhabwa et al., 2015). Initial list of incidents has been 

developed based on news items on globally encountered supply chain disruptions. Using 

those initial descriptions of the disruptions, the research team has searched for and 

compiled data about the incident and its consequences from each of the companies that 

faced the incident. The secondary data collection methodology was inspired by the event 

study methodology (Hendricks and Singhal, 2003). However, subsequent steps were 

different in this study. Table 2 briefly describes the procedure followed. 

Most of the companies that faced the disruptions were large firms with operations in 

multiple locations globally. There are also smaller firms operating in localised markets 

which faced disruptions; however the richness of details obtained from such firms was a 

challenge that the proportion of firms in our dataset becomes smaller. The operations of 

most of the companies represented in the dataset can be classified into electronics and 



electrical (36.4%), automotive (29.9%), or industrial goods (13%) sectors. Table 3 

presents descriptive summary of the dataset. The risk categories in Table 3 represent the 

risk drivers according to the classification by Chopra and Sodhi (2004); for example, 

disruption risk includes drivers such natural disaster, labour disputes, war, and supplier 

bankruptcy; procurement includes drivers such as exchange rate risk and price of inputs. 

Logically resembling drivers which we encountered but did not appear in the original list 

have been included to the categories; fire accidents, and regulatory and sustainability 

related claims on suppliers have been classified as disruption and procurement risks 

respectively.  



Table 2. Procedure followed in data collection and analysis 

Phase Description and activities Criteria/reference Milestone 

1. Surfing • News items reporting supply chain 

disruption collected from media such as 

FT, Reuters, CNN Money, WSJ  

• The incident should fit to one of the nine risk 

categories proposed by Chopra and Sodhi, (2004) 

• Table 3 shows categories covered 

• More than a hundred 

incidents that affected business 

performance of firms were 

identified  

2. Sorting • Additional detail on the incidents with 

respect to the company in focus actively 

searched for  

• Secondary data sources include: annual 

reports, top management interviews, 

financial reports, press releases and cases 

written on the incident 

• Discard if key details to characterise the incident are 

missing (i.e. at least some information on actions, 

circumstances and possible consequences of incident) 

• Adequate representation and balance of industries and 

risk categories in the sample 

• Table 3 shows risk categories and industries covered in 

this study 

• 80+ potential incidents 

identified; further screening led 

to 77 usable cases. 

3. Encoding • The collected data was encoded 

according to pre-defined scheme  

• Predefined systematic encoding procedure followed; 

multiple researchers encoded independently and 

discussed on differences to improve reliability 

• Qualitative data from the 

different sources was converted 

to scale measure of constructs 

4. Aggregation • Item-values aggregated into constructs 

based on pre-set rules and second order 

formative PLS-SEM 

• Likert scale categories shown in Appendix C; encoding 

procedure illustrated in Appendix D 

• Figure 1 depicts the PLS-SEM representation; Table 4 

shows statistical results upon aggregation 

• Correlation values and factor 

weights obtained. 

5. Regression 

 

• Regression models as per set 

hypotheses were run 

• linear regression analysis done as shown in Table 6 

with industry as control variable 

• Statistics with which to 

assess formulated hypotheses 

were obtained  



 



Table 3. Dataset description 
Risk category Frequency  Industry Frequency  

Disruptions 61  Automotive 23  

Delays 11  Electronics & electrical items 28  

Systems risk 4  Chemical/pharma 8  

Procurement risk 1  Industrial goods 10  

   Leisure and personal goods 6  

   Utilities and services 2  

Total 77  Total 77  

 

Data encoding 

The measurement items for resilience, complexity, and operations performance compiled 

from extant literature have been used to collect and encode relevant information. 

In order to be consistent and account for extreme differences in collected data from 

secondary sources, we have implemented conversion of the absolute values for 

complexity measures into Likert-type scales. Therefore, we have effectively followed the 

common practice of survey methodology. For example, instead of taking annual sales 

figures directly, we classified the annual sales into seven intervals represented as Likert 

scale (see Appendix C for details). 

Three variables out of the nine complexity measures have been encoded into two 

categories. Mergers and acquisitions (M&A) has been encoded into absent or present by 

combining presence of merger, acquisition, or sellout related to the organisation in the 

year the disruption incident happened. Because it was very difficult to extract exact 

information on the number of suppliers and customers from some companies, we decided 

to encode them as few or many only. 

Regarding the resilience practices, we have adopted the item parcelling approach used 

by Birkie (2016) and each practice is encoded as binary (0 for absence, 1 for presence) in 

the face of that particular incident. The values are then aggregated into the respective four 

resilience bundles as weighted averages; essentially each bundle has a possible range of 

[0, 1]. 

In a similar manner, variations in performance measures are captured using three 

levels: -1 for reduction, 0 for no change, and +1 for increase in each measure. The values 

in measure belonging to the five performance objectives are summed and transformed to 

give aggregate values. Disruption scenario types are used as weighs to discriminate the 



performance changes in disruptions of different intensity. It is to be noted that for both 

resilience practices and performance measures, absence of data is the default with a value 

of zero. An example of the encoding procedure for performance changes and resilience 

practices is provided in Appendix D. 

We applied a scheme for aggregating operations performance as used in Zhang et al. 

(2012) and Dabhilkar et al. (2016). We did not have a weighting mechanism for 

prioritized performance objectives; we treated all performance objectives as equally 

important across the dataset. 

The aggregated performance is then weighted based on three categories of disruption 

scenario following the approach used in Birkie (2016) for specifying scenario types and 

encoding procedure. The justification for doing this weighting is that for extreme event 

disruptions, it is much more difficult to recover performances compared to “minor” 

disruption incidents. Therefore, we weighed the performance changes by a proportion of 

3:2:1 for severe (type III): medium (type II): and minor (type I) disruptions respectively. 

Index construction and validation 

We used the detailed literature review to specify the different dimensions and measures 

of supply chain complexity. This is discussed in literature review, and summarised in the 

hypotheses formulation subsection (see Table 1). Accordingly, we have organised the 

measures of complexity into four sub-indices, one of them with just one measure, that in 

turn form the overall supply chain complexity indicator (see Table 4). In the same table 

specifications of the other constructs are also provided. 

Formative measurement model is based on multiple regression. Therefore, collinearity 

is a major concern in such formulation. We have checked multicollinearity and all values 

were less than 2, which is much lower than the commonly agreed conservative threshold 

of 5. 

Formative measures essentially bring complementary dimensions of the index under 

question. Therefore, more measures mean more dimensions of the index taken into 

account; but too much measures bear challenge of suitability for overall analysis 

especially for smaller sample sizes. While formal tests for external validity on formative 

measurement are still under discussion, we have used a common approach of checking 

the relevance of the measures forming each complexity (sub-)index by evaluating their 

level of significance (p<0.05). The measures indicated in our final model have all been 

found to be significant in forming the indices. 



 

Table 4. Constructs and their specification 

Constructs Mean SD 

Weight 

on index 

Weight on 

sub-index  Range 

Complexity 0.00 1.00   [-2.83, 2.11] 

    Size 0.00 0.99 0.487***  [-2.73, 1.15] 

          Employees 5.53 1.61  0.60***  

          Annual turnover 4.81 1.64  0.448***  

    Product portfolio 0.02 1.00 0.302***  [-2.16, 3.38] 

          Product lines  3.03 1.06  0.694***  

          Major brands 1.96 1.45  0.411***  

          Major customers 1.65 0.48  0.3339*  

     Supply base dispersion 0.00 1.00 0.347***  [-2.23, 2.46] 

          Production facilities 3.23 1.37  0.695***  

          Suppliers 1.61 0.49  0.544***  

          Legal entities 2.08 0.81  0.185*  

     Restructuring 1.48 0.50 0.081†  [1, 2] 

          M&A    1.00  

      
Resilience 0.00 1.00   [-2.40, 2.03] 

    Proactive-Internal 0.46 0.41 0.377***  [0, 1] 

    Proactive-External 0.44 0.27 0.344***  [0, 1] 

    Reactive-Internal 0.52 0.26 0.443***  [0, 1] 

    Reactive-External 0.54 0.24 0.289***  [0, 1] 

      
Weighted performance 26.26 9.24   [10, 54] 

      
Industry     [1, 6] 

Note: *** p<0.005, ** p<0.01, * p<0.05; †p<0.1 

Findings 

Correlations among variables 

Table 5 provides the correlations of relevant variables in this study. In the table, we do 

not observe exaggerated correlations (> 0.9) except in one case where complexity has 

with its size sub-index. Out of caution with this outcome, we have run the regression 

analyses (reported in the next subsection) with and without the size complexity sub-index, 



and results remained consistent. Therefore, we continued without the need to exclude 

size. 

Regression results 

The initial regression model, based on the research question and the stipulated hypotheses 

has been mathematically expressed as follows: 

 

𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡𝑊𝑊𝑡𝑡_𝑃𝑃𝑊𝑊𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑊𝑊 = 𝛽𝛽0 +  𝛽𝛽1 ∗ 𝑅𝑅𝑊𝑊𝑅𝑅𝑊𝑊𝑅𝑅𝑊𝑊𝑊𝑊𝑃𝑃𝑃𝑃𝑊𝑊 +  𝛽𝛽2 ∗ 𝐶𝐶𝑃𝑃𝑃𝑃𝐶𝐶𝑅𝑅𝑊𝑊𝐶𝐶𝑊𝑊𝑡𝑡𝐶𝐶 +

 𝛽𝛽3 ∗ 𝐶𝐶𝑃𝑃𝑃𝑃𝐶𝐶𝑅𝑅𝑊𝑊𝐶𝐶𝑊𝑊𝑡𝑡𝐶𝐶 ∗ 𝑅𝑅𝑊𝑊𝑅𝑅𝑊𝑊𝑅𝑅𝑊𝑊𝑊𝑊𝑃𝑃𝑃𝑃𝑊𝑊 + 𝛽𝛽4 ∗ 𝐶𝐶𝑃𝑃𝑃𝑃𝐶𝐶𝑅𝑅𝑊𝑊𝐶𝐶𝑊𝑊𝑡𝑡𝐶𝐶2 + 𝛽𝛽5 ∗ 𝐼𝐼𝑃𝑃𝑡𝑡𝐼𝐼𝑅𝑅𝑡𝑡𝑃𝑃𝐶𝐶 + 𝜀𝜀  

 

We started by investigating the direct effects and controlling for industry; then we 

continued to interaction and quadratic effects. Important values for the models are 

presented in Table 6. 

All the regression models estimated the coefficients of the independent variables after 

controlling for the effects of industry sector, even though this control variable did not 

appear to have significant effect in all models. The first model estimates variance 

explained by the industry control variable. The control variable barely explains any 

variation in performance. 

Estimation of the second model reveals that both resilience and SC complexity bear 

significant direct influences on performance recovery, explaining sample adjusted 

variance of 16.3%; at this stage, hypotheses H1 and H2a find support. In model 3 

estimation, where the moderation effect is introduced, both direct and moderation effects 

remain significant (at p=0.05 or less). The moderation explains 3.5% additional variance 

on top of main effects in model 2. Model 4 introduced the quadratic effect of SC 

complexity but no significant observations have been made. The negative coefficient of 

the quadratic term does not appear significant; no additional variance compared to model 

3 has been explained. Altogether models 2-4 reveal that all our hypotheses, except H2b 

that refers to the quadratic effect, were supported. 

 



Table 5. Multivariate correlations 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 

(1) Industry  1           

(2) Complexity  -0.089 1          

(3) Size  -0.125 0.909** 1         

(4) Product portfolio  0.037 0.749** 0.519** 1        

(5) Supply base dispersion  -0.112 0.886** 0.729** 0.561** 1       

(6) Restructuring  -0.017 0.249* 0.204† 0.085 0.106 1      

(7) Resilience  -0.069 -0.191† -0.221† -0.069 -0.149 -0.010 1     

(8) Proactive-Internal  0.117 -0.224† -0.258* -0.008 -0.240* -0.042 0.714** 1    

(9) Proactive-External  -0.224† -0.191† -0.216 -0.165 -0.090 -0.057 0.673** 0.266* 1   

(10) Reactive-Internal  0.051 -0.155 -0.161 -0.043 -0.157 -0.013 0.792** 0.446** 0.366** 1  

(11) Reactive-External  -0.203† 0.096 0.077 0.033 0.145 0.108 0.514** 0.163 0.230* 0.189† 1 

(12) Weighted performance  0.006 0.261* 0.251* 0.189† 0.208† 0.097 0.296** 0.153 0.064 0.337** 0.232* 

Note: Correlation significant at the respective levels (2-tailed) of :** p<0.01 level; * p<0.05;  † p< 0.1 

 



Table 6. Regression analysis on weighted performance 

Model Standardised coefficients for β 

Adj. 

R2 

Δ adj. 

R2 SRMR NFI 

p of 

d_ULS 

1 Control variable  -0.013  0.00 1.00 - 

 Industry 0.006      

2 Direct effects (H1, H2a)  0.163 0.176 0.079 0.796 0.09 

 Industry 0.061      

 Resilience 0.364***      

 SC complexity 0.336***      

3 Moderation (H3)  0.198 0.035 0.071 0.764 0.175 

 Industry 0.035      

 Resilience 0.302***      

 SC complexity 0.257*      

 Resilience*SC complexity 0.260*      

4 Quadratic effect (H2b)  0.198 0.000 0.074 0.711 0.177 

 Industry 0.035      

 Resilience 0.308**      

 SC complexity 0.196      

 Resilience*SC complexity 0.267*      

 Quadratic of SC complexity -0.077      
*** p<0.005;  ** p< .01; * p< 0.05;  † p< 0.1; (all 2-tailed) 

 

In SmartPLS, four indicative models of fit statistics are provided: standardised root 

mean residual (SRMR), Normalized fit index (NFI), squared Euclidean distance (d_ULS) 

and geodesic distance (d_G). The last two, d_ULS and d_G, are exact measures 

(bootstrap-based) of discrepancy between the empirical covariance matrix and the results 

of the composite factor model. We want the discrepancy to be small for a better fit. This 

minimal discrepancy is tested by non-significant (p>0.05) value corresponding to d_G 

and d_ULS.  We also expect NFI as close to 1.0 and SRMR to be as close to zero as 

possible. Rule of thumb suggests an acceptable model fit with these values: NFI>=0.9, 

SRMR<0.08. Even though second order formative PLS models are neither required nor 

expected to fit any better than their single order counterparts (Wilcox et al., 2008), and 

model fit tests in SmartTPLS are only indicative, the inner model seems to have quite 

acceptable fit with NFI close to 0.8, SRMR less than 0.08, and p value of the Euclidean 

distance being higher than 0.5; this is particularly true for models 3 and 4. 



Our endogenous variable, the weighted performance, is calculated as a product of the 

aggregated performance and the disruption scenario type. To show how well the model 

holds when the weighting scheme is released, we used the aggregated performance 

without weighting. While the adjusted r-squared value dropped to 5%, moderation effect 

became insignificant at p=0.1 level; model fit stats showed little reduction: SRMS=0.074; 

NFI=0.662; p of d_ULS=0.159. 

Indirect effect of sub-indices 

Going a step further in the direction of the supported hypothesis of interaction (H3), we 

have tried to understand which of the underlying sub-indicators for both complexity and 

resilience would have dominant influences. To do this, we computed the indirect effects 

of sub-indices (first order constructs) on the weighted performance variable. 

The indirect effects are obtained by multiplying the weights in respective paths from 

the sub-index to performance. For example, the moderating effect of size is calculated as 

the product of loading of size on complexity (0.487) by the moderation standardised 

coefficient in model 3 (0.26), giving 0.127 as contribution of size in the moderation effect. 

Likewise, the moderating indirect effects of product portfolio, supply-base dispersion, 

and restructuring are 0.079, 0.090, and 0.021 respectively. The path weights from these 

four sub-factors to weighted performance are 0.125, 0.078, 0.089 and 0.021; this indicates 

the dominance of size and supply-base dispersion as SC complexity factors among the 

structural category. 

Proactive-internal, proactive-external, reactive-internal, and reactive-external bundles 

of resilience have indirect effects on weighted performance of 0.114, 0.104, 0.134, and 

0.087 respectively. 

The results in this study generally imply that firms which operate under higher level 

of operational complexity tend to employ resilience capabilities to a higher extent when 

responding to disruptions. This result provides empirical evidence to extant resilience 

theory which discusses the relevance of SC network complexity issues, such as the 

number of suppliers, in dealing with SC disruptions (e.g. Bode and Wagner, 2015; Sheffi, 

2007). 

Discussion 

This research has empirically examined the influence of supply chain complexity on how 

firms mitigate performance losses under operational disruptions using resilience 

capabilities. Accordingly, we have formulated three main hypotheses to be empirically 



tested. The hypotheses represent direct effects of complexity and resilience upon 

performance following a disruption (H1, H2a), quadratic influence of complexity (H2b), 

and moderation influence of complexity (H3). 

This study included incidents affecting several industry sectors. Therefore, before 

proceeding with the testing of the hypotheses set forth, we have controlled for possible 

variance due to industry differences. We noted that the industry control variable does not 

seem to have any significant effect in all estimation models. 

Use of weights for different disruption scenarios provides indication that the resilience 

capabilities are far more important in avoiding much worse performance consequences 

of severe disruptions compared to, say, normal accidents. This strengthens the argument 

that resilience capabilities are much worth for unanticipated (and likely low probability) 

events that can have high impact on performance (Knemeyer et al., 2009). 

The first hypothesis intended to observe direct influence of resilience on performance. 

The analysis shows that resilience has significantly positive (p<0.01) relation with 

improvement of performance from an affected lower level due to disruption. This in 

support of the recent studies that found significant positive correlation between resilience 

capabilities and performance recovery after disruption (Ambulkar et al., 2015; Dabhilkar 

et al., 2016; Wieland and Wallenburg, 2013). Our analysis adds confirmation and deeper 

understanding to those studies through relatively larger sample size and additional 

measurement items for both resilience (5 additional items) and operations performance 

(at least 2 items for each of the 5 objectives). For example, the relative strength of the 

different capability bundles forming resilience was estimated (Table 4). We can observe 

that internal resilience capabilities (both proactive and reactive) are stronger than 

external-focused capabilities in affecting performance. This suggests that assets and 

capabilities embedded elsewhere in the supply chain can be leveraged when the efforts 

within the firm boundary drive them well enough. Reactive-external seems to be 

relatively weaker leading to a possible interpretation that reactive efforts to solicit 

resources are better achieved only when proactive relations have been in place 

beforehand. In general, these results are coherent with formation of resilience capabilities 

from routine practices (e.g. Dabhilkar et al., 2016); for example, utilising multiple 

competences of large work force, or leveraging from pre-established supplier 

relationships to switch among possible supply bases during disruption. 

According to the findings in this study, increased SC complexity seems to positively 

affect performance loss reductions (H2a). Based on contingent resource based view, this 



implies that more resources and interconnections could provide opportunities to keep (up) 

performances. Our results strongly support this argument. Considering that we mainly 

focused on structural drivers of SC complexity, the weak contribution of restructuring to 

SC complexity (Table 4) is a possible indication that it is more of a dynamic SC 

complexity issue rather than structural, which needs to be explored further in future 

research. 

Literature suggests that some level of complexity is required to bring about 

economically viable performance levels; this also appears to explain the finding that the 

moderating effect of complexity on the resilience-performance link was significantly 

positive with some additional variance explained (H3). 

As discussed in the theoretical background section, extant research has provided with 

some empirical quantitative evidence which suggest that the relation between complexity 

and performance may be represented by an inverted U-shape (e.g. Collinson and Jay, 

2012). Following this line of argument, our model has considered the possibility that 

complexity, as an aggregate variable in a quadratic form, may influence performance 

linearly (H2b). However, the hypothesis is not supported by our empirical analysis as the 

quadratic link between complexity and performance resulted not significant (at p<0.1). 

The direction of the coefficient for the quadratic influence (negative β value) is in line 

with the previous argument, but the statistical evidence was not significant enough. This 

is possibly due to the presence of dominant linear effects from resilience and complexity. 

Table 7 provides summary of this study in supporting or rejecting the proposed 

hypotheses. The use of different data collection (encoding from secondary data) and data 

analysis (formative PLS-SEM) methodology are unique values which further strengthen 

the robustness of the validation in this study. 

We have tried to perform an in depth exploration on the moderation mechanisms 

contributed by the first order constructs (sub-indices) as described in the findings section. 

The size of the business organisation, followed by supply base dispersion, dominantly 

contributes to the majority of the moderation on the resilience-performance link. Big size 

could mean, for example, that the firm would have higher financial and human capital to 

be employed in building and (re)generating capabilities (Ambrosini et al., 2009) to 

mitigate disruptions, and thus that it could be more effective in sustaining performance 

upon disruption with the same resilience capabilities (i.e. functional and resource 

redundancies) supported by proper decision models. In the same manner, a more 

diversified supply base and wider network of SC facilities may provide the firm with 



additional opportunities in leveraging resilience capabilities to manage unexpected 

disruptions if sufficiently capable processes and infrastructure are in place. 

There are several instances in which we can practically observe how firms leveraged 

larger size and supply base dispersion complexity for improving effectiveness of 

resilience capabilities. For example, ON Semiconductors explains this in the annual 

report as follows: 

“Our large global scale and international manufacturing network proved invaluable 

in mitigating the impact from these two significant natural disasters [Japan earthquake 

and Thailand flooding in 2011]. We were able to minimize the resulting supply 

disruptions to our customers by leveraging our 20 worldwide internal front-end and 

back-end manufacturing facilities, and working closely with our extensive network of 

external manufacturing partners and suppliers”. 

The organisational restructuring sub-index seems to provide the weakest contribution 

of all complexity sub-indices. A possible explanation is that coincidence of merger or 

sellout with disruption hampers focus of effort on disruption mitigation. For example, 

workers who have good experience and are trained to perform coordinated tasks during 

disruptions might not work as expected because restructuring and job redesign may, for 

example, lead to confusion and ambiguity. 

Companies often strive to manage and limit complexities in their supply chains and 

internal operations in search of economies of scale and better efficiency. However, some 

level of complexity is required in dealing with supply chain disruptions and recovering 

operations performance. The firm may have invested in these complexity drivers 

somehow, and utilising them for sustaining competitive advantages upon disruption 

should be a logical consideration. In this vein, resilience capabilities can be seen as those 

practices that exploit structural complexity factors as desirable resources to recover 

operations performance after exceptional disruptions. 

Table 7. Discussion on hypotheses 

Direct 

effects 

H1 (supported): resilience capabilities do significantly help in better 

recovering performance after disruptions. Result has been claimed in earlier 

studies. We provide validation through extended sample and different data 

collection method.  

H2a (supported): supply chain complexity does significantly improve 

performance recovery after disruptions. 



Moderating 

effect 

H3 (supported): the positive resilience-performance link is significantly 

positively moderated by supply chain complexity. At higher complexity, 

resilience capabilities lead to more effective performance benefits compared to 

situations with lower complexity. 

The moderation is partial as both H3 and H2a are supported. 

Quadratic 

effect 

H2b (rejected): quadratic effect of complexity on performance does not appear 

to be significant; the direct and moderating effects seem to dominate the 

negative influence. 

 

Even though we did not find strong evidence to support hypothesis H2b, we cannot 

disregard the possibility of a negative quadratic relation between SC complexity and 

performance (e.g. Collinson and Jay, 2012) or performance recovery. Indeed, it stands to 

reason that even if firms may benefit from increased diversity and variety of resources in 

responding to disruptions (as the findings of the present study strongly suggest), excessive 

complexity can impair decision making and SC coordination (Manuj and Sahin, 2011) 

and may no longer positively contribute to operations performance recovery in the event 

of a supply chain disruption. 

Seeing the findings under the lenses of contingent RBV and CT, once can easily gather 

that the outcome of capabilities is contingent on the existing context. Furthermore, the 

creation of resilience capabilities is also contingent on what is available embedded 

somewhere in the supply chain, not just the rare resources that the specific firm owned 

and controlled as traditionally thought before. Moreover, the presented findings call to 

consider how resilience practices and complexity management actions under routine 

operating conditions can be reconciled with each other. 

This study relied on secondary data and by design could not consider the dynamic 

complexity factors. However, earlier studies indicated or implied that dynamic 

complexity has significant influence on performance (e.g. Azadegan et al., 2013; 

Brandon-Jones, Squire and Van Rossenberg, 2014; Choi and Krause, 2006); hence, the 

combined interplay of structural-dynamic complexity factors in supply chain disruption 

setting would be an interesting issue for future investigation. 

Conclusion 

Following the theoretical lenses of CT and contingent RBV, this study investigated how 

contingent complexity factors influence firms’ capabilities in recovering performance 

when affected by SC disruption events. Based on encoded secondary data and PLS-SEM 



approach with formative second order constructs, the findings indicate that resilience 

capabilities help reduce performance-degrading possibilities of supply chain disruptions. 

Complexity seems to positively affect performance recovery and also positively moderate 

the resilience-performance link. 

Our study provides with additional support and insights on the discussion of resilience 

performance theory with the inclusion of context factors.  

Theoretical implications 

In light of contingent RBV, the findings of this study indicate that resources embedded 

along the supply chain network, out and beyond the control of a single firm, contribute to 

developing resilience capabilities. Therefore, contingent RBV and CT help us understand 

how supply chain complexity drivers may lead better performance recovery. In the 

context of this study, increasing supply base complexity means additional resources that 

have potential not only for improving competitiveness during ordinary business 

conditions, but also for addressing the challenge of fast and better performance recovery 

after disruptions. It appears that complexity has the tendency to increase the effectiveness 

of resources utilised to cope with disruptions. This means that the diversity of resources 

and number of possible configurations (due to complexity) seem to enable better and 

faster bounce back from disruptions. 

In addition, our results contribute to the growing body of research which claims that 

SC complexity might play a dual role (i.e. positive and negative) with regards to 

performance; the study’s empirical findings suggest that the benefits of having additional 

resources can offset the detrimental effects of complexity in dealing with SC disruptions. 

Practical implications 

Business decision makers are often cited to have tried simplification of their supply chain 

elements. Researchers in the field recognise that supply chains are becoming more and 

more complex. It is only logical to think of how such complexity in supply chains can be 

used for betterment of operational performance at times of high uncertainty. 

An implication of this study is that some level of supply chain complexity is beneficial 

for having competitive performance and also for a better recovery of operational 

performance affected due to disruption. As shown in this study, resilience capabilities are 

likely to become more effective when leveraged on higher resources and flexibility that 

come with more complexity in the supply chain. It could be of relevance for supply chain 



managers how the impact of disruptions can be offset through leveraging SC complexity 

drivers such as custom configurations from existing product and supply base diversities. 

Limitations and future research  

The proposed quadratic relationship between complexity and performance (H2b) has 

not been supported. However, there are possible avenues for future research including 

investigation of possible negative mediation influence of SC complexity on the resilience-

performance relationship. The contribution of complexity at sub-factors level has been 

briefly explored in this study. However, a more rigorous investigation is called for to 

establish a much clearer understanding of the underlying mechanisms. Investigation of 

the structural and dynamic forms of SC complexity separately and jointly on the 

resilience-performance link is an interesting future research direction, and one that could 

shed further light onto the weak contribution/effect of restructuring encountered in this 

study. It is also of future research interest to understand how performance improvement 

can be achieved and managed by firms operating in industries with high supply chain 

complexity, even in circumstances where unanticipated disruptions are not faced. 

We are aware of the limitations and criticisms of using second-order formative 

constructs in SEM estimates. However, the compelling findings, and the outweighing 

benefits of PLS-SEM make a strong case for our approach given the study design 

characteristics. Earlier studies implied that dynamic complexity might have significant 

influence on performance during unpredictable circumstances (e.g. Azadegan et al., 2013; 

Brandon-Jones, Squire and Van Rossenberg, 2014); inclusion of dynamic complexity 

issues might have allowed for richer detail and discussion. However, the study design is 

limited in scope from the outset only on structural complexity. And the generalisability 

of our findings may not apply for dynamic supply chain complexity factors. 

Consequently, we see room for relevant quantitative and qualitative research to further 

investigate these issues. 

References 
Ambrosini, V., Bowman, C. and Collier, N. (2009), “Dynamic capabilities: an exploration of how firms 

renew their resource base”, British Journal of Management, Vol. 20 No. S1, pp. S9–S24. 

Ambulkar, S., Blackhurst, J. and Grawe, S. (2015), “Firm’s resilience to supply chain disruptions: scale 

development and empirical examination”, Journal of Operations Management, Vol. 33–34, pp. 111–

122. 

Ashkenas, R. (2007), “Simplicity-minded management”, Harvard Business Review, Vol. 85 No. 12, pp. 

101–109. 



Azadegan, A., Patel, P.C., Zangoueinezhad, A. and Linderman, K. (2013), “The effect of environmental 

complexity and environmental dynamism on lean practices”, Journal of Operations Management, 

Vol. 31 No. 4, pp. 193–212. 

Bhamra, R., Dani, S. and Burnard, K. (2011), “Resilience: the concept, a literature review and future 

directions”, International Journal of Production Research, Vol. 49 No. 18, pp. 5375–5393. 

Birkie, S.E. (2016), “Operational resilience and lean: in search of synergies and trade-offs”, Journal of 

Manufacturing Technology Management, Vol. 27 No. 2, pp. 185–207. 

Bode, C. and Wagner, S.M. (2015), “Structural drivers of supply chain complexity and the frequency of 

supply chain disruptions”, Journal of Operations Management, Vol. 36, pp. 215–228. 

Bozarth, C., Warsing, D.P., Flynn, B.B. and Flynn, E.J. (2009), “The impact of supply chain complexity 

on manufacturing plant performance”, Journal of Operations Management, Vol. 27, pp. 78–93. 

Brandon-Jones, E., Squire, B., Autry, C.W. and Petersen, K.J. (2014), “A Contingent Resource-Based 

perspective of supply chain resilience and robustness”, Journal of Supply Chain Management, Vol. 

50 No. 3, pp. 55–73. 

Brandon-Jones, E., Squire, B. and Van Rossenberg, Y.G.T. (2014), “The impact of supply base complexity 

on disruptions and performance : the moderating effects of slack and visibility”, International Journal 

of Production Research. 

Braunscheidel, M.J. and Suresh, N.C. (2009), “The organizational antecedents of a firm’s supply chain 

agility for risk mitigation and response”, Journal of Operations Management, Vol. 27 No. 2, pp. 119–

140. 

BSI (British Standards Institute). (2015), 2015 Security Risk Index, BSI Supply Chain Solutions, London. 

Casti, J.L. (1979), Connectivity, Complexity and Catastrophe in Large-Scale Systems, John Wiley & Sons, 

New York. 

Choi, T.Y. and Krause, D.R. (2006), “The supply base and its complexity: implications for transaction 

costs, risks, responsiveness, and innovation”, Journal of Operations Management, Vol. 24 No. 5, pp. 

637–652. 

Chopra, S. and Sodhi, M.S. (2004), “Managing risk to avoid supply-chain breakdown”, MIT Sloan 

Management Review, Vol. 46 No. 1, pp. 52–61. 

Closs, D.J., Nyaga, G.N. and Voss, M.D. (2010), “The differential impact of product complexity, inventory 

level, and configuration capacity on unit and order fill rate performance”, Journal of Operations 

Management, Vol. 28, pp. 47–57. 

Collinson, S. and Jay, M. (2012), From Complexity to Simplicity: Unleash Your Organization’s Potential, 

Palgrave McMillan, London. 

Craighead, C.W., Blackhurst, J., Rungtusanatham, M.J. and Handfield, R. (2007), “The severity of supply 

chain disruptions: design characteristics and mitigation capabilities”, Decision Sciences, Vol. 38 No. 

1, pp. 131–156. 

Dabhilkar, M., Birkie, S.E. and Kaulio, M. (2016), “Supply-side resilience as practice bundles: a critical 

incident study”, International Journal of Operations & Production Management, Vol. 36 No. 8, pp. 

948–970. 

Diamantopoulos, A. and Winklhofer, H.M. (2001), “Index construction with formative indicators: an 



alternative to scale development”, Journal of Marketing Research, Vol. 38 No. 2, pp. 269–277. 

Duncan, R.B. (1972), “Characteristics of organizational environments and perceived environmental 

uncertainty”, Administrative Science Quarterly, Vol. 17 No. 3, pp. 313–327. 

Grötsch, V.M., Blome, C. and Schleper, M.C. (2013), “Antecedents of proactive supply chain risk 

management - a contingency theory perspective”, International Journal of Production Research, Vol. 

51 No. 10, pp. 2842–2867. 

Hanisch, B. and Wald, A. (2014), “Effects of complexity on the success of temporary organizations: 

relationship quality and transparency as substitutes for formal coordination mechanisms”, 

Scandinavian Journal of Management, Vol. 30, pp. 197–213. 

Hendricks, K.B. and Singhal, V.R. (2003), “The effect of supply chain glitches on shareholder wealth”, 

Journal of Operations Management, Vol. 21 No. 5, pp. 501–522. 

Heywood, S., Spungin, J. and Turnbull, D. (2007), “Cracking the complexity code”, McKinsey Quarterly, 

Vol. 83 No. 2, pp. 85–95. 

Johnson, N., Elliott, D. and Drake, P. (2013), “Exploring the role of social capital in facilitating supply 

chain resilience”, Supply Chain Management: An International Journal, Vol. 18 No. 3, pp. 324–336. 

Jüttner, U. and Maklan, S. (2011), “Supply chain resilience in the global financial crisis: an empirical 

study”, Supply Chain Management: An International Journal, Vol. 16 No. 4, pp. 246–259. 

Ketokivi, M. (2006), “Elaborating the contingency theory of organizations: the case of manufacturing 

flexibility strategies”, Production and Operations Management, Vol. 15 No. 2, pp. 215–228. 

Kleindorfer, P.R. and Saad, G.H. (2005), “Managing disruption risks in supply chain”, Production and 

Operations Management, Vol. 14 No. 1, pp. 53–68. 

Knemeyer, A.M., Zinn, W. and Eroglu, C. (2009), “Proactive planning for catastrophic events in supply 

chains”, Journal of Operations Management, Vol. 27 No. 2, pp. 141–153. 

Manuj, I. and Sahin, F. (2011), “A model of supply chain and supply chain decision-making complexity”, 

International Journal of Physical Distribution & Logistics Management, Vol. 41 No. 5, pp. 511–549. 

Mariotti, J.L. (2008), The Complexity Crisis, Adams Media, MA. 

Matsuo, H. (2015), “Implications of the Tohoku earthquake for Toyota’s coordination mechanism: Supply 

chain disruption of automotive semiconductors”, International Journal of Production Economics, 

Vol. 161, pp. 217–227. 

Melnyk, S.A., Rodrigues, A. and Ragatz, G.L. (2009), “Using simulation to investigate supply chain 

disruptions”, in Zsidisin, G.A. and Ritchie, B. (Eds.), Supply Chain Risk: A Handbook of Assessment, 

Management, and Performance (Vol. 124), pp. 103–122. 

Mocker, M., Ross, J.W. and Kosgi, K. (2016), Mastering Business Complexity: MIT CISR Survey Results. 

Mocker, M., Weill, P. and Woerner, S.L. (2014), Revisiting Complexity in the Digital Age, MITSloan 

Management Review. 

Morieux, Y. (2011), “Smart rules: Six ways to get people to solve problems without you”, Harvard Business 

Review, Vol. 89 No. 9, pp. 78–86. 

Peng, D.X. and Lai, F. (2012), “Using partial least squares in operations management research: a practical 

guideline and summary of past research”, Journal of Operations Management, Vol. 30 No. 6, pp. 

467–480. 



Perona, M. and Miragliotta, G. (2004), “Complexity management and supply chain performance 

assessment: a field study and a conceptual framework”, International Journal of Production 

Economics, Vol. 90, pp. 103–115. 

Ponomarov, S.Y. and Holcomb, M.C. (2009), “Understanding the concept of supply chain resilience”, The 

International Journal of Logistics Management, Vol. 20 No. 1, pp. 124–143. 

Rice, J.B. and Caniato, F. (2003), “Building a secure and resilient supply network”, Supply Chain 

Management Review, Vol. 7 No. 5, pp. 22–30. 

Ringle, C.M., Wende, S. and J.-M., B. (2015), “SmartPLS 3.0”, available at: www.smartpls.de (Accessed 

15 September 2016). 

Scholten, K. and Schilder, S. (2015), “The role of collaboration in supply chain resilience”, Supply Chain 

Management: An International Journal, Vol. 20 No. 4, pp. 471–484. 

Serdarasan, S. (2013), “A review of supply chain complexity drivers”, Computers & Industrial 

Engineering, Vol. 66, pp. 533–540. 

Sheffi, Y. (2007), The Resilient Enterprise: Overcoming Vulnerability for Competitive Advantage, MIT 

Press, Cambridge, MA. 

Sivadasan, S., Efstathiou, J., Frizelle, G., Shirazi, R. and Calinescu, A. (2002), “An information-theoretic 

methodology for measuring the operational complexity of supplier-customer systems”, International 

Journal of Operations & Production Management, Vol. 22 No. 1, pp. 80–102. 

Sousa, R. and Voss, C.A. (2008), “Contingency research in operations management practices”, Journal of 

Operations Management, Vol. 26 No. 6, pp. 697–713. 

Tukamuhabwa, B.R., Stevenson, M., Busby, J. and Zorzini, M. (2015), “Supply chain resilience: definition, 

review and theoretical foundations for further study”, International Journal of Production Research, 

Vol. 53 No. 18, pp. 5592–523. 

Wieland, A. and Wallenburg, C.M. (2013), “The influence of relational competencies on supply chain 

resilience: a relational view”, International Journal of Physical Distribution & Logistics 

Management, Vol. 43 No. 4, pp. 300–320. 

Wilcox, J.B., Howell, R.D. and Breivik, E. (2008), “Questions about formative measurement”, Journal of 

Business Research, Vol. 61 No. 12, pp. 1219–1228. 

Witzels, M., Odekerken-Schroder, G. and van Oppen, C. (2009), “Using PLS path modeling for assessing 

hierarchical construct models: guidelines and empirical illustration”, MIS Quarterly, Vol. 33 No. 1, 

pp. 177–195. 

Wong, C.Y., Boon-itt, S. and Wong, C.W.Y. (2011), “The contingency effects of environmental uncertainty 

on the relationship between supply chain integration and operational performance”, Journal of 

Operations Management, Vol. 29 No. 6, pp. 604–615. 

Zhang, D., Linderman, K. and Schroeder, R. (2012), “The moderating role of contextual factors on quality 

management practices”, Journal of Operations Management, Vol. 30 No. 1–2, pp. 12–23. 

  



Appendices 

Appendix A: Resilience sub-indices and practices (based on Dabhilkar et al., 2016) 

Proactive-internal 

• A plan for communication of incidents is established 

• Crisis management exercises are regularly undertaken  

• A systematic process for handling unforeseen supply disruptions is established 

• People with earlier experience of handling supply disruptions are assigned 

• Multi-competence teams are established 

Proactive-external 

• The business environment is regularly scanned for signals of possible disruption 

• Alternative supply bases are identified in the event of a possible disruption 

• Long-term supplier relationships are developed 

• The firm has long-term relation with customers 

Reactive-internal 

• Responsibility for different parts of the recovery process is distributed clearly 

and appropriately 

• Task forces make use of a systematic recovery process 

• Managers are actively involved and support the recovery process through 

allocation of resources 

• People in the organisation cooperate 

• Production/delivery adjusted by balancing availed resources 

Reactive-external 

• The firm promptly collects information from the incident site 

• Relevant functions of the firm and key actors are informed fast 

• The firm effectively collaborates with external actors 

• Demand is shifted across time, market or product 

• Enhanced value propositions are offered to customers 

 

  



Appendix B: Performance measures (adopted from Birkie, 2016)  

Performance 

objectives Metrics 

Quality Defect (scrap and rework) rate (reverse coded) 

Customer complaints (reverse coded) 
Cost Increase in revenue 

Increase in manufacturing unit cost (reverse coded) 

Increase in cost of extra work force, activity, or restructuring (reverse coded) 

Return on assets  

Total scrape & rework /sales (reverse coded) 

Speed 

 

On-time delivery 

Reduction in delivery lead time 

Improvement in order processing speed 

Throughput time efficiency (time worked on product/manufacturing lead time) 

Flexibility Delivery volume flexibility 

Delivery time flexibility  

Dependability 

 

Accuracy of delivered quality 

Accuracy and reliability of delivered quantity 

 

  



Appendix C: Scheme for encoding collected data into Likert scale 
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Scale and corresponding range             

1 <100 <50 1 <3 1 1 Few Few No 

2 100-500 50-100 2-4 3-10 2-5 2-5 Many* Many† Yes‡ 

3 500-1,500 100-500 4-7 10-25 5-10 5-10  * More than 100 
† More than 3000 
‡ M&A is considered 

yes if company had at 

least a merger, 

acquisition, or sell out 

in the year of the 

incident 

4 1,500-5,000 500-5,000 7-10 25-60 10-15 10-15 

5 5,000-25,000 5,000-

25,000 

10-15 60-100 15-25 15-25 

6 25,000-

100,000 

25,000-

100,000 

15-20 100-

250 

25-50 25-50 

7 >100,000 >100,000 >20 >250 >50 >50 

Major industry is classified as follows: (1) Automotive; (2) Electronics & electrical items; (3) 

Chemical/pharmaceutical; (4) Industrial goods; (5) Leisure,  personal goods; (6) Utilities 

and industrial services 

 

Appendix D: Example of encoding procedure 
The following excerpt from an annual report of Nissan after suffering the Thailand flooding in 

2011 is used to exemplify the coding process. Note that the codes in the square bracket [ ] 

represent the code of resilience (proactive-internal, PI; proactive-external, PE; reactive-internal, 

RI; reactive-external, RE) bundle or performance measure (X) and a corresponding value. For 

resilience capabilities we aggregate at capability bundles level by calculating average of all 

indicators in that bundle. No evidence in the secondary data means zero for that practice. The 

resilience bundles PI, PE, RI, and RE have 5, 4, 5 and 5 indicators respectively. 

“…The power comes from inside….Our guiding principle for all employees, the Nissan Way has 

been fostered through our business operations [PI2, 1; RI4, 1]. It proved its worth again in 

addressing such challenges as the strengthening yen and flooding in Thailand and helping to 

lessen their impacts on us. Despite a number of difficulties beyond our control, Nissan’s sales 

hit an all-time high in fiscal 2011 [X21, +1], while profit grew year-on-year...  

“…We are increasing our competitive edge to adapt to the changes [PE1, 1]. In October 2011, 

when major flooding occurred in Thailand, Nissan’s local plant was forced to halt operations 

in that area for four weeks due to the impact on the supply chain [X31, -1]. However, using the 



experience we had gained after the Great East Japan Earthquake in March that year [PI4, 1], 

we were able to minimize the operation suspension period and avoid undue impact on other 

factories. Nissan treats these events as valuable lessons and have shared the subsequent review 

with the entire Company [PI2, 1]. 

“…New scenarios have been incorporated into the drills implemented …We have made our drills 

more challenging and have checked the efficacy of the various measures we have planned with 

the aim of creating a more effective overall system [PI5, 1]…” 

Even though this is just excerpt, it should be enough to demonstrate the procedure. 

So, we calculate average values by counting present practices and dividing by the total number 

of practices as follows. PI=(PI2+PI3+PI4+PI5)/5=4/5=0.80; PE=(R11)/4=0.25; 

RI=(R52)/5=0.20; we do not have RE in this excerpt. Performance=sum(all measures)+15= 

(1+-1+15)=15. 

Since the particular incident is regarded as disruption scenario type III, the weighted 

performance, X_Perf=15*3=45. 
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