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Neural-Network-Based Optimal Attitude Control Using Four
Impulsive Thrusters

James D. Biggs∗ and Hugo Fournier†
Politecnico di Milano

Abstract– This paper tackles the problem of optimal attitude control using a minimal

number of attitude thrusters. Three possible control solutions to this problem are presented;

(i) a logic-based controller that is simple to implement (ii) a projective control that aims to

optimally replicate an ideal continuous control as closely as possible and (iii) an optimal neural

predictive control (NPC) that minimizes the total impulse during a maneuver. The neural

predictive control is based on a recurrent neural network using a nonlinear autoregressive

exogenous configuration for state propagation in a finite-time horizon optimization. Typically,

for continuous systems, a back-propagation algorithm for the receding horizon optimization

is used, but this is not applicable to systems with discrete inputs. In this paper the neural

predictive control is adapted to boolean input systems by employing a robust genetic algorithm

to undertake the receding horizon optimization. An automatic selection of the parameters of

the cost function is proposed which improves the performance of the neural predictive control

and reduces the tuning to only one parameter. In addition, a multi-layer perceptron (MLP) is

trained off-line with the optimal control data obtained, thus replacing the CPU-intensive cost

function with a significantly less computationally expensive meta-model. The neural predictive

control performance is compared to the proposed logic-based and projective control algorithms

in simulation of a 12 U CubeSat and is shown to be the most efficient in terms of total impulse

requirement at equal settling time and the least sensitive to the choice of parameters. Themulti-

layer perceptron control drastically reduces the online computational cost with performance

approaching those of the neural predictive control.

I. Introduction
Recent interest in CubeSat deep-space missions has created numerous and unique challenges related to the highly

constrained nature of these spacecraft. One challenge related to attitude control in deep space, is in using thrusters for

de-tumbling, momentum dumping and potentially for slew motions, while minimizing the mass and volume of the

attitude control subsystem. This can be achieved by using optimal control algorithms that minimize fuel usage. In
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addition, the number of thrusters used for attitude control can be minimized. For example, any control torque vector can

be induced using only four thrusters (assuming no thruster saturation) [2]. In the case of four on-off thrusters a torque

can be induced in any axis, but not simultaneously in all axes. This paper addresses the problem of designing attitude

control algorithms that utilize only four reaction thrusters and that minimize fuel expenditure. The main contribution of

this paper is a control based on a new neural network-based optimization for optimal attitude tracking, slew manoeuvres

and de-tumbling. Although the approach in this paper is specialized to the case of four thrusters it can be applied to any

controllable thruster configuration.

Some of the first control algorithms useful for "on-off" actuators [10, 11] were based on Lyapunov stability theory,

where switching on or off of the thrusters were chosen to minimize the derivative of a Lyapunov function. These control

algorithms are analogous to sliding mode controls, where the maximum torque in each axis is always used and the

thrusters coupled, so that they are able to produce a torque in equal and opposite directions. However, these controls do

not minimize a practically meaningful cost function of the propellant consumption and state error.

The majority of control algorithms for on-off attitude thrusters use a three phase procedure involving the design of a

continuous "ideal control", a control allocation algorithm to map the ideal control to each thruster and then a pulsed

width modulator (PWM) to convert the continuous signal to an on or off switching [3–9]. This three phase procedure

aims to distribute a continuous "ideal" torque generated by a continuous feedback controller, to the thrusters, while

minimizing the total impulse. This problem can be framed as a Linear Programming (LP) problem and solved using LP

algorithms, such as the primal-dual interior point [12] and the simplex algorithm [13]. The NASA Ames Center has

also adopted this approach to investigate using six and eight thrusters [14] for deep-space nano-satellite attitude control

using cold-gas or micro-electric propulsion.

The linear programming based method for control allocation is a static method as it only optimizes the allocation

based on the current control demand. Robust dynamic control allocation methods, in which the allocation also depends

on the distribution in the previous sampling instant have been developed using quadratic programming [15]. However,

these methods for thruster allocation are deemed relatively computationally expensive for on-board implementation [16].

In [16] the authors propose thruster allocation approaches based on Singular value decomposition (SVD) to reduce the

computational expense of a minimum norm optimization. The neural-predictive control of this paper yields an optimal

controller that avoids this three phase procedure and minimizes a cost-function of state-error and propellant use.

A neural-predictive control is proposed for optimal attitude tracking, slew maneuvers and de-tumbling with minimal

fuel consumption using the minimum number of thrusters required for 3-axis controllability[1]. This neural network

predictive control is adapted to systems with boolean inputs, that is, with on-off actuation. Furthermore, the data

generated from this optimal controller is used to develop a meta-model of the optimal control problem, that can be

implemented with much lower computational cost. Classical model-based predictive control applied to rototranslational

dynamics of spacecraft [17][18] utilises linear optimal control theory [19] [20]. However, such controls are not efficient
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when performing slew maneuvers or de-tumbling since these operations begin far from the equilibrium state and thus

linearization does not yield a good approximation to the model for all time steps. Recent methods using Recurrent

neural networks (RNN) [21] [22] have been used to replicate the nonlinear dynamics and can be fused with model-based

predictive control to allow efficient time propagation of the state and dynamic back-propagation for performing receding

horizon optimization. In particular, Nonlinear Auto-Regressive exogenous configuration (NARX) model are used where

several delayed values of the states and inputs of the dynamic system are used as inputs of a neural network. In [23] the

main engines of the Space Shuttle are modeled with a feed-forward NARX network, and in [24] the rototranslational

dynamics of a flexible micro-satellite are model and controlled through two NARX networks. More recently model-based

predictive control based on neural networks has been adapted to nonlinear systems with boolean control inputs [25].

Here RNN are used to replicate the nonlinear dynamics and to evaluate the future state and cost function. The cost

function is then optimized using a genetic algorithm and the optimal thruster selection chosen. A simple adaptive

tuning law of a weight of the cost function is proposed and shown to improve performance. Furthermore, a Multi-Layer

Perceptron (MLP) is used to improve the computational efficiency by developing a meta-model of the optimal control

problem. Moreover, an MLP is trained off-line before flight with optimal data obtained with the genetic algorithm-based

predictive optimization. A similar approach to facilitate on-board optimization has recently been proposed by the

European Space Agency (ESA) [26] for an optimal spacecraft landing problem: optimal control laws are generated

for different initial states, and are used to train an MLP of 2 to 5 layers that outputs a control approaching the optimal

response. To the authors knowledge this paper is the first to present a boolean control based on the association of an

MLP with data generated by model predictive control using a recurrent neural network for the state propagation.

II. Problem statement
In this paper the control will be developed for the special case of four thrusters. The four thrusters are configured

on a single face of the spacecraft with each delivering a constant force F with their vectors denoted F1, F2, F3, F4 as

depicted in Figure 1. Each thruster is inclined by an angle α to the xz plane in different directions and as such can

provide a torque in two directions of each axis at any given time, for example, by firing two thrusters simultaneously. In

the configuration studied in this paper, the thrusters have the same thrust amplitude F and the same absolute angle α

to the xz plane. Using four thrusters is considerably different to conventional thruster configurations as it does not

allow a useful torque to be delivered in each axis simultaneously and it always induces a net force. In other words,

conventional thruster configurations are symmetric and can always be operated in a way that induces zero net force. For

a four thruster configuration a net force will always be induced and therefore minimizing the number of thruster firings

has two practical objectives to not only minimize fuel but also the net force.

In the following, 1 and 0 stand for the identity matrix and the matrix with zero entries respectively, and for a given

vectorial quantity a = [a1; a2; a3], Ûa designates its time derivative, aT its transpose, and a× the skew symmetric matrix
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Fig. 1 Schematic representation of a spacecraft with 4 thrusters located on the same face

defined as:

a× =



0 −a3 a2

a3 0 −a1

−a2 a1 0


. (1)

The attitude dynamics of a spacecraft are given by the equation of motion

I Ûω = −ω×Iω + d + u (2)

where d is an internal or external disturbance, ω is the angular velocity expressed in the body frame, u is the control

torque and I is the inertia matrix. The associated kinematic equations are:

ÛA = Aω× (3)

where the spacecraft attitude matrix is A ∈ SO(3) where SO(3) is the 3D rotation group defined as:

SO(3) =
{

A ∈ R3×3 : AT A = 13×3, det(A) = 1
}

(4)

The attitude tracking control problem is to track a desired rotation Ad where ÛAd = Adω
×
d
. The attitude error Ae = AT

d
A

is given by

ÛAe = Aeω
×
e (5)
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where

ωe = ω − Aeωd (6)

where ωd is the desired angular velocity. The control objective is to develop a feedback control law u0/1 resulting in the

torque:

u = −T · u0/1 (7)

where u0/1 is the thruster activation boolean vector, that is 1 when the thruster is activated, and 0 when it is turned off

and

T =



lF sinα lF sinα −lF sinα −lF sinα

−lF cosα lF cosα lF cosα −lF cosα

xF sinα − xF cosα xF cosα − xF sinα xF sinα − xF cosα xF cosα − xF sinα


(8)

where α ∈ (0, π4 ) is defined by the thrusters orientation, x and l are geometric lengths of the spacecraft with its center of

mass assumed to be at the geometric center. The control objective is to then drive A and ω to the desired trajectory

defined by Ad and ωd in a fuel-efficient (preferably optimal) way. In total 16 combinations of thrusters activations exist,

and the one in which all the thrusters are activated is excluded since it leads to a zero torque while consuming propellant.

The main contribution of the paper is the development of a receding horizon neural-predictive optimal control

adapted to "on-off" thrusters that avoids the need for a three phase procedure. In addition, a neural network is trained

on the optimal data generated by the neural predictive control to significantly reduce computational expense. The

following section outlines some simple control laws that will be used as the benchmark controllers for comparison.

These controllers are computationally efficient and avoid the need of pulsed-width modulation.

III. Control laws for non-symmetric thruster configurations
In this section two control laws are presented based on (i) a logic-based control law and (ii) a projection-based

control, so called, because it projects an ideal continuous control onto the space of all possible torque profiles and

selects the thruster combination that minimizes the norm of the error between the ideal torque and the possible torques.

The Lyapunov-control function is used to design a continuous "ideal" control that forms the basis of the logic-based

and projection control laws. In this case we propose a classic tracking controller augmented to reject disturbances at

each sampling period. This will reject both external and internal disturbances (such as a time-varying inertia matrix due

to fuel usage, sloshing, rotating solar panels or even actuator faults). However, note that the ideal feedback control

can be changed to one that is preferred or required by the control engineer. To develop the ideal control a Lyapunov
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control-function is defined here as:

V =
1
2
ωT

e Iωe + k2tr(1 − Ae) (9)

then differentiating this with respect to time yields

ÛV = ωT
e I Ûωe − k2tr( ÛAe) (10)

and using the identity tr(Aeω
×
e ) = ω

T
e (Ae − AT

e )
∨ yields:

ÛV = ωT
e (Iω × ω + u + d − Iαd + k2(Ae − AT

e )
∨) (11)

where αd = (Aeω
×
eωd + Ae Ûωd). Defining d̂ to be an estimate of d then an "ideal" control that guarantees ÛV ≤ 0 if the

disturbances are perfectly estimated is:

uc = ω × Iω − d̂ + Iαd − k1Iωe − k2(Ae − AT
e )
∨. (12)

As ÛV ≤ 0 it can be shown by an application of La Salles invariance Principle that the zero error state is locally

asymptotically stable. The disturbance estimation can be obtained from an extended state observer (ESO) such as a

linear [27, 28] or [29] nonlinear ESO. In practice the disturbance estimation error converges to a small bounded region

of the zero error estimation. The control (12) can be augmented to include an adaptive parameter that yields asymptotic

stability to a tunable bounded region of the desired state [28] or the inclusion of a sliding-mode component, to ensure

asymptotic stability in the presence of an estimation error [27]. Convergence properties of ESO are detailed in [28, 29].

A. Simple Logic-based control

Since it is possible to create a torque at any instant in time in one axis and with the required sign, by activating the

right combination of two thrusters simultaneously, a simple sliding mode control, with the sliding surface a function of

the ideal control is proposed:

us.l. = −Mimax sgn(uc
imax
) (13)

where the continuous control uc is given by 12 and

imax = arg max
i

��uc
i

�� (14)
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where

M =



2lF sinα

2lF cosα

−2xF sinα + 2xF cosα


(15)

is the vector of the absolute values of the torques that can be delivered in a single axis at a time by activating two

thrusters simultaneously.

Note that the tuning of only one parameter is required in the general case because only the sign of the continuous

control (12) is taken into account, k1 can be arbitrarily set to 1 for example. For the application to de-tumbling in which

S = ω, the control (13) requires no tuning and is, therefore, extremely simple to implement. Note that this control can

be applied to any thruster configuration that can induce a torque in each axis in equal and opposite directions. In this

case the components of M are replaced with the maximum torque available in each axis.

B. Projection control

This control approach is based on a standard continuous control for the tracking of a desired trajectory which is

projected onto one of the possible torques up
i . Here there are 16 possible combinations of thruster "on-off" states with

both switching all four on or off resulting in zero torque. The resulting 15 possible torques can be stored on-board in

a simple look up table. At each time-step one of a torque is chosen from the possible to minimize the cost function

uc − up
i



. In this case the ideal control parameters must be tuned to minimize the total impulse and the settling time.

The, so-called, projection control used can be stated as:

u
p

0/1 = arg min
u0/1∈{0,1}4×1

(

Tu0/1 − uc


2

)
(16)

where and uc is the continuous control defined in (12).

In the general case, this control requires the tuning of two parameters k1 and k2, which makes it more difficult to

implement than the simple-logic control. For the application to the de-tumbling of a spacecraft, the tuning of one

parameter is still required, in contrast to the simple-logic control. Note that this control is applicable to any thruster

configuration T .

IV. Neural network based predictive attitude control
In this section, a neural-network based predictive control that efficiently propagates the state in a finite horizon

optimization is presented. The cost function considered is chosen to minimize the total impulse of the system. The NPC
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provides discrete torques based on an optimization over a receding time horizon that leads to propellant savings, with

an affordable computational cost made possible by the off-line training of a Multi-Layers Perceptron (MLP) neural

controller. It is performed in two steps: (i) an optimal control is developed, it uses a recurrent neural network to

propagate the states forward in time, and to forecast the value of a cost function with a high accuracy. (ii) the optimal

control of the first step is used to generate a set of optimal data, that is used for training an MLP off-line before flight.

Once the MLP is trained it will only need to be forward propagated on-line, hence greatly reducing the computational

cost of the predictive attitude controller.

In NPC (for continuous control systems) a back-propagation algorithm is typically used for the receding horizon

optimization, however, this is not suitable for boolean input systems. This paper adapts a continuous neural-network-

based predictive control to a nonlinear system with boolean inputs by implementing a genetic algorithm which does not

require the assumption of continuity in the optimization procedure. In the following sub-section the optimal control

development is described.

A. Finite horizon predictive control

A commonly used cost function for receding horizon control applications used is the Linear Quadratic Regulator

(LQR) which has the following quadratic form:

L(t) =
1
∆t

∫ t+∆t

t

zTe K ze + uT Ru dt (17)

where K and R are weight matrices. ze is the state error, which includes the angular velocity error vector ωe and the

rotation error whose expression depends on the used representation of the kinematics. The choice of the representation

has a significant influence on the capability of the plant neural network to replicate the spacecraft kinematics. As will

be discussed at the end of this section, the quaternions are preferred over the direct cosine matrix, Euler angles, and

modified Rodrigues parameters. The state error is expressed as

ze =



ωe

q̄e

1 − q0
e


(18)
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where the quaternions error is defined as:


q̄e

q0
e

 =


q0
d
−q̄d3 q̄d2 q̄d1

q̄d3 q0
d
−q̄d1 q̄d2

−q̄d2 q̄d1 q0
d

q̄d3

−q̄d1 −q̄d2 −q̄d1 q0
d


·


q̄

q0

 (19)

q = [q̄, q0]T and qd = [q̄d, q0
d
]T are the quaternion and desired quaternion respectively. The optimization variable in

Eq. 17 is the future control input [u(t ′)]t′∈[t;t+∆t]. In order to efficiently and accurately predict the future state errors of

the system, a recurrent neural network is used. The NPC minimizes a modified version of the cost function defined in

Eq. 17, adapted to the particularity of using boolean inputs to the system, and the nonlinear dynamics and kinematics of

the spacecraft are replicated by a neural network as explained in the following subsections.

B. Neural Networks

A neural network is a function that computes an output by forward-propagation through M layers of Sm neurons

each, with the following expression:

a1 = σ1(W1 p + b1) (20)

am+1 = σm+1(Wm+1am + bm+1) for m = 2 . . . M − 1 (21)

where p ∈ RS0×1 is the input, am ∈ RSm is the output of layer m, Wm ∈ RSm×Sm−1 and bm ∈ RSm×1 are the weights of

layer m, σm is the activation function of layer m and Sm is the number of neurons of layer m where the 0 index stands

for the input vector of the network. Figure 2 illustrates this equation.

In the hidden layers the activation functions are taken to be the log-sigmoid functions

σ(n) =
1

1 + e−n
(22)

and identity function in the outer layer. A sufficient condition to the universal approximation theorem [30] [31] for

neural networks is satisfied when the the activation functions are continuous and bounded. Other functions such as the

arctangent and the error function can be equally used.

Training a neural network consists of providing it with a set of target inputs/output pairs and modifying its weights

and biases, so that, for the same inputs, the outputs of the network get as close as possible to the target outputs. The

ultimate goal is not to interpolate the points, but to be able to generalize to any new input belonging to the same range as
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Fig. 2 Representation of a neural network

those from the training set.

For a given set (pq, tq)q=1...Q of Q training inputs/outputs, the following training cost function is used:

Ltr (θ) =
1
Q

Q∑
q=1
(tq − aq(θ))T (tq − aq(θ)) (23)

An optimization algorithm is implemented, in which the optimization variable is the vector θ ∈ R
∑M−1

m=0 (S
m+1)Sm+1

containing all the weights and biases of the Network,while a = aM is the network output. By writing

Ltr (θ) = ν(θ)Tν(θ) (24)

where the vector ν ∈ RSMQ×1 contains the Q error vectors, the cost function can be reduced by a Levenberg Marquardt

algorithm as in [24], for which the update of the neural network’s weights and biases at each cycle is obtained by

θk+1 = θk −
[
JT (θk)J(θk) + µk1

]−1
JT (θk)ν(θk), (25)

where the parameter µk is decreased if a weight update successfully decreases the cost function, and increased in the

opposite case. When µk is low, the algorithm approaches the quadratic convergence velocity Newton Algorithm, while

when it is high, the algorithm tends to a linear convergence velocity steepest gradient descent algorithm. The Jacobian
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matrix

J =
∂ν

∂θ
∈ R(S

MQ)×(
∑M−1

m=0 (S
m+1)Sm+1) (26)

is obtained by the back-propagation algorithm:

sM = ÛσM

sm = sm+1Wm+1 Ûσm for m = M − 1...1
(27)

where the sensitivities sm are defined as:

sm =
∂aM

∂nm
(28)

and nm = Wmam + bm is the net output of layer m.

Ûσm =



Ûσm(nm1 ) 0 . . . 0

0 Ûσm(nm2 )
. . .

...

...
. . .

. . . 0

0 . . . 0 Ûσm(nm
Sm )


is the matrix composed of the derivatives of the activation function of layer m. In particular, a specific type of neural

network with one hidden layer, a log-sigmoid activation function, and a linear activation function in the output layer is

used based on a NARX model to replicate the dynamics of a system. The inputs are composed of the current torque

applied to the system and its delayed values, and the delayed values of the output (the state). NARX networks allow to

model continuous nonlinear systems with arbitrary accuracy. Intuitively, using different delayed values of the states

allows the neural network to model several orders of time derivatives of the states in a similar way to a numerical

integration.

C. Online neural predictive control (NPC)

In case of continuous torques, a NARX neural network can be trained offline to replicate the spacecraft dynamics

and kinematics, and can be used online for computing the derivatives of the future states with respect to the current and

future torques, hence allowing for a gradient-based or Jacobian based optimization of the control. However, in the case

of thrusters the generated torques are discrete and therefore the assumption of continuous differentiability required for
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these numerical optimization techniques is no longer valid. For this reason, different combinations of torques need to be

successively computed in the optimization process. By discretizing the time, not all 15N combinations of torques can

be tried, where N is the receding horizon length, but a genetic algorithm can effectively find an optimal combination of

thrusters [u0/1(t ′)]t′∈[t+1;t+Ndt] where t ′ is the discrete time in the optimization finite horizon.

An advantage of using a genetic algorithm is that no constraint exist on the form of the cost function, and shows

good performance when the optimization variable can only have a discrete number of values. In this paper, we propose

a cost function of the form

L(t) =
1

Ndt

t+Ndt∑
t′=t+1

Kquad ‖ ze(t ′)‖
2
2,K + K∞ ‖ ze(t ′)‖

2
∞,K +



u0/1(t ′)


2

2,R (29)

where Kquad and K∞ are two scalar weights and

‖ ze ‖2,K = zTe K ze, ‖ ze ‖∞,K = max(K1/2 ze),


u0/1




2,R = uT0/1R u0/1 (30)

The matrices R and K are positive definite symmetric, where K = K1/2K1/2 and where K1/2 has real entries which can

be computed by diagonalization since the diagonal terms will be positive. Here, the infinity norm is needed to achieve

convergence of all the states of the system. The 2-norm, although not strictly needed, can improve the performance of

the control by reducing the state errors in a more efficient way than the infinity norm.

In the particular case of de-tumbling a spacecraft, the state error is ze = ω, while for the slew maneuver it is taken as:

ze =


14×4 04×3

03×4 K2


1
2 

qe

ω

 and qe =



q1

q2

q3

1 − q4


(31)

where K2 is a positive definite symmetric matrix, with a unique and symmetric square root. The quaternions were

deemed the most efficient attitude representation for the plant model neural network used for prediction since they are

computationally efficient relative to other global representations such as the direct cosine matrix.

In Eq. 29, the norm of the control cannot decrease proportionally with time since the thrust is either on or off with

fixed magnitude, while the norm of the state error decreases during the maneuvre. For this reason, a variable value of R

is required to improve performance. We define a function E(t) which is chosen depending on the control objective and

12



define the time-dependent weight matrix R(t) as:

R(t) =
E(t)
E0

R̄ (32)

where the weight matrix R̄ is chosen as a positive definite matrix. This is initially defined as the identity matrix

multiplied by a single, tunable, scalar with E0 = E(0). This modification prevents the control norm from becoming too

high relative to the state error norm, which will lead to poor convergence. Explicitly E(t) = E1 for the de-tumbling

control problem and E(t) = E2 for slew motions are defined by:

E1 =
1
2
‖ω‖22,I and E2 = ‖q‖

2
2,I4 = 2(1 − q4). (33)

At each time step, the genetic algorithm computes the N future torque vectors of the time horizon by minimizing the

cost function, and the first torque (t ′ = t + 1) is selected.

u
opti

0/1 =

[
arg min

u0/1∈{0,1}4×N
L(u0/1)

]
t′=t+1

(34)

In addition, the use of the following time-variable law for R̄(t) is investigated and shown to improve convergence

further with a reduced fuel consumption:

dR̄
dt
= R̄
ÛE − ÛEr

ÛEr tc
(35)

where tc > 0 is a, tunable, time constant which effects the sensitivity of R̄, a high value leads to slower variations of R̄.

Practically tc must be taken higher than the time step for stability. ÛEr is a reference energy rate that acts as a threshold for

ÛE under which R̄ increases and above which R̄ decreases. After normalization by the state error norm, ÛEr can be chosen

within a finite range of possible values, regardless of the maneuver initial conditions. In particular, using the functions in

Eq. 33, we write ÛE = ÛE1 for the de-tumbling case and ÛE = ÛE2 for a slew motion where ÛE1 = ω
T u and ÛE2 = ω

T q̄. The

reference energy rate for the detumbling case is chosen as ÛEr = −ur ‖ω‖2 where ur is a positive constant chosen within

the finite range of possible values of −ωT u/‖ω‖2. It leads to the following time law of R̄1 for the de-tumble maneuver:

dR̄1
dt
= −

R̄1
ur tc

(
ur +

ωT u

‖ω‖2

)
(36)

The higher ur , the higher the average value of R̄ hence lowering the fuel consumption and increasing the settling time.

When no torque is produced, R̄ decreases and when the energy rate is more negative than the threshold, R̄ increases.

The time law of R̄ in the performance of the slew maneuver is obtained in a similar way, after normalizing the
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nominator and denominator by ‖ω‖2 ‖ q̄‖2:

dR̄2
dt
= −

R̄2
β tc

(
β +

ωT q̄

‖ω‖2 ‖ q̄‖2

)
(37)

where β ∈ (0; 1] is a threshold such that R̄ increases when the cosine of the angle between ω and q̄ is lower than −β and

decreases otherwise.

D. Multi-Layer Perceptron control trained with NPC data

The control described so far is has a high on-line computational cost because of the necessity of performing an

optimization at each time step. We propose in this paper, in a similar way ESA used in [26] for landing control, a second

neural network trained before flight that uses data obtained by NPC. This second neural network uses a multilayer

perceptron (MLP) configuration. MLPs are feedforward neural networks (as opposed to recurrent neural networks such

as the NARX network used for modeling the spacecraft’s dynamics) with several hidden layers used for classification

problems, by associating an output category to each input presented to the MLP. In the present case, the 15 categories

are the different available torques, and the inputs are the states of the system and past torques, delayed several times.

The training set is composed of a high number of random states and torques inputs, associated to the corresponding

ideal thruster activation output obtained by the NPC algorithm. This way, by presenting a high number of situations to

the MLP, it can produce a control similar to the NPC with a very reduced computational cost, since it only need to be

forward propagated online with no additional training. Note that in this training only the NPC version with constant R̄

can be used, and for this reason it has to be tuned accurately before being used in the training data generation.

V. Simulation results: De-tumbling and large angle slew maneuvers
In this section the three control laws are applied to: (i) perform a de-tumbling maneuver of a 12U CubeSat, as was

preliminarily undertaken in [32] and (ii) perform a large angle slew maneuver. In both cases, another control strategy is

obtained by training a Multi-Layer Perceptron off-line with a high number data generated by genetic NPC, which is used

on-line to control the spacecraft with reduced computational cost.

The case study considered is the Lunar Meteoroid Impacts Observer (LUMIO) spacecraft [33] which has a minimal

thruster configuration within the ADCS architecture. Mass, volume and power of the ADCS sub-system were minimized

by selecting (from the available commercial off the shelf (COTS) options) sensors with the smallest mass, volume and

power that satisfied the pointing requirements. The sensors shown are a nano SSOC-D60 Sun sensor manufactured by

Solar MEMs technology, two ST 400 star trackers manufactured by Hyperion technology and Berlin technologies and

STIM 300 ultra-high performance inertial measurement unit manufactured by Sensonor10. The on-board computer
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is the GOMspace-Z7000. The actuators are 3 Blue Canyon RWP-100 reaction wheels which are used for fine 3-axis

tracking of a reference attitude that is designed for Moon pointing and that enables maximum power generation

[33]. Finally, the VACCO propulsion system is proposed for the de-tumbling and de-saturation manoeuvres of the

mission which is a minimal set of four reaction control systems thrusters chosen to minimize mass and volume. The

parameters used in the simulation are the principal moments of inertia I1 = 26.66 × 10−2kg.m2, I2 = 26 × 10−2kg.m2,

I3 = 16.66 × 10−2kg.m2. The initial angular velocity is ω(0) = [0.45; 0.52; 0.55]T rad/s. The thrusters have the same

thrust level F = 10mN , the geometric parameters are taken as α = 30◦, x = 0.05m, l = 0.15m. The performance metric

is the number of thrust pulses Npulses =
∑3

i=1
∑t f

t′=t0
u0/1 which computes how many time steps a thruster is turned on.

The total impulse Itot = Npulses F dt and the propellant mass consumption mp = Itot/(Isg0) can be derived from it,

where dt is the time step, Is is the specific impulse of the thrusters, and g0 the gravity acceleration on Earth. In the

following, the settling times are accurate to within 1s, the time step used in the simulations. Although in the LUMIO

mission it is likely reaction wheels will be used for the slew maneuver, the use of four thrusters is considered here. The

use of four thrusters could be useful in case of reaction wheel failure or also in the design of all small electric spacecraft

utilizing micro-electric thrusters.

De-tumbling is considered complete when the angular velocity relative to each body axis has an absolute value less

than 0.002rad/s. The angular velocity is normalized in the cost function with ωnorm = [2.0; 2.0; 2.0]T rad/s. The

neural network used for propagation of the state uses 50 neurons in its hidden layer. 3 delays are used for the activation

thrust vector and for the delayed states so that the first order time derivative equations of the system’s dynamics can be

modeled with good accuracy, resulting in 21 inputs. For the slew maneuver, a rest-to-rest situation is assumed. The

neural network takes the current state of the system composed of the angular velocity and the quaternions, using 3

delays, resulting in an input vector of 33 elements. The initial quaternions are taken as q(0) = [0.8;−0.5;−0.1; 0.32]T .

N = 30 times steps are taken for the time horizon, with a time step of 1s. We consider that the state has converged when

the three first quaternions are lower than 0.05 and the angular velocity relative to each body axis has an absolute value

less than 0.02rad/s and stay lower until the end of the simulation.

The genetic algorithm is performed with a maximum of 50 generations, and a population size of 100. The future

torques found at time t that minimize the cost function are used in the initial population of the genetic optimization at

next time step.

A. De-tumbling of a 12U CubeSat

The simple logic control (13) leads to Npulses = 634 thrust pulses with a settling time of 316s, and the projection

control (16), after selecting the best coefficient k1 = 4, leads to Npulses = 652 thrust pulses with a settling time of

323s. The number of thrust pulses and settling time of the NPC control are shown in Tab. 1, for various values of the

tunable weights parameters of Eq. 29, using the normalization of R of Eq. 32 with constant R̄. In the results, R̄ is
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taken as a scalar multiplying the identity matrix since there is no reason to discriminate the thrusters which are all the

same. The weights are chosen is such a way that Kquad + K∞ = 1, and the ratio of the two parameters can vary. This

way, only the parameter R̄ has an influence on the ratio of the control norm and the state norm. At equal settling time

the lowest number of thrust pulses obtained with NPC using fixed R̄ is of Npulses = 508, for R̄ = 0.3 and Kquad = 0,

which corresponds to 20% savings with respect to the simple logic control. This shows a clear improvement in the total

impulse reduction. The settling times using the different methods are very similar.

In Tab. 2 the results using the variable law of R̄ described in Eq. 36 are shown for several values of ur , a characteristic

time of 20s and Kquad = 0. Depending on the settling time constraints of the mission, the parameter ur can be tuned

given the available torques, independently of the initial state of the system and of the system’s characteristics. Very

low fuel consumption (Npulses = 468) is obtained in a finite time for ur = 3 · 10−4Nm but with a high settling time.

By taking ur = 5 · 10−4Nm, a slightly higher fuel consumption (Npulses = 481) but still better than the other methods

presented in the paper including the perfect tuning of NPC with constant R̄ is obtained, with a settling time comparable

to those obtained by the other methods.

In Figure 3 the simulations using the on-line NPC method with fixed and variable R̄, the simple logic method and

the projection control, and the corresponding numbers of thrust pulses, are shown. The control parameters have been

chosen as to minimize the number of thrust pulses. While the differences in settling time are very low, the use of the

on-line optimization NPC leads to a clear improvement of the de-tumbling cost.

Table 1 Number of thrust pulses (a) and settling time (b) for de-tumbling a 12U CubeSat with 4 thrusters, with
the NPC control using fixed values of R̄ (N.C.=non converged)

(a) Thrust pulses R̄ = 0.01 R̄ = 0.03 R̄ = 0.1 R̄ = 0.3 R̄ = 1

K∞/Kquad = 0.1 545 510 N.C. N.C. N.C.
K∞/Kquad = 0.3 605 550 508 N.C. N.C.
K∞/Kquad = 1 610 589 571 541 N.C.
Kquad = 0 618 595 544 508 N.C.

(b) Settling time [s] R̄ = 0.01 R̄ = 0.03 R̄ = 0.1 R̄ = 0.3 R̄ = 1

K∞/Kquad = 0.1 307 455 N.C. N.C. N.C.
K∞/Kquad = 0.3 456 318 341 N.C. N.C.
K∞/Kquad = 1 313 307 418 339 N.C.
Kquad = 0 309 308 312 338 N.C.

Table 2 Number of thrust pulses and settling time for de-tumbling a 12U CubeSat with 4 thrusters, with the
NPC control using a time-variable R̄

ur = 3 · 10−4 Nm ur = 5 · 10−4 Nm ur = 8 · 10−4 Nm

Thrust pulses 468 481 542
Settling time [s] 568 387 346
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Fig. 3 Angular velocities during the detumbling of a 12U CubeSat with 4 thrusters, comparison of 5 different
methods

Different MLPs are trained with data obtained with the genetic algorithm-based predictive optimization. Good

results are obtained with 3 hidden layers. Each result presented has been obtained with 12 different neural network

training processes. Each training uses an early stop procedure; if the training error keeps decreasing but a generalization
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error obtained with a validation set starts increasing, the process is stopped and the best generalization error is retained.

Each set of results has been tried with 10, 20 and 30 neurons in each of the 3 hidden layers, and the best number of

neurons has been retained. Each training has been done with a mixed training set, composed of one set (70% of the

full set) of high angular velocities, covering the maximum considered range [−0.7; 0.7]rad/s, and one set (30% of the

full set) of low angular velocities [−0.2; 0.2]rad/s, in order to obtain a good behavior of the neural controller in any

condition. The values for the generation of the optimized data has been taken as those that minimize the number of

thrust pulses in the on-line NPC with fixed R̄. The time step is 1s. The generalization error E%
gen is after training the

percentage of inputs of a test set, different than the training set, that lead to a wrong output by the trained MLP.

Table 3 Comparison of the generalization error (in %) using fully random or pseudo-random delayed state
inputs, with 10 000 training data

fully random inputs pseudo-random inputs
best S 20 20
E%
gen 23.5 19.0

Results shown in Tab. 3 confirm that the use of pseudo-random delayed state inputs instead of fully random inputs

improves the generalization capability of the Network trained in the same conditions Q = 10000 data and S = 20

neurons in each layer.

Tab. 4 evidences that increasing the number of training data efficiently reduces the generalization error, and leads

to lower fuel usage, ultimately tending to the on-line optimization performances. With the neural networks used in

this paper, clear savings are obtained with the off-line trained MLP with respect to the simple logic control and the

projection control. The results also show that the best number of neurons increases when the data length increases.

Tab. 5 shows the number of floating point operations (flop) per time step required by the spacecraft’s on-board

computer for different number of neurons, assumed to be the same in each of the 3 hidden layers of the MLP, and

is compared to the number of flop required by the other methods. The performance of the Neuro-controller tends

to the NPC performance when the computational resources on earth increase, with a drastically reduced on-board

computational cost. In comparison, the conventional controls show a very low number of flop per time step.

The net force originated during the detumbling does not vary much from a method to the other, and leads to a

total impulse of [0.101; 0.224; 0.031]T Ns in the inertial referential defined by the inertia axes of the spacecraft in its

initial position. Note that practically the sensors giving the angular position measurements are not available during the

detumbling, and any attempt to integrate numerically the angular velocity would lead to exponentially increasing errors.

B. Large angle slew maneuver of a 12U CubeSat

A large angle slew maneuver is performed with the online optimization using a genetic algorithm and a neural

network plant model, and the results are compared to those obtained with the simple logic 13 and the projection control
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Table 4 Performance (generalization error, number of thrust pulses for de-tumbling and settling time) using
different number of training data

Q=2000 Q=10 000 Online Optimization
best S 10 20 -
E%
gen 26.1 19.0 -

Npulses 661 580 522
∆ts 349s 330s 321s

Table 5 Number of floating points operations required at each time step by the spacecraft’s on-board computer
for 3 hidden layers MLP controllers for different numbers of neurons and comparison to the other methods

Control law flop per time step
simple logic 14
projection 59
online NMPC 246M
MLP 10 neurons 1070
MLP 20 neurons 2920
MLP 30 neurons 5570

16.

The simple logic requires the tuning of a single parameter because only the sign of the continuous control of Eq. 12

matters, the best results have been obtained for k2 = 0.043 and taking arbitrarily k1 = 1 It leads to 99 thrust pulses and a

settling time of 49s.

Table 6 Number of thrust pulses (a) and settling time (b) for a large angle slew maneuver of a 12U CubeSat
with 4 thrusters, with a projection control based on the continuous control uc = −k1Iωe − k2qe (N.C.=non
converged)

(a) Thrust pulses k1 = 0.2 k1 = 0.3 k1 = 0.4 k1 = 0.5 k1 = 0.6 k1 = 0.7 k1 = 0.8 k1 = 0.9

k2 = 0.02 N.C. N.C. N.C. N.C. 59 N.C. N.C. N.C.
k2 = 0.03 256 169 129 108 81 71 70 66
k2 = 0.04 334 237 166 128 119 106 73 80
k2 = 0.05 451 294 215 174 130 133 110 98

(b) Settling time [s] k1 = 0.2 k1 = 0.3 k1 = 0.4 k1 = 0.5 k1 = 0.6 k1 = 0.7 k1 = 0.8 k1 = 0.9

k2 = 0.02 N.C. N.C. N.C. N.C. 59 N.C. N.C. N.C.
k2 = 0.03 141 96 71 63 39 52 58 63
k2 = 0.04 178 124 95 71 68 61 39 51
k2 = 0.05 235 156 119 95 72 70 66 60

The projection control requires the tuning of two parameters k1 and k2, Tab. 6 show the number of thrust pulses and

settling time of a batch computation when varying the two parameters in the range of minimal fuel consumption. It can

be seen that the number pulses can be drastically reduced, but the control is very sensitive to the choice of parameters,
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Table 7 Number of thrust pulses for a large angle slew maneuver of a 12U CubeSat with 4 thrusters, with the
NPC control using fixed values of R̄ (N.C.=non converged)

R̄ = 0.03 R̄ = 0.1 R̄ = 0.3 R̄ = 1 R̄ = 3 best

K∞/Kquad = 0

K2 = 0 57 63 N.C. N.C. N.C.

52
K2 = 0.01 54 64 N.C. N.C. N.C.
K2 = 0.1 58 63 N.C. N.C. N.C.
K2 = 1 57 65 N.C. N.C. N.C.
K2 = 10 52 54 N.C. N.C. N.C.

K∞/Kquad = 0.3

K2 = 0 70 58 59 N.C. N.C.

56
K2 = 0.01 68 63 59 N.C. N.C.
K2 = 0.1 68 60 58 N.C. N.C.
K2 = 1 67 62 56 N.C. N.C.
K2 = 10 77 65 65 N.C. N.C.

K∞/Kquad = 3

K2 = 0 67 72 65 57 N.C.

52
K2 = 0.01 72 63 69 55 N.C.
K2 = 0.1 72 70 64 52 N.C.
K2 = 1 74 69 61 57 N.C.
K2 = 10 84 83 71 63 N.C.

Kquad = 0

K2 = 0 71 73 64 52 N.C.

52
K2 = 0.01 75 68 68 54 N.C.
K2 = 0.1 66 66 59 55 N.C.
K2 = 1 75 66 67 57 N.C.
K2 = 10 82 80 67 59 N.C.

especially when low numbers of thrust pulses are obtained, and the settling time increases. Only a specific range is

shown here in order to emphasize the sensitivity to the parameters, but other combinations lead to equivalent results.

The design of the NPC control for the slew maneuver requires tuning three parameters: K∞/Kquad that can equal

infinity, K2 and R̄, as in Eq. 29 and Eq. 32. After normalization of the state, K2 and R̄ are taken proportional to the

identity matrix. In Tab. 7 the results of a batch computation while varying the three parameters are shown. In a similar

way as for the detumbling case, the sum Kquad + K∞ is fixed to one so that only R̄ has an influence on the ratio between

the control norm and the state norm. Note that values of K2 higher than 20 lead to lower performances. The settling time

of the NPC is not shown because low variations are obtained, between 40s and 60s. A clear improvement is obtained

with respect to the simple logic of 47% fuel savings when taking the best parameters. Taking only an infinite norm of

the state error in the cost function proves slightly more efficient. It can be noticed that the parameters shown in this table

cover a wide range of values, and the variations of the number of thrust pulses are much lower than for the projection

control whose results covered a narrow range, and the settling time is almost constant. This shows that the parameters

used in the NPC control have a more universal meaning, and the results are less sensitive to them. When no constraint

on settling time is considered, the projection control leads to the lowest fuel usage.
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Table 8 Number of thrust pulses and settling time for performing a slew maneuver with a 12U CubeSat with
4 thrusters, with NPC control using a time-variable R̄

β = 0.5 β = 0.6 β = 0.7 β = 0.8 β = 0.9

Thrust pulses 43 44 42 49 38
Settling time [s] 61 60 53 55 53

It can be seen that by varying the right parameters, only R̄ has a real influence on the results. In particular at a given

ratio K∞/Kquad, there exists a limit value of R̄ above which there is no convergence, but that must be approached in

order to reduce the number of thrust pulses, which justifies the implementation of a time-variable R̄. The time law of R̄

described in Eq. 37 is implemented with different values of the parameter β between 0 and 1 as shown in Tab. 8 where

an upper bound of 4 has been used for R̄. The dependance on β is very low, both for the number of thrust pulses and the

settling time. For example for β = 0.9 we obtain 38 thrust pulses, which shows a clear improvement with respect to

the NPC with constant R̄, and with a comparable settling time of 53s. This method, besides insuring convergence by

diminishing R̄ when it becomes too high, leads to the best performance by taking advantage of the natural motion of the

spacecraft, and leads to 35.6% fuel savings with respect to the best projection control, and proves more robust and much

less sensitive to the choice of the parameters.

As for the de-tumbling, different Multi-Layer perceptrons are trained off-line, using a set of pseudo-random inputs

obtained by propagating an initial random state during three time steps, and the corresponding outputs obtained with the

NPC control with parameters R̄ = 1, K2 = 0, Kquad = 0. 10.000 pairs of inputs/outputs are generated to train a MLP of

3 hidden layers, with S = 20 neurons in each layer. Half of the training inputs are taken in the full range of quaternions

(between -1 and 1) and expected range of angular velocities, and the other half are with lower quaternions. 24 neural

networks are trained, the best has a generalization error of 22.5%, and leads to 69 thrust pulses (30% saving with respect

to the simple logic control) and a settling time of 47s. Figure 4 shows the quaternions and angular velocity obtained

with the the five controls developed in the article. The results are shown at equal settling time of 55s. The neural

network control is close to the on-line optimization predictive control, evidencing the good generalization capability

from the training process. It shows a clear improvement with respect to a simple logic in terms of fuel consumption, and

is faster than the projection control.

Finally, the net force created by the control does not vary much from a method to the other, and leads to a total

impulse of [0.057; 0.158; 0.056]T Ns in the inertial referential defined by the inertia axes of the spacecraft in its desired

final position. Note that with methods reducing the state error such as those used in this paper, the net force can hardly

be reduced, path planning methods are required if the net force must be minimized.
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Fig. 4 Quaternions (left) and angular velocities (right) during the slew maneuver of a 12U CubeSat with 4
thrusters, comparison of 5 different methods at equal settling time

VI. Conclusion
This paper presents a Neural Predictive control adapted to nonlinear systems with boolean control inputs. The

method is applied to the optimal control of a 12U CubeSat with four thrusters. An extensive comparison of the

approach to a logic-based control law and a projection based control showed that the Neural Predictive Control is more

fuel-efficient for de-tumbling maneuvers, with up to 25% fuel savings. In addition, for finite-time slew motions up to

36% fuel savings were observed. It is also shown that tuning the NPC control comes down to tuning one parameter, for

which an automatic time law that insures convergence and leads to the best performance is proposed. However, the main
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problem with the neural predictive control is the relatively high processing requirement. To overcome this a neural

network meta-model for optimal thruster selection was trained based on generated data from the optimal controller.

The performance of the meta-model for thruster selection tends to the optimal performance as the number of neurons

and training time is increased. In conclusion neural networks have been shown as a useful tool in predictive control

by replacing the dynamics and kinematics with a neural network model for attitude propagation and cost function

evaluation. In addition, we show that neural networks could be useful to reduce computational expense of on-board

algorithms by replacing optimization algorithms with a trained neural meta-model. However, the development of such

meta-models requires a heavy off-line investment. Furthermore, in contrast to models based on differential equations,

neural network controls currently have no analytical means of validation.
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