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This article presents a new approach to the design of task scheduling algorithms, where system-theoretical 
methodologies are used throughout. The proposal implies a significant perspective shift with respect to 
mainstream design practices, but yields large payoffs in terms of simplicity, flexibility, solution uniformity 
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tests, and a methodological treatise of the matter.
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1. INTRODUCTION

Control-theoretical methods are nowadays applied to a variety of computing system 
problems, in a view to provide adaptation capabilities to withstand varying and unpre-
dicted environmental conditions. However, in some sense, controllers are “sitting at the 
door” of the computing domain, as they are almost invariantly applied to systems that 
are fully functional also in their absence. For example, coming to the scope of this work, 
many controllers have been proposed to adapt the tunable parameters of scheduling 
algorithms, but those algorithms would work—albeit without adaptation—also if the 
controller were not present.

Recent advances have shown that this is a partial view on the matter, since in many 
cases controllers can in fact entirely replace computing system components—or, better, 
said components can be totally designed as controllers. For example, sticking again to 
the subject of this work, a feedback control structure can be a task scheduler.

Introducing control in computing systems by “opening the door” and accepting to
use it right from the design phase, has two main advantages. First, we argue that the
resulting adaptive component is normally simpler than if a “non-control-theoretic” one
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was initially created, and then a control layer was added on top of it to make it self-
adaptive or self-aware. The component designed following control-theoretical principles
could be more complex than the original nonadaptive one that one may start with, but
in general, as a second and most important point, an entirely control-based design
can be analysed and assessed in the system-theoretic sense, yielding methodologically
grounded performance and robustness guarantees, also in the presence of discrepancies
between the design and the actual operating conditions. As a consequence, in general
“fully control-theoretical” components are not only simpler, but also more effective,
safe, and flexible.

This work applies and demonstrates the above envisaged ideas in the context of task
scheduling. Its contributions are summarised below.

—A unifying paradigm is introduced that allows to both represent existing scheduling
policies, and design new ones. Said paradigm is fully grounded on system-theoretical
concepts. As a consequence, it allows to study and assess a policy’s behaviour
analytically.

—Along the proposed paradigm, a novel general-purpose scheduling algorithm, named
I+PI for reasons explained later on, is designed and evaluated. Thanks essentially
to the underlying paradigm, I+PI allows to seamlessly handle tasks with and
without deadlines, periodic and nonperiodic, avoiding the necessity of coordinating
multiple scheduling policies. In addition, the I+PI approach is naturally keen to
implementations that keep the task activation part confined and isolated, therefore
working both with processes and threads. Finally, I+PI makes the system natively
adaptive to discrepancies between the assumed and the actual CPU use on the part
of tasks, thus inherently robust in the presence of unpredicted runtime phenomena.
The scheduling algorithm is a natural fit for soft-real time systems.

—A microcontroller kernel named Miosix with compile-time pluggable scheduling was
developed, and its correctness was checked with the MiBench benchmark [Guthaus
et al. 2001]. Since Miosix is targeted to microcontrollers, it only implement threads
(specifically pthreads), therefore in this work, the word task is used referring
to the theoretical approach and the word thread is used when referring to the
implementation.

—The I+PI algorithm was realised in Miosix and compared to Round Robin (RR) and
Earliest Deadline First (EDF), implemented for the same kernel, with the standard
Hartstone benchmark [Weiderman and Kamenoff 1992].

—Additional comparisons are presented with an extended version of Hartstone, to
address issues that are not considered in typical (and somehow problem-specific)
benchmarks, but are relevant for real-world schedulers’ operation.

The article is organised as follows. Related work is briefly reviewed in Section 2.
Section 3 then goes through the underlying theory, to illustrate how those achievements
are grounded and guaranteed. Section 4 provides implementation details. Section 5
shows some test results, to evidence the achieved goals. Section 6 finally draws some
conclusions, and sketches out future research.

2. RELATED WORK

Generally speaking, “closing a loop” in the scheduling algorithm is not a new concept.
Probably, the first scheduling algorithm based on the concept of “feedback” is the Multi-
level Feedback Queue, presented in Kleinrock and Muntz [1972] and described, together
with others in a comparative way in Brucker [2007]. According to this algorithm there
are different task queues in the system and whenever a new task is introduced, it is
destinated to a specific queue based on its priority. The running task is picked from



Table I. Summary of Control Functionalities Introduced in Related Work

Time Task Task
computation selection Activation admission

I+PI × × ×
[Abeni et al. 2002] ×
[Batcher and Walker 2008] ×
[Brinkschulte and Pacher 2008] × ×
[Cervin and Alriksson 2006] ×
[Cucinotta et al. 2010] ×
[Cucinotta et al. 2010] ×
[Kihl et al. 2008] ×
[Kjaer et al. 2009] ×
[Kotecha and Shah 2008] × ×
[Lawrence et al. 2001] ×
[Lohn et al. 2011] × ×
[Lu et al. 1999] ×
[Lu et al. 2002] ×
[Palopoli and Abeni 2009] ×
[Xia et al. 2007] ×

the highest priority nonempty queue. Whenever a task has spent an excessive amount 
of time in the system without being scheduled, its priority could be increased and its 
destination queue could change. This ancestor of the feedback scheduling concepts in-
troduced some re-design as well as the key idea of using a feedback signal to determine 
the scheduler behaviour. In fact, the feedback nature of this scheduler in the system-
theoretical sense resides precisely in acting (moving a task from a queue to another) 
based on measurements (starvation), not in the feedback nature of the queues. Any 
two languages have some false friends and for the computer science and the control 
engineer ones, “feedback” is a notable example indeed.

Intuitively, introducing a feedback signal (from now on in the system-theoretical 
sense) is a key point in the adoption of a control-based attitude, but the design of the 
control system is, at least, as important as the chosen feedback signal. The use of a 
control methodology to design and implement computing systems leads to flexibility, 
adaptivity, performance control and robustness to variations. The ARTIST2 project was
aimed at defining a roadmap on control of real-time computing systems [ ̊Arzén et al. 
2006]. In the vast majority of cases, the controlled item is the allocation of computing 
and communication resources. In feedback scheduling the allocation of CPU resources 
is based on a comparison of the actual resource consumption with the desired one. One 
of the main output of this research is recognizing the absence of a macroscopic physical 
level to be used for modelling the system in a suitable way for control purposes. In this 
work we addressed this limitation at least for the specific problem of CPU allocation.

As another example of introducing adaptivity at the operating system level, [Xu et al. 
2006] controls CPU utilization of a virtual server running a web server with various 
model predictive control strategies, and compare them. Differently from the quoted 
work, the purpose of this article is not to complement an existing operating system but 
to re-design part of it with a control-oriented attitude.

Focusing on the specific topic of scheduling, in the case of single processor (possibly 
real-time) operating systems addressed herein, EDF has been proved to be theoretically 
the optimal scheduling algorithm whenever the device is underloaded [Pinedo 2008]. 
This means that EDF is able to schedule every task pool that is schedulable. Such off-
line considerations are not suited to address online behaviour. In fact, the performance



of EDF decreases exponentially when the device becomes slightly overloaded. In this
work we compared our results to the classical EDF algorithm. In the literature, a
different approach to overcome the limitations of the classical EDF was to combine it
with a different scheduling algorithm, based on an Ant Colony Optimization design
[Kotecha and Shah 2008].

Apparently, Lu et al. [2002] is very close to our work; however, some differences can be
underlined. Lu et al. in fact propose a conceptual framework for introducing Feedback
Control in real-time operating system scheduling. A remarkable contribution of their
work is the introduction of the distinction between open- and closed-loop policies, the
latter category corresponding in system-theoretical terms to feedback. An open loop
policy is a scheduling algorithm that does not receive any measurement from the
running tasks and the operating system, while a closed-loop one does take advantage
of such measurements. In their work, the authors proposed to use the estimated future
utilization as a control signal and to derive from the desired utilization and miss ratio
an admission controller that allows tasks to enter the system. The amount of control
and the place where this control is introduced is apparently different from our proposal.
Notice that admission control in general is very popular in the context of web servers,
where the tasks could be rejected to preserve utilization [Kihl et al. 2008; Kjaer et al.
2009]. Some of the proposed ideas could be useful also in a different context, like the
one presented here, but the main difference between the referenced papers and this
proposal is the application domain, in one case it being a server and in the other an
embedded device.

Elsewhere, Brinkschulte et al. [2002] developed a scheduling algorithm called Guar-
anteed Percentage Scheduling, based on the idea that each task should execute for a
percentage of a round time (although in their approach, this period is a fixed value,
hardcoded in the policy itself). The scheduler they developed is not based on any feed-
back signal in principle, and it maintains hard real-time guarantees with a task ad-
mission control policy. However, the percentages of CPU sharing that each task needs
were adapted with a feedback loop, based on measurements of the instructions per
cycle rate [Brinkschulte and Pacher 2008; Lohn et al. 2011]. Also in this case, a fully
functional system that was initially not meant to be adaptive, was closed a feedback
loop around, resulting in a “sophisticated, probabilistic processor model.”

Some papers introduce controllers to adjusts the “reservation period”, that is, the
times assigned to the tasks, with the purpose of keeping the system utilisation below
a specified upper bound [Abeni et al. 2002; Cucinotta et al. 2010a, 2010b; Lawrence
et al. 2001; Palopoli and Abeni 2009]. In these works the burst duration is adjusted
according to the results of the execution of a controller, built to optimize different cost
function. No control-based selection of the next task is envisioned, while this is a native
feature of I+PI, emerging when some bursts are set to zero. Moreover, the scheduler
of the cited works calculates the next burst every time a task is to be activated, while
I+PI views the task pool as a single entity, computing bursts just one per round.

Elsewhere, the Batcher and Walker [2008] reorder the list of tasks to be scheduled
with a round robin algorithm in an embedded device, with the aim of reducing cache
misses. Also in this case, control is introduced to meet a system requirement by acting
on a parameter of a fully functional scheduler, not necessarily designed with that
requirement in mind.

3. THEORY

Control-theoretical contributions preliminary to this work were presented in Leva and
Maggio [2010], where however the scheduler behaviour was only simulated, and the
focus was set on the controller synthesis. A brief overview on that matter is given
here, adapting the viewpoint to the scope of this work. The implementation and



benchmarking of the proposed scheduler on real hardware raised some issues that
are here extensively discussed. Of course, providing a full treatise of the used theory is
impossible here; the interested reader can, for instance, refer to Franklin et al. [2010]
for background material and deeper theoretical discussions.

As anticipated, however, control-based concepts are used here in a way that is defi-
nitely novel in the computing system domain. To understand such a new approach, it
is then necessary to abandon for a moment any traditional view on scheduling, review
the principles of a control problem and its treatment, discuss their (full) application
to computing systems so that the required perspective shift be naturally induced, and
finally go back to scheduling. The following principles’ introduction is carried out by
presenting general ideas while at the same time having in mind an example, that delib-
erately refrains from referring to scheduling. From one point of view, this should help
the reader concentrate on principles without being distracted by envisaging their use
in the addressed context. From another standpoint, it should help understand the gen-
erality of the theory, since as different problems as temperature control and scheduling
can be treated more or less the same, thus foreseeing the advantages of using said
theory—when possible—in the way proposed here.

3.1. Control Principles (The Required Theory in a Nutshell)

In virtually any control system—think for example to temperature control in a room—
some physical object (the room) is the site where some phenomena (heat generation,
storage, and exchange) occur. Objectives are to be attained, and quite frequently these
take the form of a desired (or reference) evolution of those phenomena in time, as
appreciated by conveniently chosen measurements (for example, the room temperature
has to follow a reference daily profile). A certain control precision is required in the
presence of acceptable system variability (humidity can alter the air heat capacity) and
unpredicted exogenous actions, collectively called disturbances (a door may be opened,
or the external temperature may vary within a range and with a rate for which upper
and lower bounds are normally known). Precision is expressed by means of

—static requirements: when the system is at rest the room temperature must be within
1◦C from the desired value;

—dynamic requirements: if the reference is subject to a step variation, the room tem-
perature must reach the new value within 1◦C in ten minutes or less, and without
oscillating;

—disturbance rejection requirements: if the door is opened for at most 30 seconds, or
the external temperature varies by at most 10◦C with a maximum absolute rate of
4◦C/min, the room temperature must never drift from the reference by more than
2◦C, and recover the reference within 1◦C in five minutes or less;

—robustness requirements: all the above must hold true also if any or even all of the
system parameters, such as the air or walls heat capacity or some thermal exchange
coefficient, differ from the nominal value used to solve the problem by ∓10%.

There are in general also asymptotic stability requirements, meaning that if perturbed 
the system must tend to recover its previous state, but for the purpose of this treatise 
their quantification may be taken as implicitly given by precision and robustness ones.

To be controlled, the physical object needs instrumenting, that is, endowing with 
sensors to appreciate the behaviour of the relevant phenomena over time (a room 
temperature sensor), and with actuators to influence the system (a heater, supposing 
for simplicity that cooling is not required). At this point an oriented system is defined, 
having as inputs the actuator’s action or control variables (the heater command) and 
the disturbances (the openings’ areas and the external temperature), and as outputs 
the controlled variables (the room temperature). This system is called the plant.



If up to now everything is well done and consistent, it is possible to mathematically
represent the plant with a model. In any case of interest such a model is dynamic,
which in the control jargon means that knowing the evolution of the inputs in time is
not enough to know the evolution of the outputs: for that purpose, it is also necessary to
know the initial values of other quantities, called the state variables. In the room case,
for example, knowing the behaviour of heater command, openings’ area and external
temperature from a certain (initial) instant does not provide the behaviour of the room
temperature, since it is also required to know what the temperature was at the initial
instant.

Dynamic models can be of many types. Limiting the scope to what is relevant here,
they can take the form of (time) difference equations: for example, neglecting for sim-
plicity any heat storage except that of air, the room temperature at time tk equals
that at time tk−1, k being an integer index, plus the net energy (positive or negative)
entering the room from tk−1 to tk (owing to the control action of the heater and/or to
the disturbances introduced by openings and eternal temperature) divided by the air
thermal capacity. Such models are called discrete-time dynamic systems, and take the
general form

P :
{

x(k) = f (x(k − 1), u(k − 1), d(k − 1), θ )
y(k) = g(x(k), θ ),

(1)

where vectors u, d, y, and x are respectively the control inputs, the disturbances,
the outputs (to be controlled) and the states, while θ contains the model physical
parameters. In (1), function f provides the “next” state given the “previous” one and
the inputs, while g gives the outputs. The dynamic character of f , evidenced by the
presence of two time index values, provides (1) with memory of the past, and gives a
quantitative meaning—via the idea of state to the intuitive fact that the same inputs
can result in different outputs depending on the system’s condition. Knowing θ , x at a
given time—say zero for simplicity—and u(k), d(k) for k ≥ 0, Equation (1) permits to
compute x(k), y(k) for k ≥ 0, that is, to simulate the model of the plant, denoted in the
following by P. The absence of the inputs u and d in the second equation of (1) is a
technical hypothesis inessential to discuss here, suffice to justify it in this context by
saying that no input-output action can be instantaneous–a simple matter of causality.

To attain the objectives, a (feedback) controller is typically used. Such a controller
measures y, knows the reference r for it, and computes u so that y follows r within
the specifications despite any expectable d. Mathematically this means creating a new
dynamic model C representing the controller, in the form

C :
{
ξ (k) = ϕ(ξ (k − 1), r(k − 1), y(k − 1), ψ)
u(k) = γ (ξ (k), r(k), y(k), ψ),

(2)

with state ξ and parameter vector ψ , ϕ and γ playing the same role as f and g in (1).
Note that in the second equation of (2) the inputs are present, as it is common in control
theory to assume that a controller is able to react “instantaneously” to errors and/or
disturbances, since this just amounts to neglect (hopefully very small) computation
delays. Combining (1) and (2), the overall closed-loop system (termed also the control
system) turns out to be ruled by⎧⎨

⎩
x(k) = f (x(k − 1), γ (ξ (k − 1), r(k − 1), g(x(k − 1), θ ), ψ), d(k − 1), θ )
ξ (k) = ϕ(ξ (k − 1), r(k − 1), g(x(k − 1), θ ), ψ)
y(k) = g(x(k), ψ),

(3)

which has X := [x ξ ]′ as the overall state vector, r, d as inputs, and y as output, were
the prime sign stands for the transpose operator. Denoting by � := [θ ψ]′ the overall



parameter vector, (3) can thus be written as

{
X(k) = �(X(k − 1), r(k − 1),�)
y(k) = 	(X(k),�).

(4)

The control theory provides a wealth of methods to translate the control specifications
as introduced above into a desired closed-loop system, that is, desired characteristics
for functions � and 	 (that, again, play respectively the role of f, ψ and g, γ ). Once
said translation is done, the control problem is therefore turned into that of finding
two functions ϕ and γ for the controller, that combined with functions f and g from
the plant, reproduce the desired � and 	 with sufficient precision; methods are also
available to quantify that precision, and the consequent discrepancies of the desired
behaviour from the reference one. Finally, when a suitable (ϕ, γ ) couple is found, (2)
produces the control algorithm in a straightforward manner.

A key feature of the feedback approach is that any unforeseen action on the controlled
variables is detected by observing measurements of those variables over time. Feedback
control requires neither very detailed models of the controlled objects, nor complex
prediction procedures for possible unexpected exogenous actions: it only needs reliable
measurements.

Coming back to models, and considering (4), some of its equations (denote them as
set Es) come from the physics of the controlled object and cannot be altered, while
the others (set Ec) come from the controller, and the connection between the latter
and the object where the controlled phenomenon occurs. A key rule of the game is to
select Es properly, that is, to include in it all that is necessary to appreciate the object’s
behaviour in a view to attain the control desires, but nothing else. Another rule is to
identify all external actions that influence the phenomenon, and classify them into
(possible) control signals and disturbances. The former can be acted upon, the latter
cannot, and the role of the controller is to reduce their effect on the controlled variables
as much as possible.

3.2. Back to Scheduling (The New Control-Based Design Perspective)

The triggering remark of the presented research is that, in the computing system
domain and particularly in scheduling, the two rules just mentioned are hardly ever
considered as a design paradigm. Specialising that remark to scheduling, in the light
of the general ides above, provides the material to be discussed here.

Consider a pool of tasks that need to share a CPU, and attempt to isolate the sole
phenomenon that cannot be omitted in any description of it, whatever the scheduling
policy is. Not surprisingly, this phenomenon is simple: at the beginning of the time span
between a scheduler intervention and the subsequent one, some tasks are allotted a
CPU burst (sometimes also called “reservation period” or “scheduling bandwidth”); at
the end of the same time span, those processes have used a certain amount of CPU
time, not necessarily equal to their bursts. For each task this is simply translated in
the difference equation

τt(k) = b(k − 1) + δb(k − 1) (5)

where k counts the scheduler interventions, τt is the actually used CPU time, and b the 
burst. The disturbance δb accounts for any action on the phenomenon other than that 
of allotting b, such as for example anticipated CPU yields, delays in returning the CPU 
whatever the cause is, and so forth.



Fig. 1. Meaning and behaviour over time of the involved quantities.

Extending (5) to the entire pool, one obtains the model
⎧⎨
⎩

τt(k) = b(k − 1) + δb(k − 1)
t(k) = t(k − 1) + ∑

b(k − 1) + ∑
δb(k − 1)

τr(k) = ∑
τt(k),

(6)

where summations are over the pool, τr is the time between two subsequent scheduler
interventions (no matter how many tasks were allotted a nonzero burst and in which or-
der), and t is the system time. Model (6) respects the rules, in that it is entirely physical,
accounts for all the entities acting on the phenomenon, and exposes both the actually
used CPU times and the time between two subsequent instants when the scheduler
regains control. Based on those quantities, desires on fairness, responsiveness and so
on (i.e., typical metrics used to evaluate schedulers behaviour) can be reformulated in
control theoretical terms. Figure 1 gives a visual representation of the meaning of the
involved quantities and their behaviour in time, introducing also the presence of the
scheduler operations and context switches, τt values represents the effectively elapsed
times, in the figure, the time spent executing the first task, τt1 is greater than the one
assigned by the scheduler (corresponding to b1), for example because the task was not
correctly preempted when its quantum expired. In this the value of the corresponding
disturbance δb1 is greater than zero. On the contrary, the second task executed for
less time than planned, for example because it executed a yield or stops waiting for
interrupts. In this case δb2 is a negative value that accounts for the difference. The
third tasks just used its burst. The fourth line represents scheduling time and context
switches duration. Also, the round time τr is depicted.

3.3. Control Synthesis

The I+PI scheduler and the controlled task pool are completely represented by the
block diagram of Figure 2, which was used to synthesise and assess the policy, and
also for verification-oriented simulations prior to the actual implementation. In that



Fig. 2. The proposed scheduler as a feedback control block diagram.

scheme P—plus the input summation node—is the “controlled plant,” that is, the first
equation in (6) with control input b, disturbance input δb, and output τt; the block
denoted by � realises the third equation in (6), producing the round duration τr; the
other blocks compose the controller, and will be dealt with in the next sections.

The scheme is of the so called cascade type, as two nested loops can be recognised.
The inner loop is devoted to ensuring the prescribed distribution of the CPU time,
acting on the bursts. The outer loop introduces an additive burst correction so as to
keep the round time to the desired value.

3.3.1. Inner Loop. The inner loop is composed of the task pool and a diagonal integral (I)
regulator, realised by block Rt, whence the first part of “I+PI”. Since also model (6) is
diagonal as for the b �→ τt relationship, the result is a diagonal (or “decoupled”) closed-
loop system that can be studied by simply considering one of its scalar elements.
Also, the choice of the (diagonal) I structure stems from the pure delay nature of said
elements—evidenced by the first equation in (6)—as a typical control design procedure;
see Franklin et al. [2010]. In view of this, if for each burst bi an integral discrete-time
controller with gain kI is adopted, that is,

bi(k) = bi(k − 1) + kI
(
τ ◦

t,i(k − 1) − τt,i(k)
)
, (7)

where τ ◦
t,i is the set point (the control-theoretical term for “desired value”) for the i-th

component τt,i of τt. The inner closed loop is thus represented in state space form by[
τt,i(k)
bi(k)

]
=

[
0 1

−kI 1

] [
τt,i(k − 1)
bi(k − 1)

]
+

[
0
kI

]
τ ◦

t,i(k − 1) +
[
1
0

]
δbi(k − 1). (8)

Observing system (8) with inputs τ ◦
t,i, δbi and output τt,i, it can be concluded that

the disturbance is asymptotically rejected and the set point followed with a response
time (in rounds) dictated by kI provided that the eigenvalue magnitude is less than
the unity, that is, |1 ± √

1 − 4k1 | < 2. A good default choice is to have two coincident
eigenvalues in 0.5, hence kI = 0.25. Higher values of kI make the controller respond
“more strongly” to the difference between the desired and achieved τt,i, thus making the
system faster at rejecting disturbances (owing to a prompt action) but easily producing
oscillatory responses to set point variations (owing to a possibly transiently excessive
action); lower values of kI , intuitively, cause the reverse to happen. Figure 3 illustrates
the matter, and shows why 0.25 could be used as default for a scheduler with no
real-time requirements, and 0.5 could be used for a soft real-time one. More detailed
computations on the relationship between kI and the obtained responses are omitted
for brevity.

Trivial computations lead to write from (8) the iterative law describing the closed
inner loop’s behaviour in time, which takes the form{

τt(k) = τt(k − 1) − kI Iτt(k − 2) + kI Iτ ◦
t (k − 2) + δb(k − 1) − δb(k − 2)

b(k) = b(k − 1) + kI Iτ ◦
t (k − 1) − kI Iτt(k − 1)

(9)



Fig. 3. Inner loop set point responses for different values of ki .

where I is the identity matrix of dimension equal to the number of tasks. This realises
Rt, as the second equation of (9) is the required control algorithm for the inner loop.

3.3.2. Outer Loop. Once the inner loop is closed, the convergence of the actual CPU
times to the required ones is ensured since choosing eigenvalues with magnitude lower
than the unity ensures asymptotic stability, and the regulator contains an integral
action [Franklin et al. 2010]. To determine the set point τ ◦

t , an outer loop is used that
provides an additive correction (bc in Figure 2) so as to maintain the round duration
τr to a prescribed value τ ◦

r ; the computation of bc is accomplished by block Rr. It can
be verified that choosing a single kI for the inner loop results in a bc �→ τr relationship
independent of α. A suitable controller structure for the outer loop, along considerations
analogous to those that led to the I one for the inner loop, is then the Proportional plus
Integral one (PI), whence the rest of “I+PI.” Reasoning in the same way as for (8) this
leads to determine the closed outer loop’s behaviour in time as ruled by⎧⎪⎪⎨

⎪⎪⎩

τr(k) = 2τt(k − 1) − (1 + kIkR)τr(k − 2) + kIkRzRτr(k − 3)
+ kIkRτ ◦

r (k − 2) − kIkRzRτ ◦
r (k − 3)

xR(k) = xR(k − 1) + kR(1 − zR)
(
τ ◦

r (k − 1) − τr(k − 1)
)

bc(k) = xR(k) + kR
(
τ ◦

r (k) − τr(k)
)
,

(10)

where again, the second and third equations provide the control algorithm for Rr (xR
is the PI state variable), while the role of block α should now be self-evident. The PI
parameters kR and zR can be set in various ways and are both connected to the response
speed. Stability is ensured if the roots of the characteristic equation

z3 − 2z2 + (1 + kIkR)z − kIkRzR = 0 (11)

in the unknown z, have magnitude less than the unity, which provides easy parameter
bounds, while disturbance rejection is still guaranteed by the contained closed inner
loop.

As a result of the synthesis process just sketched, the I+PI algorithm is unambigu-
ously defined as follows.

3.3.3. Simulation Example. Equations (9) and (10) also allow to simulate the control
system. An example is shown in Figure 4 to illustrate the set point following and dis-
turbance rejection characteristics. A pool of three tasks is considered, and both the
required CPU distribution (vector α) and the desired round duration (τ ◦

r ) are varied.



Fig. 4. Simulation results to demonstrate set point following and disturbance rejection.



ALGORITHM 1: I+PI algorithm (the complete C implementation is about 40 lines long)
Initialize the I and the PI state variables
for each scheduling round k do

Read the measured CPU times used by the Nt tasks in the previous round into vector
τt(k − 1)
Compute the measured duration of the last round as τr(k − 1) = ∑Nt

i=1 τt,i(k − 1)
Read the required round duration τ ◦

r (k − 1)
if the task pool cardinality or parameters have changed then

Reinitialize bi(k) to the default values
else

Compute the burst correction bc(k) for this round by the PI algorithm:
bc(k) = bc(k − 1) + krr(τ ◦

r (k − 1) − τr(k − 1)) − krrzrr(τ ◦
r (k − 2) − τr(k − 2))

Apply saturations to bc(k)
Compute the vector α(k) of required CPU time fractions
for each task i do

// Compute the burst vector b(k) for this round the by the I algorithm:
τ ◦

t,i(k) = αi(k)τ ◦
r (k)

bi(k) = bi(k − 1) + kit(τ ◦
t,i(k) − τt,i(k − 1))

Apply saturations to bi(k)
end for

end if
Activate the Nt tasks in sequence, preempting each of them when its burst is elapsed

end for

When the set point is modified, the behaviour of the system changes accordingly, there-
fore resulting in different curves. Also, steplike disturbances are periodically intro-
duced in the actual CPU time consumed by the tasks. In the same conditions, the
system react to disturbances exactly in the same way. When the set point changes, the
reaction is different. However, as can be seen, both characteristics (CPU distribution,
that is, weighed fairness, and round time, i.e., responsiveness) can be prescribed as set
points, and the system achieves them also in the presence of disturbances. Note, in this
respect, how fast the CPU times and the round duration converge to their set points,
and how quickly the effect of disturbances vanishes. Also, note the smooth behaviour
of the allotted bursts.

Once the control system is assesses as dynamic system and simulated to get further
insight on the aspect of the obtained transients, the code-abstracted part of the design
is completed. From now on, in other words, it is proven that the solution matches the
problem, and the only issue is to check that the code, that comes from the scheduler
related equations, matches the solution.

4. IMPLEMENTATION

The full scheduler implementation is outlined in Figure 5. The scheduler can be divided
into two parts:

—The I+PI controller algorithm, described in Section 3.3 and Algorithm 1, which
computes the bursts values. It should be stressed that I+PI runs once per round, not
once per task. At the beginning of each round I+PI computes the values for all the
units present in the task pool. Tasks can be then run one after the other without any
further scheduler intervention, except than very simple context switches.

—The set point generator, that needs running only when changes occur in the task
pool, the required CPU distribution, the required round duration or any combination
thereof. Its aim is to compute the reference signals for the I+PI algorithm. Set



Fig. 5. Implementation scheme, containing the I+PI regulator and the set point generator.

point generation can be further divided into “overload detection and rescaling” and
“reinitialisation and feedforward”.

It is worth evidencing that the correct behaviour of the scheduler in terms of stability 
and performance depends inherently on the correct realisation of the I+PI algorithm 
only and thus can be checked formally. All the rest (the second item above) is, in control-
theoretical terms, “outside the loop,” and cannot alter the system stability as assessed 
on the model. This is very important to streamline the design process, as once the core 
algorithm is written, parametrised and checked, all the rest of the code structurally 
cannot have unexpected or disruptive impacts on the system. Needless to say, also the 
code structuring and modularisation takes profit from the concepts just recalled.

Since I+PI is a closed-loop scheduler, it requires measurements of the actual CPU 
times consumed by the individual tasks in the previous scheduling period. To achieve 
that, the Miosix implementation makes use of a hardware timer that can also be 
configured for scheduling preemption. The timer is started at the end of the context 
switch code and its value is read at the beginning of the next switch. This allows to 
measure execution time with a fine-grained resolution.

Set point generation is ruled by two input parameters. One is an estimate of the CPU 
percentage that each task requires, for example not to miss deadlines. The second is 
the relative importance of each task, which is used to handle CPU overload situations. 
These parameters can be set by the task itself through an API provided by the Miosix 
kernel, and can be dynamically changed during the lifetime of the task to reflect changes 
in its behaviour. In addition, the scheduler needs to know which tasks are blocked, for 
example sleeping or waiting for I/O operations.



4.1. Overload Detection and Rescaling

From time to time, especially in soft real-time systems, the CPU utilisation may exceed
the unity. This means that the sum of the required CPU percentages (for all nonblocked
tasks) exceeds one. This situation is used in the proposed solution to detect a CPU over-
load situation, signalling that the task pool is not schedulable. This overload indicator
is used to select the rescaling policy to be used.

If the task pool is schedulable the “rescale to one” policy is used to produce vector α, by
rescaling the required CPU percentage vector so that its sum equal one. For example,
consider a task pool with four tasks, of which three require a 20% CPU share, and the
fourth one is blocked and therefore requires zero CPU share. The policy will result in
an α array of {0.33, 0.33, 0.33, 0}. This policy will, by design, give a CPU share greater
or equal than the one requested by the tasks, ensuring that the tasks have enough
CPU to carry out their job successfully. It is particularly significant that this policy
ensures good real-time performance—the following benchmarks should evidence it—
even without the scheduler having any knowledge of deadlines whatsoever. In other
words deadlines are implicitly enforced by ensuring that the involved tasks receive
enough CPU share on time.

In the presence of CPU overload, conversely, this policy is not adequate. Consider an
example with three tasks, all of which require a 50% CPU share. The rescaling would
give a CPU share of 33% to all three tasks, so if deadlines are present all of them
will eventually start missing. In this case the “rescale with relative importance” policy
is thus used. This policy first weighs the CPU share using the relative importance
parameter and then rescales the resulting α vector to have unitary sum as before. As
a result, two tasks that require the same CPU share will receive a burst proportional
to their relative importance parameter. This significantly differs from classical ap-
proaches to tackle similar issues, that are typically based on task priorities, in that the
proposed policy allows to predict the CPU share that will be received by all tasks even
in the case of overload. Also, and again differing from priority-based techniques, the
relative importance parameter is only taken into account when CPU overload occurs,
therefore having no influence when the pool is schedulable. Notice that the relative
importance parameter can be set based on the task importance but is a parameter of
the control system and does not influence its formal assessment.

Once again, recall that both these techniques for rescaling simply produce the set
points for the same regulator and control algorithm, that stays untouched.

4.2. Reinitialisation and Feedforward

Regulator reinitialisation and feedforward have been introduced to improve the
scheduling dynamic performance in the presence of task blockings. A task is said
to block if it stops being able to accept the CPU for a period of time. Blocking causes
include voluntarily sleeping, waiting on a locked mutex or other synchronization prim-
itives, or waiting for an I/O operation to complete.

The I+PI algorithm is intrinsically capable of responding to task blockings due to
its closed loop nature—in other words, due to past behaviour measurements—without
any external intervention. However, reinitialisation and feedforward control were in-
troduced to improve its dynamic performance. To show the advantages of using these
two features, a simple example of what happens if reinitialisation and feedforward
are not present is presented. Consider a case with two tasks, of which one repeatedly
blocks. In this case the external PI regulator is able to quickly regain control of the
round time duration, but in the meantime the integral regulator of the blocked task
is subject to a constant error and, as such, diverges till saturation occurs. When the
blocked task becomes ready again, the scheduler assigns to it a very long burst, equal



Fig. 6. Effects of task blockings on the round duration control (data from hardware implementation).

to the saturation value—a typical case of integral windup. While this situation is re-
covered after a short number of rounds, these spikes in the round duration may cause
deadline misses. An experiment showing how this can actually happen is depicted in
Figure 6.

The I+PI scheduler is a dynamic system, and as such has an internal state. The
reinitialisation policy works by resetting this state to its default value whenever the
task pool parameters change. This includes resetting the saturated integral regulator
of a blocked task, therefore improving the dynamic response to task blockings.

The feedforward policy is instead grounded on the fact that task blocking is a mea-
surable disturbance. A task, to sleep or wait, has to call some kernel API and as such,
the scheduler is informed. This allows to further improve the dynamic response by
changing the I+PI set points, namely by setting to zero the α elements corresponding
to blocked tasks and distributing the round time among nonblocked tasks only.

All the benchmarks results provided in this article have been obtained with both
features enabled.

5. RESULTS

The I+PI algorithm, together with RR and EDF, has been implemented in a kernel
targeted to microcontrollers, named Miosix, and released as free software.1 All the tests
were made with a stm3210e-eval board, equipped with a 72 MHz ARM microcontroller
and a 1 MB external RAM, from which the code executes.

Some test sets are presented. The first one demonstrates the ability of the imple-
mentation to effectively distribute the CPU to the running tasks and the correctness
of the tasks execution, comparing their output with the reference one proposed in the
benchmark suite. The second one compares I+PI to RR and EDF with a benchmark
conceived for periodic tasks, limiting the scope to feasible CPU utilisations, and shows
that I+PI closely approaches the EDF (optimal) results although not being tied to the
concept of deadlines. Also, in this case some numbers concerning the scheduling over-
head are presented. The third set considers the apparently off-design condition of a

1The code for Miosix and all the experiments reported here is available at http://home.dei.polimi.it/
leva/Miosix.html. At the same URL the reader can find full kernel licence details, and the entire result 
datasets of which only a part is here reported.



Table II. Summary of Relevant MiBench [Guthaus et al. 2001] Execution Data

c1 benchmark time [s] .text [B] .data [B] .bss [B] stack [B] heap [B]
A basicmath 61.431 75600 1288 348 1472 4684
A bitcount 8.531 63848 1288 348 1416 4148
A qsort 3.545 90420 1328 140604 1336 5212
A susan2 8.711 97008 1328 604 370312 179588
C jpeg3 14.812 231016 1336 660 3440 246228
C tiff2bw 67.359 259200 1728 780 2408 45492
C tiffdither 85.801 259040 1624 788 3036 41652
C tiffmedian 113.334 253136 1600 133428 1344 160700
O ispell 5.206 134668 1736 31436 4460 732252
O stringsearch 0.023 64116 1280 1380 1664 6948
N dijkstra 14.290 90384 1328 41436 1356 14308
N patricia 10.628 57516 1328 604 1556 14308

N, S sha 3.354 70596 1280 348 2976 5596
S pgpsign 6.969 262980 5288 230140 14376 13588
S pgpverify 1.088 263076 5288 230140 15964 25780
S rijndael4 44.913 104128 1296 356 1416 8908

N, T crc32 162.554 68708 1280 348 1336 7484
T fft/ifft 94.993 71184 1288 348 1504 160652
T adpcm3 52.983 69636 1280 2852 1360 8148
T gsm3 12.145 135972 1576 604 1832 9300

1Categories are: Automotive/industrial, Consumer, Office, Network, Security, Telecommunications.
2Execution time includes all the three phases (edge detection, corner detection, and smoothing).
3Execution time includes both encoding and decoding.
4Source code was flawed, thus it was fixed and output correctness was compared under Linux with the fixed
version instead of the reference.

task pool not schedulable owing to CPU overutilisation, where the approach behind
I+PI makes it inherently superior to non-control-theoretic ones.

5.1. Test Set 1 (MiBench Benchmark)

The open source MiBench suite [Guthaus et al. 2001] is used here to assess the correct-
ness of the Miosix pluggable scheduler implementation. The suite contains applications
that span from mathematical computation to image encoding, network routing, cryp-
tography and GSM audio encoding/decoding, thereby representing a variety of work-
loads. There are two tests per benchmark, a “small-” and a “large-input” one. Owing to
the available hardware limitations, only the small-input one is here used (apparently,
with no generality loss). Table II reports some execution time and memory occupa-
tion results. There are no significant differences between the results of Miosix and the
reference ones provided with the suite.

In addition to the above tests that consider one application at a time, a further
experiment was done by simultaneously running several applications, one per category,
each in a thread of its own, with I+PI and RR scheduling (using EDF would imply
setting fictitious deadlines, to the detriment of test significance). The used applications
are basicmath, jpeg, stringsearch, dijkstra, sha, and gsm. With both schedulers each
output correctly matches its reference.

In Table III, column Tseq and Tsim respectively report the sum of the individual
applications’ execution times, and the duration of their simultaneous execution. As can
be seen, both schedulers are capable of re-assigning CPU time when one or more thread
gets stuck (in this case, owing to I/O operations). However I+PI is more effective, as
witnessed by both the pure parallel execution times and the differences between the



Table III. Summary of Simultaneous MiBench [Guthaus et al. 2001] Execution Times [s]

scheduler ba
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Tseq Tsim

I+PI 61.641 14.812 0.023 14.290 3.354 12.145 106.055 100.535
RR 60.207 14.883 0.023 14.038 3.555 11.031 103.737 101.504

Table IV. The Hartstone [Weiderman and Kamenoff 1992] Baseline Task Set

task frequency workload workload rate (workload/period)
1 2 Hertz 32 Kilo-Whets 64 KWIPS
2 4 Hertz 16 Kilo-Whets 64 KWIPS
3 8 Hertz 8 Kilo-Whets 64 KWIPS
4 16 Hertz 4 Kilo-Whets 64 KWIPS
5 32 Hertz 2 Kilo-Whets 64 KWIPS

sequential and parallel times. This suggests that the I+PI scheduling overhead tends 
to be of modest entity with respect to improvements in CPU time management. The 
mentioned results find their mathematical explanation in Section 3.

5.2. Test Set 2 (Hartstone Benchmark)

The Hartstone benchmark [Weiderman and Kamenoff 1992] is used here to compare 
I+PI to EDF and RR. Hartstone is composed of several series of tests; each consists of 
starting from a baseline task system, verifying its correct behaviour, and then itera-
tively adding stress to that system and reassessing its behaviour until said assessment 
fails. The amount of added (affordable) stress allows to measure the system capabilities.

This work concentrates on the Hartstone PH (Periodic tasks, Harmonic frequencies) 
series, that refers to periodic tasks, and stresses the system by adding tasks and/or 
modifying their period and/or workload. The baseline system is composed of five peri-
odic tasks, that execute a specific number of Wheatstones [Weiderman and Kamenoff 
1992] within a period; the workload rate is thus expressed in Kilo-Whets Instruction 
Per Second [KWIPS]. A Kilo-Wheatstone corresponds in our architecture to a CPU oc-
cupation of 1.25ms, maintained constant through all the tests. As per the benchmark, 
all the tasks are independent: their execution does not involve synchronisation, they 
do not communicate with one another, and are all scheduled to start at the same time. 
The deadline for the workload completion of each task is the beginning of its next 
period. The used series might thus represent a program that monitors several banks 
of sensors at different rates, and displays the results with no user interventions or 
interrupt requirements.

Table IV gives details on the baseline system. In the first test, the highest-frequency 
task (number 5) has the frequency increased by 8 Hertz at each iteration, until a 
deadline is missed. This tests the system ability to switch rapidly between tasks. In 
the second test, all the frequencies are scaled by 1.1, 1.2, . . .  at each iteration, until 
a deadline is missed. This means testing the system’s ability to handle an increased 
but still balanced workload. The third test starts from the baseline set and increases 
the workload of each task by 1, 2, . . .  Kilo-Whets at each iteration. This increases the 
system overhead in a nonbalanced way. In the last test, at each iteration a new task is 
added, with a workload of 8 Kilo-Whets and a frequency of 8 Hertz (as the third task 
of the baseline set). This test stresses the system’s ability to handle a large number of 
tasks.



Fig. 7. Results for the Hartstone benchmark [Weiderman and Kamenoff 1992].

Figure 7 graphically shows the results for the four tests, presenting both the number
of successful iterations (higher is better) and the number of context switches per second
in the last successful iteration (lower is better). In most cases the number of successful
iterations and context switches per second of I+PI are similar to those of EDF, which
is notoriously optimal for a schedulable set of periodic tasks. In fact, EDF significantly
outperforms I+PI only in the first test, which is apparently the most extreme as for
asymmetry in the task periods. This is not to diminish the relevance of the fact but, for
example, if in an embedded device a critical task needs to be executed at so higher a
rate than the others, one would probably consider hooking it to a timer interrupt. On
the other hand, I+PI is definitely superior to RR in any sense.

An overhead analysis is in order, therefore we recorded the duration of a context
switch for the baseline test with each of the implemented scheduling algorithm. The
numbers are computed running the baseline task set and using an oscilloscope to
read a general purpose input/output signal raised whenever the scheduler starts its
execution and cleared as it finishes. For the I+PI the context switch in which the
scheduler calculates the bursts is obviously longer than the other ones, as clearly
shown in Table V. It is worth recalling that this longer context switch happens just one
per round. In fact, whenever I+PI has to apply a previously computed control signal
it results faster than RR, but intuitively slower than EDF. However, on average, the



Table V. Context Switch Duration within the Hartstone
[Weiderman and Kamenoff 1992] Baseline Task Set

scheduler average [μs] long [μs] short [μs]
I+PI 75.8 205.6 43.4
EDF 30.8
RR 50.4

Table VI. Relevant Data on the Schedulers’
Execution

scheduler .text [B] .data [B] .bss [B]
I+PI 1464 12 40
EDF 476 0 4
RR 600 0 20

overhead of the technique is in general heavier, one way to fasten the computation is 
to select an architecture with hardware support for floating point operations or to use 
dedicated hardware. Also, data on the schedulers execution is here reported. Table VI 
shows some relevant data about the schedulers’ execution, retrieved with the size 
utility contained in the Miosix kernel.

5.3. Test Set 3 (Extended Hartstone Benchmark)

Benchmarks like Hartstone are useful to provide a simple and clear comparison test 
bed, but do not aim at representing “real life” workloads. For example, any scheduler 
regularly encounters pools of tasks where each task has its own characteristics. Also, 
a scheduler may be requested to recover correct operation of (soft) real time tasks after 
a transient CPU overutilisation, or even to withstand a long-lasting overutilisation by 
maintaining the timely operation of certain tasks.

As will be explained in Section 3, the general approach behind I+PI is well suited 
to address such issues. To witness that, I+PI is here compared to EDF and RR in an 
extension of the Hartstone benchmark. In the reported tests of Figure 8 the way of 
increasing the system load is the same of the corresponding tests of Figure 7. However, 
the load is not increased gradually but set so as to result in a 48% CPU utilisation 
from 0 to 30 seconds, then a 120% utilisation from 30 to 45 seconds and 48% again till 
the end of the test at 120 seconds. Figures 8(a), 8(b), 8(c) and 8(d) report respectively 
the total number of misses and of context switches per second in the four tests (lower 
is better for both). As can be seen, I+PI invariantly achieves the least miss rate, with 
a moderately higher number of context switches per second with respect to EDF; RR 
performances are definitely inferior.

5.4. Summary of Results

From all the reported tests, it can be concluded that I+PI may in some cases be not 
optimal, but normally approaches optimal performance and above all does not require 
any assumption on the nature of the tasks (e.g., periodic or not). It is also worth 
noticing, as a final remark, that the I+PI implementation shown here was realised 
with floating point computations with an architecture that has no hardware support 
for them. This was done for convenience reasons inessential to explain here, but could 
be safely replaced by a sufficiently precise fixed point arithmetic version. Needless to 
say, this would move the experimental evaluation balance further toward I+PI.

After showing the advantages of the proposed (I+PI) scheduler, it is now the time 
to go through the underlying theory, and show the potential of the approach that it 
substantiates.



Fig. 8. Results for the extended Hartstone benchmark.

6. CONCLUSIONS AND FUTURE WORK

In this article a control-theoretical approach to task scheduling was presented, leading
to a novel design process. Traditionally, in fact, one starts from desires expressed in-
formally, and figures out an algorithm capable of attaining said desires. Modifications
and refinements are then cyclically introduced by testing the algorithm in a supposedly
wide enough variety of situations, and to decide which modification to introduce, expe-
rience and intuition play a crucial role. This frequently results in complex code, where
the real effect to a certain modification is hard to predict and can only be appreciated
after a long programming work.

In the opinion of the authors, at least in the addressed context, a major reason for
that is the absence, in the design cycle, of a system model in the particular sense
the term has in the systems and control theory. With the proposed design perspective,
one first characterises informal requirements in system-theoretical terms, that is—
sticking to the subject of this work—as desired behaviours of measured quantities over
time. Then, a dynamic model of the controlled object is created, taking care to include
in its equations only those phenomena that are physically inherent to that object.
This allows, by means of rigorous methods vastly assessed in a number of domains, to
obtain a dynamic model of the controller, from which the control algorithm emerges
unambiguously. In such a cycle, the correct behaviour of the devised controllers, both



in design conditions and in unforeseen ones, can be checked a priori and formally by
only manipulating dynamic models. Once the result is assessed, coding is needed only
once, or at most the number of times necessary to check the code against its dynamic
model. The iterative modification cycle involves only models, thereby resulting faster
and generally leading to simpler algorithms.

It was reasonable right from the start to expect such a novel cycle to result in simplic-
ity and performance improvements. In this article a verification of that claim is shown.
It was also expectable that casting the variety of scheduling problems in a unified
theoretical framework yielded controllers capable of dealing with a wide range of cases
with simple algorithms. It was finally conjectured that a model-driven choice of inputs
and outputs, combined with a properly designed feedback structure, allowed to treat
off-design situations at runtime in an effective and formally verifiable manner. These
ideas too were testified, showing that a single (model-originated) feedback algorithm
could handle tasks of different types (e.g., periodic and nonperiodic, with and without
deadlines) simultaneously and with a code complexity lower or comparable to classical
ones, also in the presence of disturbances.

In this work, a scheduler (named I+PI) was devised along the proposed approach,
and implemented on real hardware within the Miosix kernel. Its behaviour was tested
through the MiBench and Hartstone benchmark and compared with other commonly
used scheduling algorithms. An extension of the Hartstone benchmark was also pro-
posed, to evaluate some cases that are not considered by the standard set of tests. The
I+PI implementation is outperformed by some other algorithm only in cases for which
that algorithm is specifically tailored, and that strictly do not violate the nominal hy-
potheses under which that algorithm is designed. On the other hand, I+PI is more
complex than the sole pure round robin, and treats all cases and their mixtures.

The authors hope that this work may foster a deeper use of dynamic models (and
the systems theory at large) in the design of computing system components—a domain
where said theory and its methods appear particularly promising and not yet fully ex-
ploited. Future research will thus be directed to treat other problems, such as resource
allocation and QoS, with the same or a similar approach.
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