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Abstract

Microsystems (or Micro Electro Mechanical Systems, MEMS) are important

components of many popular products in the consumer market and are one

of the enabling ingredients of incoming industrial revolutions like Industry 4.0

and Internet of Things (IoT). Behind many Microsystems there are important

mechanical principles and coupling effects that must be completely mastered

starting from the design phase. More sophisticated and smaller devices also

imply to consider many non-linear effects that can be strictly related to the

mechanical response or to coupled electro-thermo-mechanical phenomena. This

paper contains an overview of key mechanical aspects in design and reliability

of Microsystems with a particular focus on non-linear dynamics of oscillators in

inertial sensors.
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1. Introduction

Microsystems (or Micro Electro Mechanical Systems, MEMS) are complex

devices conceived combining multi-physics principles and produced with tech-

nologies similar to the ones used for integrated circuits, in which smaller di-

mensions can be in the order of fractions of micrometers [1, 2, 3, 4, 5, 6, 7, 8].5

Microsystems technology can nowadays be used to produce highly miniaturized
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sensors such as accelerometers [9, 10, 11], gyroscopes [3, 12], Lorentz force mag-

netometers [13, 14, 15] and pressure sensors [16, 17, 18], or actuators which in

turn can be used to create e.g. micro-mirrors [19, 20, 21, 22, 23, 24], micro

ultrasound transducers [25, 26], micro-pumps [27], gas sensors [28], resonators10

[29, 30, 31, 32] or energy harvesting devices [33, 34, 35, 36, 37, 38, 39].

The great versatility and the reduced unit cost have been the basic ingredi-

ents for the large and fast diffusion of microsystems. These are nowadays com-

plex products of modern engineering which find a large number of applications

in various fields such as consumer market, automotive engineering, structural15

monitoring and biomedical engineering. MEMS are one of the enabling ingre-

dients of the incoming revolutions of Internet of Things (IoT) and Industry 4.0

due to the possibility to sense and actuate by means of many, very small objects

[37, 40, 41].

Mechanical issues, and particularly mechanical reliability, are extremely im-20

portant in all the phases of MEMS design and in the development of relevant

production technology. Proper design and fabrication of micro-devices must

ensure the perfect functioning both in common exercise conditions and in ex-

treme situations (e.g. accidental drop, mechanical and electrical shock, harsh

environment, etc.). Complex non-linear dynamic responses of the oscillators25

can be induced e.g. by the electro-mechanical coupling due to electrostatic ac-

tuation, by the interaction between membrane and bending regimes in slender

beams or plates, by the temperature variations, by the internal contacts be-

tween surfaces at low distance, [2]. All non-linear phenomena related to the

mechanics of microsystems must be well understood to obtain effective designs30

that can be transformed into real products. In most cases linear response is

required to simplify the read-out control circuit and to obtain predictable de-

vices with low dispersion in the final properties. To achieve this requirement

and in particular to eliminate the effect of chaos, in [42], an adaptive dynamic

surface control scheme with extended state observer is designed to convert ran-35

dom motion into regular motion without precise system model parameters and

measured variables. In [43] and [44] the shape optimization is exploited to tai-
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lor the non-linear response of MEMS resonators and resonant accelerometers,

respectively. In some cases non-linear regimes cannot be avoided due to the

physics of the problems. In other situations non-linear regimes can also be ad-40

vantageous to obtain peculiar responses. In [45], for example, the non-linear

behavior of a MEMS clamped-clamped beam is exploited to realize a switch

triggered by gas, while in [46], a new MEMS gas sensor based on the dynamic-

bifurcation detection technique is proposed. In [47] a threshold shock sensor

based on a bistable mechanism is proposed, while in [48] the non-linear dy-45

namics of MEMS resonators, specifically, bi-stability and hysteresis, is used to

simulate the detection and memory of a single rate model neuron, thus providing

a novel concept for a micro-electro-mechanical-system (MEMS) neural comput-

ing unit. In [49], a band-pass filter is obtained by combining the non-linear

softening, hardening, and veering phenomena (near crossing) of two vibration50

modes of a MEMS resonator that get close to each others, while in [50] novel

threshold pressure sensors based on non-linear dynamics of MEMS resonators

are presented. Finally, in [51] the non-linear regime is employed to improve the

sensitivity of a MEMS gyroscope.

The purpose of this review paper is to describe some aspects of the com-55

plexity of microsystems from a mechanical perspective with particular reference

to non-linear mechanical problems in MEMS inertial sensors focusing on real

devices designed and studied by the Authors.

The paper is organized as follows.

In Section 2 a general discussion on possible sources of nonlinearities in mi-60

crosystems is proposed, mentioning in particular dissipative phenomena which

are the origin of damping, fracture, fatigue, spontaneous adhesion or stiction,

mechanical non-linear effects induced by large strains and displacements, electro-

mechanical coupling.

Section 3 focuses on mechanical oscillators in MEMS. After general remarks,65

it is shown how vibrating systems, like masses suspended through beams, can be

reduced to a 1 degree of freedom (dof) equivalent oscillator which is governed by

a general non-linear 2nd order differential equation in time. Among the various

3



non-linear oscillators, the Duffing one is taken as a meaningful example. The

Section is closed mentioning the important issue of parametric resonance which70

is described by the Mathieu equation and can emerge in various situations alone

or in combination with other non-linear effects.

Sections from 4 to 8 contain practical examples, taken from the Authors’

recent experience, of the importance of non-linear dynamic responses in MEMS.

Section 4 concerns the hardening and softening responses which can be observed75

in a L-shaped oscillator designed for a uniaxial resonant accelerometer. Section

5 discusses the non-linear response of a Double Ended Tuning Fork Resonator

designed for a resonant accelerometer in the presence of temperature variations.

Section 6 describes a torsional resonator and its softening behavior induced

by electrostatic actuation and readout. Section 7 concerns peculiar non-linear80

responses obtained with elastic connections used in Coriolis-based vibrating

gyroscopes. The parametric resonance of a disk ring gyroscope is discussed

in the last example of Section 8.

Closing remarks and perspectives are included in the final Section 9.

85

2. Sources of non-linear responses in the dynamics of MEMS

The dynamic behavior of a MEMS or of an oscillating part of it, after proper

simplifications, can be described (see [1]) by the relative dynamic equilibrium

equation of a pointwise mass m

ma = −ma0 −mac + F, (1)

where a is the acceleration in the non-inertial reference frame of the MEMS, a090

is the external acceleration, ac is the Coriolis’s acceleration and F is the total

force. This latter has usually three contributions: an internal force due to the

reactions of the deformable elements which suspend the mass (also referred to

as springs), a force accounting for damping effects and a driving term, often

due to electrostatic actuation.95
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The non-linear dependence on displacement and/or velocity of each one of

the above forces leads to a dynamic non-linear behavior of the MEMS device

(or component).

2.1. Internal forces

The internal reactions of deformable bodies in MEMS depend on displace-100

ments, deformations and stresses to which deformable parts are subject. Stresses

are usually low with respect to the elastic limit of the material during the regular

working conditions and the mechanical behavior can then be considered as linear

elastic [52]. This situation changes when the device is subject to non-common

working conditions like e.g. in the cases of accidental impacts, when the stress105

levels can provoque fracture. Fracture phenomena always imply a non-linear

response due to the variation of instantaneous material and structural stiffness

related to the propagation of cracks. Accidental drop events and fracture in

microsystems have been extensively studied e.g. in [53, 54, 55, 56, 57], they rep-

resent an highly non-linear mechanical response in MEMS, that must be studied110

and governed with the approaches of Fracture Mechanics.

In many cases, as discussed in the subsequent Sections, inside MEMS there

are oscillating parts which are kept in motion by means of on-board actuators

(see e.g. [58]). The frequency of oscillations can be high, in the order of tens

of thousands of Hertz like in micro-gyroscopes or even very high, in the order115

of millions of Hertz, like in resonators; this means that during the expected

lifetime the oscillating part will undergo billions of cycles. This situation can

imply problems related to mechanical fatigue or subcritical crack propagation,

a non-linear phenomenon well studied in metallurgy which appears for stress

levels which are much lower than those able to provoque instantaneous fracture.120

Fatigue failure in MEMS has been studied and experimental evidences show that

the phenomenon can appear also in silicon devices, usually for stress levels that

are much higher than those used in regular working conditions for oscillating

parts and for very high number of cycles (see e.g. [59, 60, 61, 62]).

The internal reactions of deformable bodies can depend non-linearly on the125
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level of displacement and deformation also in the linear elastic regime, due to so-

called non-linear geometric effects. As a meaningful example, when the flexural

oscillations of a beam are small, the bending behavior is completely decoupled

from the axial one and the study of the deformable body can be carried out in

the geometrically linear regime. In some meaningful cases, as those discussed in130

the Sections 4, 5 and 7, the axial response affects the bending one, then a geo-

metrically nonlinear response is activated with the bending stiffness dependent

on the level of axial force in the beam. Depending on the structural configu-

ration, this effect can induce so-called mechanical hardening or softening with

interesting implications on the non-linear dynamic response (see e.g. [63, 64]).135

Geometric nonlinearities in MEMS usually end-up in an hardening behavior of

the mechanical structure, however, in the literature there are examples of micro-

structures that exhibit softening mechanical behaviors [65, 66, 67, 68, 69].

2.2. Damping effects

Damping is usually represented as an equivalent viscous contribution, i.e.140

by a force linearly dependent on the velocity; in reality, damping in MEMS

originates from many different sources, [1].

An important source, called fluid damping [70, 71], comes from the fluid-

structure interaction of solid portions moving at high frequency inside MEMS

boxes in which gas at various pressures is contained. This happens e.g. in reso-145

nant accelerometers and in the majority of micro-gyroscopes. The quantitative

evaluation of fluid damping must be based on the accurate representation of

the fluid-structure interaction at varying internal pressures. Different regimes

must be distinguished for the fluid which go from the standard fluid dynamics

represented by Navier-Stokes equations, which hold at atmospheric pressure, to150

rarefied gas dynamics with non-deterministic, statistical descriptions like Boltz-

mann equation, which hold at low pressure. In peculiar situations, like e.g. for

the movement of micro-mirrors plates, it is not possible to simplify the fluid

damping with linear terms and non-linear effects must be considered [72, 73].

When the pressure inside the MEMS box reduces to very low values, near155
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to vacuum conditions, fluid damping becomes negligible, while an important

source of damping comes from the interaction of thermal and mechanical fields

in the thermoelastic responses. This form of solid damping, called thermoelastic

damping or TED [74, 75, 76, 77] cannot be easily eliminated, it can be only

reduced by careful design of the deformable portions: reducing the volumetric160

part of the deformation makes them less prone to thermoelastic damping [78, 79].

Another important component of solid damping in microsystems is repre-

sented by the transformation of kinetic energy of vibrating parts in energy car-

ried by waves that are dispersed in the substrate; this phenomenon typically

occurs at the anchor points and is referred to as anchor losses [80].165

Other sources of solid damping are present due to e.g. internal rearrange-

ments of crystals in polycrystalline materials or to the scattering of the acoustic

phonons associated with the resonant mode with thermal phonons both in the

Landau-Rumer regime and the Akhiezer regime [81].

In general terms, damping phenomena involving vibrating parts in microsys-170

tems are very complex and must be well understood for every specific device to

be designed.

2.3. Electrostatic forces

Often MEMS are electrostatically actuated and/or sensed and the electro-

static forces are a typical source of nonlinearity in the mechanical response of175

MEMS. Consider for instance the case where the driving force is generated by a

parallel plate configuration through a potential difference between the movable

part of the MEMS (shuttle) kept at voltage V = Vp and fixed electrodes kept

at voltage V = 0 as depicted in Fig. 1.

The electrostatic force non-linearly depends on the displacement u of the180

shuttle

F elec =
1

2
ϵrϵ0SV

2
p

1

(g0 − u)2
, (2)

where ϵr and ϵ0 are the relative and absolute permittivity constants, S is the

surface of the plates and g0 is the relative initial distance between the plates.
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Figure 1: Scheme of the parallel plate driving

The first order linear approximation around the static solution u = up of eq.

(2) leads to the definition of the equivalent electrostatic stiffness ke which adds185

a negative contribution to the mechanical linear stiffness

ke = − 1

g3
ϵrϵ0SV

2
p (3)

where g = g0 − up. At increasing voltage, or decreasing gap between parallel

plates, the stiffness of the system reduces, and the so-called electrostatic soften-

ing effect appears, as discussed in the examples of Sections 4, 6 and 7.

Some recent MEMS designs exploit the effect of fringing fields electrostatic190

forces. At difference from parallel plate actuators, in fringing fields actuators

the electrostatic forces can produce both an increase and a decrease of the

equivalent stiffness. In [82] this effect was first studied and experimentally

demonstrated. As discussed in [83], with a suitable design of side electrodes,

these forces have a restoring effect on a vibrating cantilever and thus induce an195

increase of the apparent stiffness, causing the so-called electrostatic hardening.

Furthermore, it is shown that combining the tuning of fringing fields and parallel

plates potentials can lead to peculiar non-linear behavior, such as bi-stable

behavior.

2.4. Low distance and contact forces200

Due to the small dimensions of all gaps between the moving and fixed parts

in MEMS and to accidental impacts, several surfaces may come at very low dis-
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tance or even at contact. These events can induce an additional source of non-

linearity in the microsystems response, due to the possibility that the surfaces

will remain adhered after contact. This phenomenon, called stiction, is highly205

non-linear and is usually considered as a serious reliability issue in MEMS. Stic-

tion is governed by forces that arise at very narrow distances between surfaces.

In the presence of humidity, the main attractive forces come from capillary at-

traction, while in dry conditions the always present Casimir/Polder and van der

Waals forces govern the phenomenon (see [84, 85, 86]).210

Strictly linked to contact and stiction there are other sources of nonlineari-

ties coming from repeated contacts of surfaces of oscillating parts against fixed

or other movable portions. These are difficult to control and can transform in

complex dynamic responses. In [87], for example, a frequency comb induced by

contact dynamics in MEMS is put in evidence both numerically and experimen-215

tally, while in [88] an assessment of the Newmark method is proposed to com-

pute chaotic vibrations of impacting oscillators. In the same field, a theoretical

study of a very complex scenario of a bilinear oscillator, with a rich structured

pattern that includes continuous and discontinuous bifurcations, flip bifurca-

tions and alternating regular and chaotic regimes is proposed in [89], while in220

[90] the response and stability of piecewise linear oscillators under multi-forcing

frequencies are investigated.

2.5. Thermal effects

As already mentioned when discussing the TED, thermal phenomena can

have an important influence on the mechanical response of microsystems. In225

general, temperature always influences the mechanical response through the

presence of thermal strains and through the mismatch of the coefficient of ther-

mal expansion (CTE) of the various materials composing the devices. More-

over, material parameters like Young’s modulus and CTE themselves change

with temperature [91, 92] thus deeply influencing the frequency response of the230

MEMS resonant devices.

The temperature dependence of the resonant frequency of MEMS devices has
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been extensively studied in the literature especially in resonators for real time

clocking applications [79, 93, 94]. In particular, the temperature dependence of

the natural frequency has been investigated in combination with nonlinearities,235

as in the example of Section 5. In [95], for example, the authors exploit non-

linearities to compensate the frequency variation in temperature of a MEMS

gyroscope.

CTEs mismatch and variable temperature conditions during fabrication can

be the source of residual stresses at the end of the fabrication process, which240

in turn can produce non-linear effects in the dynamic response of oscillating

beams and plates (see chapter 14 in [1] and references therein). This source

of nonlinearity is strictly process-related and in many cases very difficult to

dominate with simple modelling.

245

2.6. Other non-linear dynamic phenomena

When the resonance frequencies of distinct modes of the MEMS oscilla-

tor satisfy a commensurate relationship, strong coupling and energy transfer

among them can happen [96, 97]: this phenomenon is usually referred to as

internal resonance. In [98], for example, a novel response of a non-linear mi-250

cromechanical resonator when operated in a region of strong, non-linear mode

coupling is demonstrated: the system is excited with a single drive signal and

its response is characterized by periodic amplitude modulations that occur at

timescales based on system parameters. In [99] it is shown that it is possible

to stabilize the oscillation frequency of non-linear self-sustaining micromechan-255

ical resonators by coupling two different vibrational modes through an internal

resonance, while in [100] the two-to-one internal resonance between the first

two symmetric vibrational modes of a micromachined arch resonator is theo-

retically and experimentally investigated. Sarrafan et al. in [101], describe and

experimentally demonstrate the potential for employing internal resonance for260

detection of angular rate signals, where the Coriolis effect modifes the energy

coupling between the distinct drive and sense vibration modes.
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Chaos is another type of non-linear motion which is usually undesirable

in the dynamic response of many systems; however, it has been proven to be

useful at numerous applications such as sensing, fluid mixtures and secure com-265

munication [102, 103]. Due to desirable and undesirable effects of chaos on the

performance of the micro and nano resonators, it is necessary to predict the

occurrence of this phenomenon in the dynamic response of the systems and sev-

eral studies have been devoted to the investigation of chaos in nano resonators

[104, 105].270

Another phenomenon that can be induced by nonlinearities in MEMS oscil-

lators is the synchronization [106].

The above mentioned sources of non-linear behaviors are meaningful but do

not cover all the complexity of non-linear mechanics in MEMS. Other sources

of nonlinearities can be present, in particular due to other multi-physics phe-275

nomena, like e.g. in the presence of magnetic fields.

3. Mechanical oscillators as key component in MEMS

Mechanical oscillators are typical components of many microsystems; they

are usually created on board by complex geometries of deformable beams and

plates. However, in many cases, their dynamic behavior can be described by an280

equivalent 1 dof or 2 dof non-linear oscillator. This, in turn contains the main

sources of non-linear dynamic behaviors discussed in the subsequent Sections

4-8.

3.1. From continuum to discrete formulation

The dynamic equilibrium equations of a deformable body can be obtained285

making use of the Hamilton’s variational principle (see [107] for more details).

A discrete formulation is obtained by approximating the displacement field

u = u(x, t) as:

u(x, t) =
n∑

i=1

Ψi(x)Ui(t). (4)
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By retaining only the first m terms in (4), one reduces the dynamic behavior

of the deformable body to the oscillation of a m-dof system, possibly non-linear.290

We focus now on systems such that just 1 dof can be retained (U1 = U).

The non-linear dependence on U is often transformed in polynomial expressions

after development in Taylor series expansion of the non-linear functions. The

equation of motion can thus be expressed as follows,

mÜ + bU̇ +

p∑
j=1

kjU
j = F (t). (5)

The linear case corresponds to p = 1. The expressions of the equivalent mass m,295

damping coefficient b, stiffnesses kj and force F depend on the specific problem

considered and will be given in the following Sections for some meaningful cases.

In general, F (t) contains the external forces, if any, and the actuation forces.

Considering electrostatic actuation, the driving force depends on the square of

the potential, which usually has a constant DC term Vp and an oscillating AC300

term va(t). As discussed e.g. in [108], this introduces a forcing term with a

linear dependence on va(t) and a non-linear forcing term. This latter can be

neglected if the amplitude of the oscillating voltage is small with respect to the

DC voltage, as it happens in the devices described in the following sections.

Often, for moderate values of the DC potential, one can arrest the polynomial305

terms in (5) to the third order and, when the non-linear second order term k2U
2

is negligible with respect to the third order one, by setting k2 = 0, one obtains

the so-called Duffing oscillator, with the peculiar dynamic behavior recalled in

the next section. Note that cubic (and possibly quadratic) terms in the Duffing

oscillator equations arise from geometric or electrostatic nonlinearities.310

For other problems, more terms should be considered in the Taylor expan-

sion, as shown e.g. in the example of Section 6. The interested reader can refer

to the review recently published by Tiwari et al. [109].

When two or more dof are retained in Eq. 4, a system of non-linear equations

is obtained, as for the disk ring gyroscope discussed in Section 8.315
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3.2. Duffing oscillator

The third order Duffing oscillator is an example of non-linear dynamics in

MEMS that can be found in many applications. The solution of eq. (5), with

p = 3 and k2 = 0, can be obtained from series of successive approximations as,

see e.g.[63] for details:320

U = Ū cos(ωt)− Ū3

32

k3
k1

cos(3ωt). (6)

In eq. (6) Ū is the oscillation amplitude and ω is the actual value of the

angular frequency which differs from the reference value of the linear case ω0:

ω0 = 2πf0 =

√
k1
m

. (7)

Under the assumption of very high Q-factor, ω is expressed as:

ω = ω0

[
1 +

3

8

k3
k1

Ū2

]
. (8)

Considering an harmonic driving term F (t) = F cos(ωt) of angular frequency

ω close to the natural angular frequency ω0 defined through (7), one obtains a325

relation between the amplitude F and the frequency ω of the driving force and

the amplitude Ū of the resonator’s forced vibration:

(
F

k1

)2

=

(
2

(
1− ω

ω0

)
Ū +

3

4

k3
k1

Ū3

)2

+

(
b

mω0
Ū

)2

(9)

from which it is possible to compute the frequency response of the resonator:

ω = ω0 +
3

8

k3√
k1m

Ū2 ±

√(
F

2
√
k1mA

)2

−
(

b

2m

)2

. (10)

Note that, the method of successive approximations is only one of the possi-

ble approaches proposed in the literature for the solution of non-linear dynamic330

systems. In [110], the harmonic balance method is proposed as a valid alter-

native, while in [111], the energy balance method is employed for the solution

of a non-linear dynamic system. Younis et al. [112] proved that perturbation

methods [113] such as the method of multiple scales [114] provide better and

more consistent solutions with respect to the others, especially in the highly335
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non-linear regime. Finally, another possibility for the solution of non-linear dy-

namic equations, is the use of numerical techniques such as the continuation

method with arc length control [115, 87, 21].

3.3. Parametric resonance

Another possible example of peculiar dynamic behavior in MEMS is the340

parametric resonance described by the Mathieu equation. It is a linear differen-

tial equation with variable (periodic) coefficients; by considering U as the one

degree of freedom of the system, this equation reads

Ü +
ω

Q
U̇ +

[
1 +

∆k

k
cos(2ωt)

]
ω2U =

F

m
cos(ωt+ ϕ) (11)

where λ ≡ ∆k
k is the fractional stiffness change, F the amplitude of the time-

dependent forcing term, Q the quality factor and ω the natural frequency. When345

λ = 0, the device is a linear resonator and the sensitivity to force at the reso-

nance frequency ω is Q/k. When λ ̸= 0, the device is a parametric resonator and

the excess parametric gain depends on the phase ϕ of the 1ω signal F relative

to the 2ω pump. The total force-to-displacement gain at resonance is G(ϕ)Q/k,

where the phase-dependent parametric gain is given by (see [116]):350

G(ϕ) =

( cos(ϕ)

1 + Q∆k
2k

)2

+

(
sin(ϕ)

1− Q∆k
2k

)2
1/2

. (12)

Maximum amplification occurs when the 1ω and 2ω signals are phase shifted

by ϕ = ±90◦, and the system becomes self-oscillating when the stiffness change

reaches a critical threshold, λc = 2/Q, a condition known as autoparametric

oscillation.

It is common to have parametrically amplified MEMS devices that are also355

subjected to other sources of nonlinearities (e.g. electrostatic actuation or high

quality factor). Their dynamics is usually modelled through the non-linear

Mathieu equation that reads:

Ü +
ω

Q
U̇ +

[
1 +

∆k

k
cos(2ωt) +

k3
k
U2

]
ω2U =

F

m
cos(ωt+ ϕ). (13)
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where k3 is the cubic term that is added to eq. (11) to take into account the dif-

ferent sources of nonlinearities. Examples of MEMS devices described through360

this equation include but are not limited to the MEMS mass sensor studied

in [117], the resonators proposed in [118] and in [119] and the disk resonator

gyroscope analized in [120]. A lot of work has been done in particular to study

the influence of cubic non-linear terms in the stability of such devices [121]. In

[122], for example, Rhoads and Shaw use the method of averaging to compute365

theoretical steady-state responses for a parametrically amplified Duffing oscil-

lator operating in open loop and conclude that stable open-loop operation is

possible at the cost of decreased performance or bistable behavior. In [120] it is

shown that stable, parametrically amplified operation in the presence of cubic

nonlinearities is possible without suffering from jump instabilities, hysteresis, or370

degraded performance if the close-loop operation is considered.

4. Hardening and softening behavior in a L-shaped oscillator for a

resonant accelerometer

In resonant accelerometers, the external acceleration produces a recordable

shift of the resonance frequency of the structure, or of some part thereof, [123,375

124, 11, 125]. The frequency variation is often due to a change of the mechanical

or electrostatic stiffness. The exact knowledge of the ranges of linear behavior

of the resonators is a preliminary requisite to make the device work. As an

example, let us consider the silicon uniaxial resonant accelerometer proposed in

[123] and shown in Fig. 2a.380

The proof mass is attached to the substrate by means of springs constituted

by slender beams (horizontal in Fig. 2) which restrain its movement to be a

uniaxial translation. The oscillating parts of this device are thin beams (vertical

in Fig. 2) attached to the substrate at one end and to the springs at the other

end, at small distance d1 from the anchor point. Because of the presence of385

the small arm d1, these oscillators are referred to as L-shape resonators. The

electrostatic driving and sensing of each resonator is obtained by means of two

15



ma 
1 

2 

(a)                                                                           (b)

inertial mass

electrods 

for driving 

and sensing

spring

resonating 

beam

anchor

point

resonating 

beam

spring
N2 < 0

N1 > 0

d1 

Figure 2: (a) SEM image of the resonant accelerometer. (b) Effect of external acceleration a.

Rielaborated from: [123], Fig. 1 and 6. Reproduced with permission of IEEE.

parallel electrodes attached to the substrate.

An external acceleration a makes the inertial mass m translate thus inducing

tension and compression of the same magnitude in the two resonators (Fig. 2b).390

The axial forces produce a change of the mechanical stiffness and hence of the

resonance frequency of the two oscillators which provides a differential sensing

of the external acceleration.

The dynamic response of the two L-shaped resonators is computed through

eq. (5). The resonators are modelled as slender beams, of cross section A, inertia395

moment J and Young’s modulus E, axially constrained at both ends, subject to

axial forces P0 induced by external acceleration, oscillating in bending due to

electrostatic actuation. The L-shaped configuration relaxes the axial constraint

at one end and this is modelled through an equivalent axial spring ka, see Fig.

3.400

These resonators, under large displacement oscillations, exhibit non-linear

behavior due to the parallel plate actuation scheme (electrostatic non-linearity)

and to the axial stretching (mechanical non-linearity). As demostrated in [126],

by expressing the transversal displacement as the product of the eigenfunction

Ψ(x) (describing the beam deformation) and the transversal displacement of the405

mean point of the beam U(t) and using Hamilton’s principle, one obtains the
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Figure 3: Schematic view of the L-shaped resonator with the actuation scheme.

1-dof equation (5) with p = 3 and the equivalent mass, stiffnesses and damping

coefficient expressed as:

m =
∫ L

0
ρAΨ2dx, (14)

k1 = km1 + kG + ke1, (15)

km1 =
∫ L

0
EJ(Ψ′′)2dx, (16)

kG = P0

∫ L

0
(Ψ′)2dx, (17)

ke1 = −ϵ0wV
2
p

(
1
g3
a
+ 1

g3
s

)∫ L

0
Ψ2dx (18)

k2 = ke2 = −3
2ϵ0wV

2
p

(
1
g4
a
− 1

g4
s

)∫ L

0
Ψ3dx, (19)

k3 = km3 + ke3 = 1
2

kaEA
kaL+EA

[∫ L

0
(Ψ′)2dx

]2
− 2ϵ0wV

2
p

(
1
g5
a
+ 1

g5
s

)∫ L

0
Ψ4dx,(20)

b =
∫ L

0
b∗Ψ2dx, (21)

where w is the out-of-plane thickness of the electrodes and b∗ is the viscous

coefficient. For ideal structures, with symmetric gaps ga = gs, the non-linear410

second order term disappears (eq. 19) thus recovering the case of a Duffing

oscillator. The linear mechanical stiffness accounts for the flexural stiffness of

the beam km1 and for the geometrical stiffness kG which depends on the axial

force. It is this latter term that allows for the frequency sensing of the external

acceleration in the resonant accelerometer. The effect of the first-order electrical415

stiffness is a downward shift of the resonator natural frequency. The third

order stiffness (eq. 20) has two contributions. The first one is the mechanical
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Figure 4: Spectral response of the L-shaped resonator for different actuation voltages: com-

parison experiments (orange points) - theoretical prediction (black lines). (a)Vp = 4V ; (b)

Vp = 9V .

hardening term which accounts for the membrane effect: it disappears if ka → 0,

i.e. if there is no axial constraint and it is maximum for the doubly clamped

beam, without the transversal short arm (ka → ∞). The second term is due420

to the electrostatic actuation, it grows with the bias potential Vp and it is

negative, thus it can mitigate the hardening effect generally associated with

the third-order term of the elastic stiffness. By properly choosing the biasing

voltage one can, in principle, compensate the mechanical nonlinearities with the

electrical ones in order to obtain a linear behavior for a wider range of applied425

forces [127], i.e., for a wider range of actuation voltages as shown in Fig. 4a-b.

5. Hardening behavior under varying temperature conditions in a

Double Ended Tuning Fork for a resonant accelerometer

The present Section discusses the effects of the temperature variation in

the non-linear dynamic response of the Double Ended Tuning Fork resonator430

(DETF) contained in the resonant accelerometer described in [128, 129] and

shown in Fig. 5.
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Figure 5: (a) SEM Close-up view of the DETF resonator discussed in [129]. (b) Schematic

view of the DETF resonator. (c) Schematic view of a single resonant beam.

The DETF is electrostatically actuated according to its flexural mode (see

Fig. 5b) through two sets of comb finger actuators (see Fig. 5a). In absence

of external acceleration, the DETF oscillates at its natural frequency while the435

proof mass is fixed. When an external acceleration acts along the x -axis, the

proof mass of the accelerometer, not shown in Fig. 5, translates in the same di-

rection and the DETF experiences tensile/compressive loads (see [129] for more

details), thus changing the frequency of its flexural mode. By electrostatically

detecting the frequency variation of the resonator through comb fingers in a440

differential scheme, it is possible to measure the external acceleration acting on

the sensor.

Similarly to what shown in the previous Section, the inertia force induced

by the external acceleration is considered as a constant axial pre-load, P0, in

the beam while the force exherted by the driving comb fingers on the resonator445

is modelled through the transversal dynamic load p(t). To better schematize

the real behavior of the resonator, the beam is axially constrained at both ends,

with an axial spring of stiffness ka at one end to represent the constraint given

by the presence of the micro-lever mechanism (see Fig. 5c).

To take into account the effect of the temperature variation in the dynamic450
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response of the resonator under study, the Young’s modulus and the thermal ex-

pansion coefficient of silicon were considered temperature dependent according

to [130] and [131] respectively. Let T (t) be the temperature and ∆T the tem-

perature shift with respect to T (0 )=T 0; the temperature-dependent Young’s

modulus E(T ) and thermal expansion coefficient α(T ) become:455

E (T ) = E (298.16K)
(
1 + TCE1 ·∆T + TCE2 ·∆T 2

)
α (T ) = −4× 10−12T 2 + 8× 10−9T + 4.7× 10−7,

(22)

with TCE1 = −63.82ppm/K, TCE2 = −51.99ppb/K2 and E (298.16 K) =

168.9 GPa for < 110 > monocrystalline silicon.

The equation of motion describing the non-linear dynamics of the resonator

under varying temperature conditions, was obtained in [129]: it is a particular

case of eq. (5) with p = 3 and k2 = 0.460

Equivalent mass, stiffness and load are in this case given by:

m =
∫ L

0
ρAΨ2dx+mcomb, (23)

k1 = km1 + kG, (24)

km1 =
∫ L

0
E(T )J (Ψ′′)2dx, (25)

kG = (P0 − kaE(T )A·α(T )∆T
kaL+E(T )A L)

∫ L

0
(Ψ′)2dx, (26)

k3 = km3 = 1
2

kaE(T )A
kaL+E(T )A

[∫ L

0
(Ψ′)2dx

]2
, (27)

b =
∫ L

0
b∗Ψ2dx, (28)

F = p(t) + 2α(T )∆TE(T )J
h

∫ L

0
Ψ′′dx, with p(t) = ∂C

∂x VP va, (29)

where va = |va| cos(ωF t) is the driving voltage, C is the capacitance measured

by the comb fingers Vp is the bias voltage and h is the beam height (see Fig.

5c).

From the above equivalent coefficients it can be remarked that the geometri-465

cal stiffness kG and the equivalent load F (i.e. static contribution in the forcing

term) now depend on the temperature. Moreover, no electrostatic stiffness ap-

pears in this case due the use of comb finger actuators instead of parallel plate

ones.
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Figure 6: Frequency response of the DETF resonator at different temperatures in the range

[-30◦C ; 60◦C]. A driving voltage of 10mV of amplitude and a bias voltage of 10V is applied

to the device. Source: [129], Fig. 10.

In Fig. 6, a comparison between the frequency responses of the resonator470

measured at different temperatures (stars in Fig. 6) and the theoretical curves

computed (dashed line in Fig. 6) solving eq. (5) with eqs. (23)-(29) is shown.

The natural frequency of the resonator and the maximum vibration amplitude

at resonance decrease with increasing temperatures.

The results of Fig. 6 show, as expected, that temperature variations can475

highly influence the dynamic response of micro-resonators and consequently

induce complex scenarios in the device dynamics.

6. Softening behavior in a torsional resonator for a resonant accelerom-

eter

The present Section focusses on torsional resonators which are the key com-480

ponent of the out-of-plane resonant accelerometer proposed in [132] and shown

in Fig. 7. In this case the proof mass is attached to the substrate through a

torsional spring and, in the presence of an out-of-plane acceleration, tilts around
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Figure 7: (a) SEM image of the out-of-plane accelerometer with two torsional resonators

A and B; (b) schematic side view of the accelerometer inclined by an external acceleration.

Source: [133], Fig. 1. Reproduced with permission of Elsevier.

Figure 8: (a) Electrostatic actuation scheme of the torsional resonator, (b) first torsional mode

of the torsional resonator. The contour plot of the displacement field is shown in color.

the axis a− a. Two small square masses A and B, the torsional resonators, are

attached to the proof mass and kept at resonance during the functioning by485

electrostatic actuation (Fig. 8). When an external acceleration is applied, the

proof mass rotates and the gap g0 between the resonators and the electrodes

changes. Since the torsional electrostatic stiffness depends on the gap, through a

relation similar to eq. (3), it changes and makes the frequency vary in opposite

directions in resonators A and B, thus allowing for a differential acceleration490

sensing.
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Each one of the two torsional resonators can be described as a one degree

of freedom system (the dof is the rotation of the mass θ(x, t) = Θ(t)Ψ(x), with

Ψ a proper shape function) and the equation governing its dynamics is again

expressed by eq. (5) truncated at the third order with U(t) ≡ Θ(t). Note495

that, since in this case the degree of freedom is an angle, the equivalent mass,

stiffnesses and forcing term change, accordingly, their dimensions and read

m = 2

∫ L

0

ρJpΨ
2dx+ ρJmass, (30)

k1 = km + ke1, (31)

km = 2

∫ L

0

GJt(Ψ
′)2dx, (32)

ke1 = −2ϵ0B

g30
V 2
p

(
d3

3
− c3

3

)
, (33)

k3 = ke3 = −4ϵ0B

g50
V 2
p

(
d5

5
− c5

5

)
, (34)

F (t) =
ϵ0B

g20
Vpva(t)

(
d2

2
− c2

2

)
, (35)

b =

∫ L

0

b∗Ψ2dx, (36)

where d and c are defined in Fig. 8, Jt is the torsional moment of inertia, G

the shear elastic modulus, Jp is the polar moment of inertia of a single spring of

length L, ρJmass is the centroidal mass moment of inertia of the rigid mass and500

F (t) is now the external torque applied to sustain the oscillation. Note that

the term ke3, coming from the Taylor expansion of the electrostatic moment

arrested at the third order [133] is negative and this implies a softening effect in

the frequency response of the torsional resonator as usually happens when only

electrostatic parallel plates nonlinearities are taken into account in the model.505

The second order term ke2 is zero for symmetry reasons.

In Fig. 9a the frequency-response curve for a torsional resonator (the ge-

ometric dimensions used are the ones of the torsional resonator of the z -axis

resonant accelerometer studied in [134]) is shown for different values of the ac-

tuation voltage |va| at the fixed polarization voltage Vp = 6V.510

For significantly high |va|, there is a range of ω where Θ becomes a multival-
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ued function and for a given ω three solutions are available (see Fig. 9a, points

P1, P2 and P3). The critical value of |va| after which the response becomes a

multi-valued function of the frequency, is:

|vac | =

√
8b3ω3

0

3|k3|
2g20

ϵ0LVp(d2 − c2)
. (37)

Note that for |va| ≪ |vac | the results are linear: the frequency response515

curves are symmetric and represent the solution in a very narrow band around

the resonant frequency.
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Figure 9: Dynamic response of the torsional resonator. a) Frequency-response curve with

Vp = 6V and |va| =10, 20, 30, 40, 50 mV; b) trajectories of the system in the state plane: the

two stable steady state solutions (P1, P3) and the unstable one (P2) are marked with the red

and black dots respectively, [135].

When |va| > |vac |, the frequency response is non-linear and the effect of the

nonlinearity is to bend the amplitude curve and distort the phase curve: in both

cases multivalued regions are formed and, consequently, jump phenomena arise520

(see [136, 137, 138]).

The third order approximation of the electrostatic moment gives good results

for moderate values of |va|. To see the limit of this approximation, one should

consider further terms. When terms up to the fifth order are considered, eq. (5)

with:525

k5 = ke5 = −6ϵ0B

g70
V 2
p

(
d7

7
− c7

7

)
(38)
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and the other coefficients defined in (30)-(36), solved through the method of

successive approximations, gives:

ω = ω0 +
3

8

k3√
k1m

Θ̄2 +
5

16

k5√
k1m

Θ̄4 ±

√(
F̄

2
√
k1mΘ̄

)2

−
(

b

2m

)2

(39)

where Θ̄ is the maximum rotation angle and F̄ is the amplitude of the forcing

electrostatic moment.

Figure 10, taken from [139], shows the comparison between the analitycal530

prediction obtained with the different approximations, the numerical results ob-

tained by time integration (without Taylor expansions approximation) and the

experimental results on a torsional resonator fabricated through the Thelma c⃝

surface micromachining process by ST-Microelectronics. From Fig. 10 it is evi-

dent that it is not possible to describe the real behavior of the torsional resonator535

when the amplitude of rotation increases and the high non-linear regime is en-

tered, with the analytical approximation (39). The inclusion of other terms in

the Taylor approximation would not improve results. Further analytical meth-

ods (e.g. multiple scale or harmonic balance) must be then considered as men-

tioned in Section 3.1 to understand the source of this discrepancy. On the other540

hand, the numerical solution well reproduces the experimental response of the

resonator thus proving the effectiveness of the proposed one degree of freedom

model.

Figure 11 shows the limit pull-in domain in the Vp−|va| plane. Experimental

frequency responses obtained for Vp−|va| combinations above the upper bound545

(orange points in Fig. 11) show dynamic pull-in (asymptotic trend for large

rotation amplitude) while for Vp − |va| combinations under the lower bound

(black point in Fig. 11), the classic linear or hysteretic behavior is obtained.

The numerical lower bound, consequently, allows to define the safe operation

region of the device that is, usually, of fundamental importance during the550

design process.
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Figure 10: Frequency response of the torsional resonator for Vp=5V and |va|= 100 mV:

linear, III and V order analytical approximations (gray curves), numerical prediction (dotted

dark gray) and experimental curves (continuous black); both forward and backward frequency

sweeps are shown, [139].
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Figure 11: Limit pull-in domain in the bias voltage-actuation voltage plane: numerical pre-

diction (lines) and experimental measurements (dots). The couples of bias and actuation

voltages leading to dynamic pull-in are shown in orange, while black corresponds to values of

voltages leading to a dynamic response immune to pull-in, [139].
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7. Geometric nonlinearities in MEMS elastic springs for beating heart

Coriolis-based gyroscopes

MEMS gyroscopes are devices that measure the angular velocity. Their

sensing principle is often based on the effect of the Coriolis force that originates555

on detection elements, oscillating at resonance frequency, in the presence of an

external angular velocity (Coriolis Vibratory Gyroscopes or CVG).

A 3-axis angular rate gyroscope can be obtained using a single structure

resonating at the primary mode only and using secondary modes for sensing

angular velocities, see e.g. [3]. As schematically shown in Fig. 12, the proof mass560

of the gyroscope studied in [140] consists of four trapezoidal portions connected

by two-arms springs to the outer corners and by additional springs to a central

cross-beam. The vibration is driven using electrostatic comb-finger actuators

on two opposite sides. Each trapezoid moves in and out from the center in the

primary mode in a coordinate manner, so the whole unit alternately expands565

and contracts, giving it the name beating heart , see Fig. 12a. The Coriolis forces

generated by yaw, pitch and roll external angular velocities activate secondary

vibration modes which are sensed by capacitance measures, see Fig. 12b.
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Figure 12: Scheme of the 3-axis beating-heart gyroscope: (a) in-plane drive mode, (b) scheme

of sensing modes for roll, pitch and yaw as a consequence of Coriolis’ forces.

The mechanical design of CVG is complex as it implies the presence of actu-

ators that sustain the drive mode of oscillating parts and of several deformable570
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(a) hardening (c) linear(b) softening

Figure 13: Eigen shape-function of the first mode of the quad-mass test structure with (a)

hardening, (b) softening and (c) liner coupling springs. The contour of the displacement field

is shown in color.

portions which allow the movement of the various masses composing the device.

In the present Section the focus is on the special deformable elements, two-

arms springs, which connect the moving masses transferring the horizontal mo-

tion of one mass to the vertical motion of the other mass (Fig. 13) and which

can enter in softening or hardening mechanical regimes [141].575

It is possible to schematize half of the elastic coupling spring by putting a

slider on one end inclined by 45◦ to represent the connection between one arm

of the coupling spring and the proof mass and a symmetry condition on the

other end (see Fig. 14a).

Three different cross sections of the coupling springs have been considered580

(see Figs. 13a-c) to prove the tunability of the non-linear response of such elastic

elements. While for a beam with a compact cross section the non-linear effect

leads always to a hardening response [141], a softening behavior can be obtained

by considering built-up beams. In particular, reference is made to a battened

beam as illustrated in Fig. 14. More examples of battened beams can be found585

28



Figure 14: (a) Schematic view of a built-up beam with 4 battens in the undeformed and

deformed configurations. (b) Variation of the normalized distance between the two chords for

different values of the applied force F in a 2-battens beam.

in [142, 143].

The softening response of such beams can be explained by considering that,

when the battened beam deflects, the two chords are subject to axial forces of

opposite sign which, in the large displacement range, influence the elastic curve

of the chords between the successive battens and hence cause a change of the590

relative distance d(s) as shown in Fig. 14b. In particular, for the deflection

sketched in Fig. 14a, the lower chord is stretched and hence its transversal

displacement is lower than the one of the upper compressed chord. Therefore

the distance d varies along the beam d = d(s), decreases in the central part

and the equivalent inertial moment decreases as well leading to a progressive595

reduction of the bending stiffness EJeq. This softening effect can compensate

or even overcome the hardening one.

An analytical model able to describe the non-linear mechanical stiffness of a

coupling spring made by beams of compact section as well as battened beams is
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Figure 15: Experimental dynamic responses of the (a) compact, (b) two battens and (c) four

battens.

reported in [141]. By moving from the compact to the built-up section one can600

pass from a hardening behavior to a softening one; intermediate linear responses

can be obtained by changing the number of battens.

The experimental frequency responses of the three test structures (Fig. 15)

show the hardening behavior of the spring with compact section and the soften-

ing behavior of the two-chords springs. The presence of multiple battens lower605

the softening effect of the coupling spring designed with only two battens at the

ends: for displacement amplitudes similar to the ones shown in Fig. 15b, the

frequency shift induced by nonlinearities is in fact reduced by a factor of 4.

8. Parametric resonance in a Disk Ring Gyroscope

Disk or ring gyroscopes operate using two orthogonal flexural radial vibra-610

tion modes. These mode shapes have deformation proportional to cos(nϑ) and

sin(nϑ), where n is the mode number. Generally the 2ϑ or 3ϑ modes, which are

separated from each other by 45◦ and 30◦ respectively, are used for gyroscope

operation.

The disk resonating gyroscopes have a symmetric structure with central615

anchor and concentric internal rings; an example is shown in Fig. 16 taken from

[144]. The device is realized by a single-crystal silicon slotted disk supported

by a central cylindrical anchor and surrounded by capacitive electrodes used to

force and sense vibration; it has 2ϑ orthogonal elliptical modes, separated by

45◦, see Fig. 16b.620
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Figure 16: Disk Resonator Gyroscope (DRG) fabricated in < 100 > silicon in Stan-

ford’s Episeal process proposed by researches at the Robert Bosch Research and Tec-

nology Center in Palo Alto and then demonstrated in a close collaboration with Stan-

ford University. (a) SEM of DRG and drawing showing DRG shape, with inset SEM of

rings. (b) Orthogonal elliptical mode shapes, with contours of the displacement. Source:

[144], Fig. 1. Licensed under a Creative Commons Attribution 4.0 International License

http://creativecommons.org/licenses/by/4.0/.

The DRG shown in Fig. 16a is here employed to show the phenomenon of the

parametric resonance in MEMS devices. When the large displacement regime is

entered, non-linear mechanical coupling between the two degenerate modes of

the DRG (Fig. 16b) leads to self-induced parametric amplification of the Coriolis

force input. The self-induced parametric amplification has been experimentally625

demonstrated for the first time in [144] while several subsequent works aim at

providing a complete modelling of the phenomenon (e.g. [145, 146, 147]).

Figure 17a shows a lumped element model for the device: the stiffness of the

sensing mode is modulated in time by the non-linear elastic effects induced by

the mechanical coupling of the two modes. In particular, the ∆k, which is the630

variation in stiffness of the sense axis, depends on the drive axis displacement

as shown in Fig. 17. Since the mode shape is two-fold symmetric, the stiffness
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Figure 17: Lumped element model of gyroscope: the displacement of the drive axis

modulates the stiffness of the sense axis at twice the resonant frequency, thus para-

metrically amplifying Coriolis force and electrostatic inputs to the sense axis. Source:

[144], Fig. 3. Licensed under a Creative Commons Attribution 4.0 International License

http://creativecommons.org/licenses/by/4.0/.

change is not sensitive to the sign of the displacement and ∆k approximates

a rectified sine wave. The 2ω component of this rectified sine wave has a ϕ =

45◦ phase shift relative to the drive axis displacement (Fig. 17b), establishing635

the phase relationship between the 2ω pump and 1ω signal waveforms (see eq.

(11)).

Self-induced parametric amplification was first observed by measuring the

gyroscope’s sensitivity to rotation rate SΩ as a function of the amplitude of the

driven mode xD. When the driven mode’s amplitude is small xD < 2.5%, the640

frequency response exhibits the expected Lorentzian shape with ∆ω/2π = 3 Hz.

As xD is increased, the scale-factor increases at a rate much greater than xD; an

8-fold increase in xD results in a 67-fold increase in SΩ and a two-fold reduction

in ∆ω (Fig. 18a).

Due to the degeneracy of the two modes, which results in coupling between645

the two modes, the frequency shift of one mode induced by the motion of the

other cannot be probed by common techniques, such as those employed by

[148, 149, 150]: the force sensitivity was probed by applying an additional elec-
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Figure 18: (a) Experimental response of the DRG to external rate. Inset shows the measured

frequency response at small and large amplitudes of the driving displacement, indicating

the reduced bandwidth observed at large amplitude due to the artificial increase in Q. (b)

Parametric gain measured at different vibration amplitudes, versus phase shift between the

sense axis excitation force and the drive mode’s vibration. Theoretical fits are superposed in

continuous lines. Source: [144], Fig. 4 and Fig. 5a. Licensed under a Creative Commons

Attribution 4.0 International License http://creativecommons.org/licenses/by/4.0/.

trostatic force directly to the sensing mode with a controlled phase, ϕ, relative

to the excitation applied to the driven axis, and measuring the amplitude of the650

movement caused by this additional force.

The baseline motion of the sensing mode due to modal coupling, electrode

misalignment and electrical feedthrough of the drive signal were subtracted, so

that the resulting amplification of the force applied to the sense mode could be

accurately measured.655

The resulting amplification of this additional force is shown in Fig. 18b, ex-

hibiting phase dependence consistent with parametric amplification (eq. (12)),

with maximum amplification occurring at ϕ = ±90◦ and minimum amplification

at ϕ = 0◦.

9. Closing remarks660

The present paper is intended to give an overview of possible non-linear me-

chanical responses in microsystems, with particular reference to the dynamic
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response of electrostatically actuated mechanical oscillators, important compo-

nents of inertial MEMS. The modelling of non-linear behaviors in MEMS is

gaining increasing attention from the scientific community due to the progres-665

sive miniaturization and the constant research of better performances of MEMS

devices. Moreover, mastering of non-linear mechanical phenomena can open

new perspectives if combined with readout circuits able to govern it.

After reviewing many possible sources of nonlinearities in MEMS, various

practical examples of mechanical oscillators which enter non-linear dynamic670

regimes due to hardening and/or softening effects have been discussed. Par-

ticular attention has been focused on geometric and electrostatic nonlinearities

and on the effect of the temperature on the dynamic response of MEMS oscil-

lators. Parametric resonance has been discussed with reference to a Disk Ring

gyroscope.675

The examples discussed in this paper have been taken from the Authors’

experience and all refer to real devices fabricated with state of the art MEMS

technology.

Many other devices in which complex multi-physics behaviors arise would

deserve attention. Among these, it is interesting to mention the emerging field680

of piezoelectric MEMS in which electro-mechanical coupling is exerted at the

level of the material, thanks to the piezoelectric properties. Devices like piezo

micro ultrasound transducers (PMUT) are now under study and in some cases

already in the market for specific applications like range finders. In the case

of PMUT, peculiar nonlinear dynamic regimes can show up when the radius685

over thickness ratio is very high and the vibrating membranes enter in non-

linear regime due to membrane-bending coupling and due to the influence of

residual stresses and pre-deformed configurations. Micro-pumps which could

find interesting applications in micro-cooling and in controlled drug delivery,

show mechanical responses linked to the interaction of the movable part of the690

pump with the fluid with possible non-linear effects. Another example are micro-

mirrors with electrostatic, electro-magnetic or piezoelectric actuation, used for

image recognition or micro-video projection. In these devices, the complexity
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of the actuation system, coupled with large rotation angles and non-linear fluid

damping phenomena create a variety of non-linear dynamic responses.695

The world of microsystems is rapidly evolving; products like inertial or pres-

sure sensors are now considered as classic in the MEMS world and are reach-

ing high performances, new products like PMUT, micro-pumps, micro-mirrors,

resonators are ready for widespread applications. Research activities show an

increasing interest for devices in which sensing is combined with pre-treatment700

of acquired signals also with the use of machine learning approaches. The de-

velopment of high performance sensors and innovative devices with non simple

actuation systems will ask for improvement in the mastering of complex non-

linear and multi-physics phenomena and probably will allow for the discovery

of new phenomena coming from multiphysics interactions which have not been705

completely explored.
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