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Analysis of Distribution Networks based on
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Abstract— Due to the statistical uncertainty of loads and power
sources found in smart grids, effective computational tools for
probabilistic load flow analysis and planning are now becoming
indispensable. In this research, we describe a unified simulation
framework that allows quantifying the probability distributions
of a set of observation variables as well as evaluating their
sensitivity to potential variations in the power demands. The pro-
posed probabilistic technique relies on the generalized Polynomial
Chaos algorithm and on a region-wise aggregation/description
of the time-varying load profiles. It is shown how detailed
statistical distributions of some important figures of merit, which
includes voltage unbalance factor in distribution networks, can
be calculating with a ≈ 100× acceleration compared to standard
Monte Carlo analysis. In addition, it is highlighted how the
associated sensitivity analysis is of guidance for the optimal
allocation and planning of new loads.

Index Terms— Polynomial Chaos method, Probabilistic load
flow, Sensitivity analysis, Unbalanced networks, Uncertainty
quantification.

I. INTRODUCTION

Smart distribution grids are expected to provide new types
of services, e.g. charging of electrical vehicles, while exploit-
ing new forms of distributed power generation, e.g. higher
penetration of renewable energy sources. An increasing ac-
tive role of consumers is also envisaged: they will be able
to alter their usage patterns in order to follow the trends
of electricity prices [1]. Such novel features imply larger
variations and statistical uncertainty in power demands and
generations thus increasing the relevance of efficient/robust
simulation tools for probabilistic analysis and planning [2],
[3]. Probabilistic Load Flow (PLF) analysis methods consist
in using probabilistic models for the power loads as well as
in replacing deterministic load flow simulation with proper
stochastic analysis methods. The basic and reference stochastic
method remains Monte Carlo (MC) simulation even though it
can be computationally demanding due to the great numbers
of samples it requires to represent uncertain inputs. MC
simulation combined with advanced sampling methods [4]
can alleviate the computational burden for statistical prob-
lems of small size. Efficient analytical/approximate stochastic
techniques have been recently investigated in the field of
power systems [5]–[10]. The point estimate method [5], [6]
approximates the statistical moments of some observation
variables but it does not provide their detailed probability
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distribution. The cumulant method [7], [8] works only
for linear (or almost linear) problems which is not the
general case. FOr these reasons, in this paper, we focus
on the Polynomial Chaos (PC) method [9], [10]. The basic
idea behind such techniques is that of approximating the
relationships that exist between the uncertain inputs and the
node voltages by means of surrogate models. The surrogate
model can then be exploited within a MC iterative procedure
in place of the time consuming deterministic power flow.
The polynomial chaos method has been recently employed to
efficiently derive the Probability Density Function (PDF) and
cumulative probability of line voltages by considering constant
power loads at a fixed time instant [9], [10]. In this paper, we
build on these recently presented techniques as well as on
generalized Polynomial Chaos (gPC) Theory [11] to extend
its application/usage. In our analysis, we consider realistic
load power profiles, described by quasi static time series over
given observation time windows, and we aggregate the profiles
in areas, or geographic regions, of the network infrastructure
[12].
The original contribution of the proposed method could
be sumarized in the following issues:

1. A region-wise uncertainty quantification analysis is
proposed where load uncertainty in each region and
for each one of the three phase lines is represented by
a single independent random variable. This approach
allows dealing with the relevant case of 1-phase loads.

2. We exploit the gPC paradigm to evaluate the PDF of
a set of Quantities of Interests (QoI) that affect the
quality of the network. Such QoI can include the peak
and minimum voltage at some observation nodes, and
over some observation time windows, as well as the
peak value of other figure of merits such as the Voltage
Unbalance Factor (VUF).

3. The last issue considered in this paper is connected
with the analysis of the impact of new load on the grid,
identifying the regions in which the new load insertion
could be usefull for example for voltage balancing.
The increase or decrease in power demand at a given
line phase in one of the regions, for instance due
to the allocation of new 1-phase loads, reverberate
on the nodal voltages in other regions (and phase
lines) in a way that is not easy to be predicted. This
is fundamental in the case of charging of electrical
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Fig. 1. Effect on the phase B of a positive variation of the loads connected
to Phase B. The nominal behavior (solid line) is compared with the effect of
load variation (dashed line). Time points indicate minutes.

vehicles, or when a storage system is integrated in
the grid: therefore perational planning, and proper
allocation of new loads, thus requires region-wise and
phase-wise sensitivity analysis tools able to efficiently
foresee the effects that variations in the aggregated
loads of a region can have on the whole network.
Several numerical methods for sensitivity analyses
in power distribution lines have been provided in
the literature that exploit the Jacobian matrix used
in power flow calculation [13] or adopt a perturb
and observe approach [14]. The first category of
techniques are intrusive methods that need the access
to the simulation code. In this paper, we concentrate
on the second category of methods. We show how an
efficient region-wise sensitivity analysis can be natu-
rally derived by exploiting the same gPC simulation
framework used for PLF. As a result, the PLF analysis
and region-wise sensitivity can be implemented in a
homogeneous framework.

The remainder of this paper is organized as follows: in Sec.
II we shortly review the deterministic power flow problem
and illustrate, with an example, the aims and importance of
variability analysis. In Sec. III, the region-wise approach is
outlined, while in Sec. IV the gPC-based uncertainty quantifi-
cation method and sensitivity analysis are described. In Sec.
V, we provide more details about the gPC implementation
in connection with the Stochastic Testing (ST) selection of
sampling points. Finally, in Sec. VI we report simulation
results for a IEEE benchmark distribution netwrok case study.
In particular, we prove how the proposed methodology can
be of guidance for the optimal allocation of new loads in the
network.

II. POWER DEMAND VARIABILITY AND MOTIVATION OF

THE WORK

In this paper, we refer to a generic low voltage distribution
network made of Nl lines and N buses and designed to
provide the prescribed power flows at the network terminals.
Deterministic load flow analysis is mathematically formulated
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Fig. 2. Effect on the phase A of a positive variation of the loads connected
to Phase B. The nominal behavior (solid line) is compared with the effect of
load variation (dashed line).

as a set of nonlinear equations of the type:

Fn(�V) = Sn −Vn

N∑
i=1

YniV
∗
i = 0 (1)

for n = 1, . . . , N . In (1), Sn = Pn+jQn denotes the complex
power injection at node n where Pn and Qn are the active
and reactive powers respectively at network terminations. Vn

denotes the nth node voltage phasor, while Yni are the
entries of the bus admittance matrix. Node voltage phasors are
collected into vector �V. Power demand at terminations vary in
time and thus powers Pn(t), Qn(t) are functions of time. For
a given observation time window (e.g. a day or a week), that is
discretized into a sequence of Nt equally-spaced time instants
tm = m ·Δt, power demand is thus specified as given power
profiles P 0

n(tm), Q0
n(tm) for m = 1, . . . , Nt. Node voltage

waveforms Vn(tm) are thus calculated for such nominal load
condition by repeatedly solving the nonlinear problem (1)
over the sequence of time instants tm using the simulation
platforms OpenDss [15]. This software performs quasi-
static time series (QSTS) simulations, i.e. the chronology of
loads at adjacent time points is accounted for by enforcing
the dependency of the solution on the hystory of loads.

A. Aims of the analysis

Due to the uncertainty of power demand, actual power
profiles exhibit variations around their nominal values that can
be described statistically. Such a statistical variability of power
loads induces fluctuations in the node voltages that may bring
them out of the safe limits and compromise the quality of the
service. The peak and minimum magnitude values assumed
by node voltages over some observation time windows are
thus crucial QoI in order to check if the network is operating
properly.

In order to better explain these concepts, we now present
some preliminary results obtained by simulating the bench-
mark IEEE European low voltage test feeder [16] using
OpenDSS simulation software [15]. The topology and details
about such a network will be given in Sec. VI and in Fig. 6.
Here, we anticipate that such a network is a 3-phase network
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Fig. 3. Example of subdivision of the grid into M Regions, each one of
them containing loads connected to the 3 phases.

with the possibility of assigning the terminal powers either as
3-phase or 1-phase loads. In this work, we assume that 55
1-phase loads are connected to the network and distributed
among the three-phase lines. The network is first simulated
with nominal load profiles connected and node voltages are
calculated over a certain time window. Second, the total power
demand for all of the loads connected to phase line B are
increased by a 10% factor and node voltages are recalculated.

Fig. 1 shows the nominal and perturbed waveforms for the
phase-B voltage at node 898 over the time window from 8:20
AM to 11:40 AM: the increase in the total power demand on
phase-B line results in a reduction in the phase-B voltage with
a decrease of the peak value and a more pronounced decrease
of the minima. Fig. 2, instead, reports the simulated nominal
and perturbed waveforms for the phase-A voltage at node 898
for the same power perturbation: the increase in total power
demand on phase-B line results in an increase of phase-A
voltage both in peaks and minima.

This example highlights two important issues. A first issue
is that, in general, the variation in power demand of the
loads connected to a given phase line can affect the node
voltages on all of the three phase lines with fluctuations in the
peaks and minima that are difficult to be predicted a priori.
The problem is made more complex since power demands
in different areas of the distribution network and at different
phase lines can vary independently and in a random way giving
rise to a great number of combination loads and scenarios.
A second issue is that variations in the power demand of
loads connected to a given phase line induce node voltage
variations of different sign on the three phase lines. This
tends to introduce/exacerbate possible voltage unbalance. Such
a problem occurs for instance when charging of electrical
vehicle in residential dwelling [17]. The figure of merit used
to quantify network unbalance is the voltage unbalance factor
whose definition is reported in the next section [18].

III. REGION-WISE PROBABILISTIC ANALYSIS

The method that we propose in this paper is independent
of the simulation scenario, the loads behaviour and the grid
topology. However, for the sake of illustration, we focus on
an example based on Low Voltage distribution grids. In
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Fig. 4. Load Variation: for each time istant we consider a random
gaussian variation of the value

our probabilistis analysis, we suppose to partition the network
into M disjunct geographic regions Rk, with k = 1, . . . ,M
as shown in Fig. 3. Each region represents an aggregation
of loads, e.g., the loads of the same building or block.
However, other choices may be considered as well.

The active power profiles Pni(t) at all of the nodes ni

internal to a given region Rk, i.e. ni ∈ Rk, and connected
to a given phase line are modelled in the following way:

Pni(t) = p0ni
(t) [1 + σni ξr] (2)

where p0ni
(t) is the known nominal power profile at node n i. In

(2), ξr is a zero-mean Gaussian-distributed random variable
(i.e. the parameter uncertainty). having unitary variance that
incorporates power demand uncertainty. The quantity σni is a
scaling constant that determines the degree of uncertainty at
node ni. In general, two nodes aggregated in the same
region may have different degrees of uncertainty. In this
way, the active power Pni(t) is a stochastic process whose
mean value and standard deviation are given by [19]:

〈Pni(t) 〉 = p0ni
(t)

√
〈 (Pni(t)− p0ni

(t) )2 〉 = σni p0ni
(t).

(3)

It is worth observing that for a network partitioned in M
regions, the number l of independent statistical parameters
ξr is l = 3 × M . By changing M it is possible to vary the
detail of the analysis from the simple case with a single region
(and 3 statistical parameters modulating total loads at each
phase) to the extreme case where the power demand at each
single (1-phase) load is weighted by an independent statistical
parameter.

While power demands (2) represent the inputs of the proba-
bilistic analysis, the outputs are given by a set of q observation
variables, that are expected to affect the quality of service,
generically denoted as V j , with j = 1, . . . , q.

Such variables can include the peak and minimum values
assumed by the phase voltages (or line currents) over some
observation time windows. For the case of 1-phase loads,
which is considered in this paper, another relevant observation
variable is the peak value of the VUF. The percentage VUF
is defined as the ratio of the negative voltage sequence
component Vn to the positive voltage sequence component



4

Vp [18], i.e.

VUF =
|Vn|
|Vp| · 100. (4)

IV. UNCERTAINTY QUANTIFICATION AND SENSITIVITY

ANALYSIS WITH GPC METHOD

A. Uncertainty Quantification

We formalize the probabilistic problem where the uncertain
load power profiles are described by means of l random
Gaussian-distributed parameters ξr as in (2). Such parame-
ters are collected into the vector �ξ = [ξ1, ξ2, . . . , ξl]. Each
realization of the random variables ξr corresponds to well
determined power profiles and thus to well determined
voltage profiles calculated by solving the load flow problem
(1). As a result, the jth observation variable V j(�ξ) (e.g.
a node voltage) is a nonlinear function of the random
variables �ξ and thus it is a random variable too.

The generalized polynomial chaos (gPC) method consists
in approximating each observation variable with an order-β
truncated series expansion of the type [11]

V j(�ξ) ≈
Nb∑
i=1

cji Hi(�ξ), (5)

formed by Nb multi-variate basis functions Hi(�ξ) weighted
by unknown polynomial chaos coefficients c ji .

Each multi-variate basis function is given by the product

Hi(�ξ) =

l∏
r=1

φir (ξr) (6)

where φir (ξr) is a univariate orthogonal polynomial of de-
gree ir. The form of the univariate polynomials depends on
the density function of the rth parameter ξr . For Gaussian-
distributed variables ξr , the associated φir (ξr) are the Hermite
polynomials

φ0(ξr) = 1
φ1(ξr) = ξr
φ2(ξr) = ξ2r − 1
φ3(ξr) = ξ3r − 3ξr

...

(7)

The PC polynomials satisfy the orthogonality property

〈φi, φj〉 =
∫
R

φi(ξr)φj(ξr)ρr(ξr)dξr = δi,j , (8)

where 〈·, ·〉 denotes the scalar product operator, ρr(ξr) is
the PDF for the variable ξr, and δi,j is the Kronecker delta
function.

For a given number of parameters l and series expansion
truncation order β, the degrees ir of univariate polynomials
in (6) forming Hi(�ξ) , for r = 1, . . . , l, satisfy the following
relation

l∑
r=1

ir ≤ β. (9)

As a consequence, for truncation order β and number of
parameters l, the number of gPC basis functions in (5) is given
by [20]

Nb =
(β + l)!

β! l!
. (10)

Once the coefficients cji are computed, the mean value and
standard deviation of the jth observation variable V j(�ξ) can
easily be deduced [20]. In addition, the gPC expansion (5)
provides a surrogate compact model for the multi-dimensional
relationship V j(�ξ) that links observation variables to random
gaussian parameters. As a consequence, the detailed PDF
shape of V j(�ξ) can be determined by running a large number
of uncertainty vector realizations �ξk in very short times, i.e.
one million of evaluations take a few seconds on a quad-core
computer.

B. Sensitivity Analysis

For notational simplicity, we denote V (�ξ) = V j(�ξ) the jth
observation variable and restrict its gPC order expansion to
β = 2. For l independent Gaussian-distributed parameters, the
gPC expansion (5) of V (�ξ) contains Nb = (l + 1)(l + 2)/2
terms that can be ordered into linear and nonlinear ones as
follows

V (�ξ) ≈ c0 +
l∑

i=1

ciξi

+

l∑
i=1

l∑
k=i+1

k �=i

c(l+i) ξi ξk +

l∑
i=1

c(Nb−l−1+i)(ξ
2
i − 1).

(11)
As an instance, for the case of l = 3 random gaussian

parameters, it results

V (ξ1, ξ2, ξ3) ≈ c0 + c1 ξ1 + c2 ξ2 + c3 ξ3

+c4 ξ1 ξ2 + c5 ξ1 ξ3 + c6 ξ2 ξ3

+c7 (ξ
2
1 − 1) + c8 (ξ

2
2 − 1) + c9 (ξ

2
3 − 1).

(12)
The sensitivity of V (�ξ) versus the rth parameter ξr results:

∂V (�ξ)

∂ξr

∣∣∣∣ �ξ = �0
= cr (13)

and thus it simply corresponds to the rth linear term coefficient
in the gPC expansion.

V. COMPUTING THE GPC COEFFICIENTS

There are two mainstream approaches for computing the
gPC expansion coefficients in (5): Galerkin Projection (GP)
and Collocation Method (CM) [21]. Galerkin projection is an
intrusive numerical technique that requires modifying the LF
code (1). GP is numerically robust, however the formation
and solution of the projection equations require a significant
computational effort which limits the practical applicability to
problems of small size and with a few statistical parameters (2-
3). For such reasons, in this paper we will focus on Collocation
methods.
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A. Stochastic Collocation

Stochastic collocation, is an approximate technique that
allows the application of gPC method to problems with a
greater number of statistical parameters. Furthermore, Stochas-
tic collocation is a nonintrusive and thus it can be combined
with any LF formulation (1) without modifying the imple-
mentation codes. According to collocation method, a gPC
expansion of the type (5) is adopted for each observation
variables V j . Then, the expansion coefficients cji in the series
(5) are calculated by properly selecting a set of testing points
where the series expansions (5) are enforced to fit the values
of observation variables V j

k . Stochastic collocation is very
efficient however its accuracy depends on the way testing
points are selected. In this paper, we will focus on a recently-
proposed robust method referred to as Stochastic Testing
(ST) method which allows implementation as a non intrusive
collocation method [20]. According to ST method the N b

unknown coefficients cj in the series (5) are calculated by
selecting Ns = Nb testing points �ξk, for k = 1, . . . , Ns

with the method outlined in the next Sec. V. In each one of
the testing points, the observation variable Vk(t) = V (�ξk)
is evaluated by running a deterministic LF analysis. Hence,
the series expansions (5) are enforced to fit exactly (i.e., the
polynomials interpolate the samples) the values V j

k at the
testing points. For the jth observation variable, this results
in the following linear system

M�c j = �V j , (14)

where �cj = [cj1, . . . , c
j
Nb

]T and �V j = [V j
1 , . . . , V

j
Ns

]T are the
column vectors collecting the unknown coefficients and obser-
vation variable values respectively.

The Nb × Nb square matrix M = {ak,i} = {Hi(�ξ
k)}

collects the gPC basis functions evaluated at the testing points,
i.e.

M =

⎡
⎢⎣

H1(�ξ
1) . . . HNb

(�ξ1)
...

. . .
...

H1(�ξ
Ns) . . . HNb

(�ξNs)

⎤
⎥⎦ . (15)

It is worth observing that matrix M, sometimes referred to as
the experiment matrix, remains the same for each observation
variable, so it is precalculated, inverted and used for any j as
follows:

�cj = M−1 �V j . (16)

Generalizations of (16) have also been presented in the litera-
ture where a number of testing points greater than the number
of basis is selected, i.e. Ns > Nb [9], [22].

In this case, the overdetermined system (16) can be solved
with a linear regression technique such as the least-squares
method:

�cj = (MTM)−1 MT �V j . (17)

B. Testing points selection

According to gPC+ST method, the selection of the testing
points �ξk in the stochastic space is done as to preserve its
robustness compared to Galerkin projection method. To this
aim, the scalar product (that implements projection) between

two polynomials of the series expansion (i.e. the product of
such polynomials has degree β at most) is best approximated
by a Gauss quadrature formula with β + 1 nodes

〈φi, φj〉 =
∫
R

φi(ξr)φj(ξr)ρr(ξr)dξr ≈
β+1∑
k=1

φi(ξ
k
r )φj(ξ

k
r )w

k
r ,

(18)
where ξkr denotes the kth quadrature node and wk

r the cor-
responding weight. The β + 1 quadrature nodes ξ k

r are thus
good testing points for the single uncertainty parameter ξ r.
When the multivariate case with l parameters is concerned,
the testing points vectors �ξk = [ξk1 , ξ

k
2 , . . . , ξ

k
l ] are determined

by considering the multi-dimensional grid of all of the pos-
sible combinations (i.e. the tensor product) of the univariate
quadrature nodes.

In general, the number (β + 1)l of nodes in the multi-
dimensional grid is greater than the number N b of basis
functions defined in (10). A subset of quadrature nodes can
thus be selected as testing points to form systems (16) or (17).
Stochasting testing selection strategy consists in preferring
those quadrature nodes associated to largest Gauss weights
and leading to the best (smallest) condition number for the
experiment matrix M [20]. The flow Chart of the whole
procedure is shown in Fig. 5.

VI. NUMERICAL RESULTS

In this section, we focus on low voltage networks having
radial topology where the impact of load unbalance is expected
to be particularly significant. However, the proposed analysis is
general and can easily be extended to other types of electrical
systems and other topologies, such as looped or weakly looped
ones. The considered network is the IEEE European low
voltage test feeder [16] described by the circuit reported in
Fig. 6 that represents a benchmark case study. This test feeder
is radial with a base frequency of 50 Hz, at 230 V (phase
voltage)/416 V (line to line voltage). The medium voltage
system supplying the substation is modeled as a voltage source
with an impedance (Thevenin equivalent) accordling with [16].

The three-phase network has 906 low voltage nodes that are
connected by 905 branches. The value of the line impedance
and shunt admittance used are defined in [16], but due to the
short length of lines (the branches are shorter than one hundred
meters) the shunt admittance is neglected and just the series
impedance is considered. The original benchmark is provided
with 55 1-phase loads that are applied to the nodes represented
by marks in Fig. 6 and subdivided as follows: 21 for the phase
A (red), 19 for the phase B (Black), 15 for the phase C (Green).

A. Probabilistic analysis

The proposed region-wise uncertainty quantification anal-
ysis is applied by partitioning the 55 given loads into three
geographic regions as shown in Fig. 6: Region I contains 19
loads (square mark in Fig. 6) distributed among the three phase
lines as reported in Table I, Region II has 19 loads (circle
mark) while Region III includes 17 loads (cross mark).



6

Fig. 5. Flow chart describing the main step of the proposed methodology

Fig. 6. Topology of the IEEE LV European test feeder. Nodes (207,695,898)
in three different regions are monitored in order to determine the effect of the
load variation. Mark legend: square= Region I, Circle= Region II, Triangle=
Region III. Color Legend: Red=Phase A, Black=Phase B, Green = Phase
C.

In what follows, load flow simulations are performed using
quasi-static time series power profiles made of 1440 samples
(i.e., 24 hours × 60 minutes) that change for the different

Fig. 7. The Average value of the power time series in region I, II and III
(solid line) and the respective interval of variation(shadow).

TABLE I

NUMBER OF LOADS FOR REGIONS AND PHASES

I-A I-B I-C II-A II-B II-C III-A III-B III-C

7 7 5 7 5 7 7 7 3

loads. Fig. 7, shows the average value of the active power and
the min-max variation interval at each time sample, for the
loads in the three Regions I, II, and III, respectively. In such
figures, the solid line indicates the average value (i.e. on the
ensemble of the 55 loads) while the shadowed area represents
the variation interval of the power profiles: all of the loads
lie inside that area. Only the active powers are reported in the
above figures while the associated reactive powers are assumed
to change accordingly with a fixed power factor of 0.9. It is
seen how power demand becomes significant from 6:00 A.M.
(time equals to 360 minutes in the graphs) to midnight. Within
this time range, the power profiles at each time exhibit a wide
range of variability thus providing a good benchmark case for
testing our method.

Fig. 8 reports the waveforms of the three phase voltages
at node 207, used here as the monitoring node for Region I,
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Fig. 8. Time domain evolution of the three phases at node 207.

simulated with OpenDSS with the nominal load profiles pro-
vided with the benchmark. Voltage waveforms exhibit sharp
fluctuations in time, from 6:00 A.M. on, due to the variations
in the load profiles. A first set of QoI is thus represented by the
peaks and minima values assumed by the phase voltages over
given observation time windows. As an example, we consider
the time window from 9:00 A.M to 10:00 A.M. (corresponding
to samples from 540 to 600) and with the proposed gPC+ST
method, we calculate the statistical distribution of the minima
and peak values, assumed over the time window, for the three
phase voltages, A, B and C. To this aim, the uncertainty in
the load profiles is modelled as in (2) by means of l = 9 zero-
mean, unitary-variance Gaussian distributed parameters ξ r that
randomly scale the given nominal power profiles. The degree
of uncertainty at each node ni is fixed to σni = 0.2 for all of
the loads and phase lines.

In view of (10), for l = 9 stochastic parameters and gPC
expansion order β = 2, the gPC series expansion is made
of 55 basis functions. In our implementation we generate 56
testing points in the space of parameters using the stochastic
testing method reviewed in Sec. V.A and for each one of
them a deterministic load flow analysis is performed. The
extra sample point is used in a leave-one-out cross validation
error method to check the accuracy of the gPC expansion with
β = 2 [9]. Fig.9 shows, as an example, the curve provided
by the gPC model for one observation variable considered
in what follows (i.e. the peak value of the Phase-C at node
207) as a function of one of the parameter uncertainty (i.e.
parameter ξ5) with the other parameters fixed to zero. The
red square marker represents the extra sample (i.e. not
used to calculate the gPC model). The good fitting of the
gPC model shows that truncation order β = 2 is adequate
for the nonlinearities considered in this paper. Figs. 10, 11,
and 12 show the calculated PDF for the three phases A,
B, C, respectively at node 207. .

We see how, for the load arrangement provided by the
benchmark, Phase-B reaches the lowest voltage levels and
exhibits the greatest uncertainty in the minimum value that
ranges within the interval (242, 245) V with 90% probability.
By contrast, Phase A reaches the highest voltage levels with
the peak value that ranges within the interval (253.5, 255) V
with 90% probability. Finally, Phase C fluctuates within nar-
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Fig. 9. The line represents the curve of the Phase-C peak value provided
by th gPC model vs ξ5 with the other ξr equal to 0. The red square
Marker represents the extra sample used for verification.
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rower intervals but its peak value is nonGaussian distributed.
This result can be better seen with the aid of Fig. 13 where the
statistical distributions of the peak value of Phase-C computed
with the proposed gPC and with the reference MC method are
reported and compared with the Gaussian distribution of equal
mean value and variance.

The reference MC method uses 10, 000 runs (i.e. deter-
ministic load flow analyses) selected with a latin-hypercube
sampling. With this setting, the peak value distributions
provided by the proposed gPC and reference MC method
are almost superimposed and the associated standard
deviations, i.e. σgPC = 0.3080 V and σMC = 0.3071
V respectively, match within a relative accuracy of 2%.
Since the gPC+ST method only requires 55 deterministic
analyses, it introduces a 180× computational speedup
factor compared to the reference MC analysis for the
same accuracy. Table (II) reports the standard deviations
predicted by the MC method for a growing number of
samples and the relative error compared to the value
provided by the reference MC (i.e. with 10, 000 samples).
If a lower order of accuracy for MC method, e.g. a 5%
accuracy (which requires about 6000 samples), is accepted
the computational cost of MC remains about 100x greater
than that of gPC. It is thus reasonable to say that, for
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Fig. 11. Statistical distribution of the minimum and peak values for the
Phase B at node 207 on the 9:00-10:00 time window.
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Fig. 12. Statistical distribution of the minimum and peak values for the
Phase C at node 207 on the 9:00-10:00 time window.

our example, gPC results about two orders of magnitude
faster than MC.

B. Sensitivity analysis:a strategy for load guidance

The probability distributions of the peaks and minima for
the three phases at a given observation node provide a measure
of their statistical uncertainty over the considered observation
time window. Phase voltage uncertainty corresponds to an
analog statistical uncertainty in the voltage unbalance factor
VUF defined in (4) which represents another relevant QoI.
The statistical distribution of the VUF can be derived with the
proposed gPC+ST method by using the same 55 deterministic
load flow analyses described in the previous subsection VI.A.
Furthermore, according to (13), the linear coefficients of the
gPC expansion for the VUF observation variable provide de-

TABLE II

CONVERGENCE OF MC VS NUMBER OF SAMPLES

Number of Samples 2500 5000 10000
σMC 0.351 0.324 0.3071
error 14% 5.5% -
CPU time for 1440 point timeserie [sec] 12500 25000 50000
Intel Core i5 - 3.20 GHz
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Fig. 13. (Histogram) Detail of the distributions of the Phase-C peak value
as computed with gPC and MC method (10, 000 samples). (Green Dashed
Line) Gaussian distribution of equal mean value and variance.

TABLE III

VUF SENSITIVITY COEFFICIENTS × 100

I-A I-B I-C II-A II-B II-C III-A III-B III-C

ξ1 ξ2 ξ3 ξ4 ξ5 ξ6 ξ7 ξ8 ξ9

N. 207 -0.25 3.48 -0.82 -0.65 6.98 -0.25 -0.31 5.79 -0.08

N. 695 -0.13 3.68 -1.08 -1.02 12.18 -0.51 -0.41 9.19 -0.14

N. 898 -0.11 3.7 -1.13 -0.98 12.22 -0.54 -0.47 11.63 -0.15

tailed information about its sensitivity with respect to possible
variations of the power demands in each region and phase line.

Table III reports the sensitivity coefficients for the three
observation nodes 207, 695 and 898 in the three Regions.
For a compact notation, such values are reported multiplied
by a factor 100. A first important information contained in
Table III is the sign of the sensitivity coefficients: a negative
sign indicates that an increase in power demand, at that phase
and Region, corresponds to a decrease of the VUF and thus to
a beneficial effect on load balancing. Viceversa, a positive sign
of the sensitivity coefficient indicates that an increase in power
demand will move the network towards greater unbalance.

In order to check this result, we repeat the probabilistic
analysis with 10 new loads, randomly selected among those
provided with the benchmark, connected to the distribution
network. Two different allocation strategies, referred to as Case

TABLE IV

NUMBER OF LOADS FOR CASE A)

I-A I-B I-C II-A II-B II-C III-A III-B III-C

7 7 8 11 5 7 10 7 3

TABLE V

NUMBER OF LOADS FOR CASE B)

I-A I-B I-C II-A II-B II-C III-A III-B III-C

7 10 5 7 9 7 7 10 3
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Fig. 14. Statistical distribution of the VUF at node 207.
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Fig. 15. Statistical distribution of the VUF at node 695.

a) and Case b) and described in Tables IV and Tables V,
respectively, are investigated. The allocation of Case a) is done
by exploiting the information provided by the gPC-based sen-
sitivity analysis and concentrates the new loads in the Regions
and phases having negative sensitivity coefficients with large
module. Viceversa, allocation of Case b) is done in defiance
of sensitivity analysis, i.e. putting new loads in the Regions
and phases with large positive sensitivity coefficients. Figs. 14,
15, 16 show the statistical distributions of the maximum VUF,
computed over the time window 9:00-10:00 A.M., for the two
different allocation cases and the three observation nodes. It
is apparent how Case b) results in a balance deterioration: the
mean value and the standard deviation of the VUF increase
significantly. At node 898, the allocation of Case b) leads to
a 40% probability that the peak VUF will exceed the upper
bound of 2%. A similar violation is seen for VUF at node 695.
By contrast, the allocation of Case a) results in a reduction of
the mean value and standard deviation of the VUF in all of
the three observation nodes compared to the baseline case (i.e.
55 loads distributed as in Table I). This shows how sensitivity
analysis can help allocating new loads while preserving, or
even improving, load balancing in the network.

VII. CONCLUSION

In this paper, we have described a unified computational
framework for probabilistic load flow and sensitivity analyses
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Fig. 16. Statistical distribution of the VUF at node 898.

in distribution networks with uncertain load profiles. Our
approach relies on a region-wise uncertainty quantification
analysis that aggregates loads within geographic regions of
the network and on the usage of the generalized Polynomial
Chaos method. We have shown how the detailed PDF of
several QoI affecting the quality of service can be calculated
with a speed-up factor of ≈ 100× compared to standard
Monte Carlo analysis for the same accuracy. In particular,
the numerical results have being focused on evaluating the
statistical distribution of node voltage peak and minima over
a given observation time window and on voltage unbalance
factor. Finally, we have proved with an example how the
proposed sensitivity analysis can be exploited to properly
allocate new (1-phase) loads in the network while preserving,
or even improving, load balancing.
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