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Abstract

This paper addresses the optimal orbit rendezvous problem for thrust-vectoring spacecraft. In this scenario,

the chaser spacecraft is equipped with only one impulsive thruster fixed in the body frame, while the thrust

direction is pointed using attitude control of the spacecraft. An improved particle swarm optimization (PSO)

algorithm is employed to generate an optimal multiple-burn rendezvous trajectory in terms of thruster pulse

duration and required attitude. A coordinate-free, finite-time, attitude control is developed to ensure that

this required thrust vector is met exactly at the prescribed time. The proposed orbit-attitude guidance

algorithm is compared with one which utilizes a conventional PSO and is shown to significantly improve

performance. In addition, the set-point attitude control is illustrated, in simulation, to deliver the required

thrust direction at the prescribed time.

Keywords: Orbit rendezvous; Thrust-vectoring spacecraft; Particle swarm optimization; Coordinate-free;

Finite-time attitude control.

1. Introduction

Autonomous rendezvous and proximity operations (RPOs) are key enabling technologies for many antic-

ipated space missions such as removing space debris, repairing failed spacecraft on orbit, refueling, and for

operations with the International Space Station [1–8]. In order for such missions to be realized, guidance

and control algorithms must meet strict requirements on precision, while they should be optimal, robust

and computationally efficient [9]. RPO can be divided into three phases: far-field rendezvous, near-field

rendezvous, and final approach. Progress has been made in this direction for different RPO phases, such as

optimal orbit trajectory generation for far and near field rendezvous [1], integrated guidance and control for

near field rendezvous [3, 4], and robust relative position and attitude control for the final approach [5, 6].

In general, the guidance and control for RPO assume that control forces can be provided instantaneously
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in any direction. However, for many future rendezvous and docking missions the spacecraft will be thrust-

vectored. Moreover, the spacecraft will have the ability to control a single force vector fixed in the body

axis, which can be pointed by using attitude control [10]. Thrust-vectoring spacecraft can allow reduced

mass and volume savings and are therefore particularly suitable for the next generation of micro and nano

spacecraft [11]. Furthermore, using a single thruster for RPOs significantly reduces the risk of damaging

the target with thruster plumes on approach.

This paper is focused on the trajectory tracking problem for far and near-field rendezvous, where the

chaser spacecraft is equipped with a single impulsive thruster and reaction wheels for attitude control.

The target and chaser spacecraft are initialized on two non-coplanar, non-circular orbits, and the chaser

spacecraft is then required to track the position and velocity of the target in a fixed time, while minimizing

fuel consumption. This problem can be formulated in two parts (i) the generation of an optimal reference

rendezvous to yield a required time and Δv. Specifically, for a thrust-vectoring spacecraft, this trajectory

is converted into a required attitude and thruster pulse duration at a prescribed time and (ii) an attitude

set-point tracking problem that must match the pointing direction precisely at the prescribed time.

The initial stage requires the generation of attitude set-points and thruster pulse durations which is

achieved using a combination of particle swarm optimization (PSO) and the Lambert method. It is possible

to generate the initial optimal trajectory using a plethora of methods that already exist in the literature, such

as numerical shooting [12], transcription methods [13], and heuristic methods such as genetic algorithms

(GA) [14], ant colony optimization [15], and particle swarm optimization (PSO) [16]. PSO is favored in

this paper due to its fast convergence, simplicity of implementation, and lower computational complexity

compared with other heuristics methods [17, 18]. Usually the lack of dynamic regulation in PSO can lead

to convergence to local optima, known as the premature phenomenon [19]. However, adapting the PSO

parameters iteratively enables the algorithm to avoid this premature phenomenon. The approach here

extends [1] by adapting a constrained PSO to the guidance of rendezvous spacecraft operating in general

(non-coplanar, non-circular) orbits. Specifically, the PSO is used to generate a four stage maneuver each

requiring a specific thruster pulse duration and required attitude at a specified time. Thus, for this approach

to be viable, the required attitude must also guarantee that the prescribed thruster direction is precisely

met in a specific finite time.

The required reference attitude is computed by the required vector of Δv, and is defined naturally on the

Special Orthogonal Group SO(3), whereby the required thrust direction corresponds to a column vector of

the desired attitude matrix. However, it is difficult to construct a control scheme on SO(3) directly. Thus,

by introducing a smooth positive-definite configuration error function to measure the attitude tracking error,

a co-ordinate free, finite-time, attitude control is proposed here to guarantee that the set-point attitudes

along the desired rendezvous are met. Formulating the attitude guidance in this co-ordinate free way allows

the control to be developed using a natural rotation error metric [20], while avoiding singularities associated
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with Modified Rodrigues Parameters (MRPs) such as in [21, 22], and avoiding problems with ambiguous

global representations associated with unit quaternions such as in [23–25]. Moreover, unit quaternions are

often used for their computational efficiency, but are ambiguous since the mapping between quaternions and

a physical rotation is not unique. This can lead to problems of un-winding whereby two different quaternions

corresponding to the same physical orientation can have opposing stability properties i.e. one can be stable

while the other unstable. Thus, the un-winding problem refers to the situation where a control induces a

winding rotation away from the unstable desired quaternion to the corresponding stable quaternion. Finite-

time attitude control has been developed before on SO(3) [26–30]. However, we advance the state-of-the-art

here by developing a co-ordinate-free fast terminal sliding mode controller (FTSMC). This proposed finite-

time controller does not require the computation of the second order derivative of the error function that is

necessary to guarantee finite-time stability in [29, 30]. This feature means that it is more computationally

efficient to implement, while it maintains a guaranteed finite-time convergence.

The remainder of this paper is organized as follows: In Section 2, the mathematical model of the RPO is

developed, and the control objective of this paper is presented. An improved PSO algorithm is proposed in

Section 3 to generate the optimal trajectory of the RPO. In Section 4, a finite-time attitude control scheme

is designed to track the directions of the optimal impulse vectors, along with the proof of the stability of

the closed-loop attitude system. In Section 5, two cases of numerical simulations are conducted to illustrate

the effectiveness of the PSO and the finite-time attitude controller.

2. Problem formulation

The six-degree-of-freedom (6-DOF) dynamics of the thrust-vectoring chaser spacecraft are defined in this

section and the three reference frames used are depicted in Fig 1.

Fig. 1. Illustration of the coordinate frames.
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(a) The standard Earth centered inertial frame FI(xI , yI , zI) is located at the Earth’s mass center, xI

points to the Earth’s vernal equinox, zI is along the Earth’s rotation axis, and yI is obtained by the

right-hand rule. Superscript I is used to represent a vector in this frame.

(b) The orbital coordinate frame Fo(xo, yo, zo) is a right-handed orthogonal system and located at the

spacecraft’s mass center, zo is along the opposite direction of the spacecraft’s position vector in FI , yo

points to the direction of angular momentum, and xo completes the right-handed orthonormal frame.

(c) The body-fixed frame Fb(xb, yb, zb), whose origin is the mass center of the spacecraft and its three

axes are parallel to its principal body axes. Superscript b denotes the frame of reference of the vector.

2.1. 6-DOF dynamics of the chaser spacecraft

The chaser spacecraft studied in this paper is thrust-vectored with one impulsive thruster fixed in its zb

axis. Thus, this system is highly coupled with the attitude of the spacecraft and the 6-DOF dynamics must

be used:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ṙ = v

v̇ = − μ

‖r‖3 r +
1

m
RF

Ṙ = RΩ×

Ω̇ = J−1(−Ω×JΩ+U)

(1)

where r ∈ R
3×1 and v ∈ R

3×1 are the spacecraft’s position and translational velocity in FI respectively,

μ = 398600.47km3/s2 is the Earth’s gravitational constant, ‖ r ‖ is the Euclidean norm of r, m is the mass

of the spacecraft, F = [0 0 F ]T ∈ R
3×1 is the force generated by the unilateral impulsive thruster along zb

axis, R ∈ SO(3) is the rotation matrix from Fb to FI , SO(3) = {R ∈ R
3×3 : RTR = I3×3, det(R) = 1} is

a Lie group, Ω ∈ R
3×1 is the angular velocity expressed in Fb, (Ω)× is the skew-symmetric matrix of Ω,

U is the torque applied on the spacecraft generated by reaction wheels, and J is the inertia matrix of the

spacecraft.

2.1.1. Orbit dynamics for spacecraft with impulsive thruster

Assuming that the orbit rendezvous for a chaser spacecraft with a non-coplanar target spacecraft in a

fixed time can be realized by N impulses, and Δvi, (i = 1, · · · , N) is the velocity change at each step, then
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the relationships of the positions and velocities before and after an impulse can be obtained

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

t+i = t−i

r+i = r−i

v+
i = v−

i +Δvi

(2)

where (·)− and (·)+ mean the parameters before and after an impulse, respectively.

For the spacecraft rendezvous problem, it is assumed that the trajectory of the chaser spacecraft after

one impulse is Keplerian orbit with elliptic type [1]. Then the corresponding semimajor axis ai, eccentricity

ei, inclination Ii, mean anomaly Mi, argument of perigee ωi, and right ascension of ascending node Wi after

ith impulse can be obtained once r+i and v+
i are known. Moreover, during the ith impulse and (i + 1)th

impulse, the position and velocity of the chaser spacecraft can be calculated by the orbit elements [31].

These relationships can be expressed by

⎧⎨
⎩
(
ai, ei, Ii,Mi, ωi,Wi

)
= f1

(
ri, (v

−
i +Δvi)

)
(
r(ti +Δti),v(ti +Δti)

)
= f2

(
ai, ei, Ii,Mi, ωi,Wi,Δti

) (3)

where Δti ∈ [ti, ti+1], and the initial orbit elements of the chaser spacecraft is
(
a0, e0, I0,M0, ω0,W0

)
=

f1

(
r1,v

−
1

)
. Since for the eccentric anomaly E, we have

E = M + e · sin(E) (4)

Thus E(t+i ) and E(t−i+1) can be obtained by Mi, M
−
i+1 and ei iteratively. Then, we have E(t−i+1) = E(t+i )+

ΔEi, which can be used to calculate the running time of ith impulse through Kepler’s law

Δti = ti+1 − ti = f3(ΔEi) =

√
a3i
μ

{
ΔEi − ei

{
sin

(
E(t−i+1)

)− sin
(
E(t+i )

)}}
(5)

2.1.2. Relative rotational dynamics of the chaser spacecraft

The desired Δvi is generated by the orbital guidance approach and its direction vecotr is aligned with

the desired thrust direction fixed in the body frame zI
bi = Δvi/ ‖ Δvi ‖. Taking zI

bi as input, this subsection

is in charge of computing a reference attitude and angular velocity that are feasible in the following sense

[10]: Ṙdi = RdiΩ
×
di(t), ∀t ≥ 0, Ωdi ∈ C1 ∩L∞, and then developing the relative rotational dynamics of the

system. The procedure to define Rdi is described below:

(a) Select an appropriate vector sd ∈ C2(R3), which is transverse to zI
bi. sd can be selected depending on

the mission requirements. For example, it can be equated to the velocity vector of the spacecraft or
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the Sun direction. An arbitrary choice is made here since no specific mission requirements are specified

as in [27]. We let zI
bi = [z1 z2 z3]

T ∈ S
2 ⊂ R

3, then

sd =

⎡
⎢⎢⎢⎣

z2 + z3

z3 − z1

−z1 − z2

⎤
⎥⎥⎥⎦ (6)

which is orthogonal to zI
bi.

(b) Compute yI
bi by yI

bi =
zI
bi × sd

‖ zI
bi × sd ‖ = Rdiyb.

(c) Compute xI
bi by xI

bi = yI
bi × zI

bi = Rdixb. The desired attitude of the ith impulse is then defined as

Rdi = [xI
bi y

I
bi z

I
bi] ∈ SO(3).

A smooth positive-definite configuration error function Ψ : SO(3) × SO(3) → R is usually adopted to

measure the error between the actual and desired attitude [28, 29], and attitude controller is designed based

on the error function. In this paper, the so-called modified trace function defined on SO(3) in [32] is utilized

to describe the attitude error

Ψi(Ri,Rdi) =
1

2
tr
[
K(I3 −RT

diRi)
]

(7)

where K = diag(k1 k2 k3) > 0. Taking the derivative of Ψi, we can get the attitude error eRi : SO(3) ×
SO(3)→ R

3 and the angular velocity tracking error eΩi : SO(3)× R
3 × SO(3)× R

3 → R
3

d

dt
(Ψi(Ri,Rdi)) = eRi · eΩi (8)

eRi =
1

2
(KRT

diRi −RT
i RdiK)∨ (9)

eΩi = Ωi −RT
i RdiΩdi (10)

where (·)∨ : ςo(3)→ R
3 is the inverse mapping of (·)×. Taking the derivative of eRi and eΩi, and substituting

Eq.(1) into the results, we can get the relative attitude dynamics

ėRi = Gi(Ri,Rdi)eΩi (11)

ėΩi = J−1(−Ω×
i JΩi +Ui) +Ω×

i R
T
eiΩdi −RT

eiΩ̇di (12)
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where Gi(Ri,Rdi) =
1

2
(tr(RT

eiK)I3 −RT
eiK). The property of the relative attitude dynamics is [33]

Property 1. Ψ(R,Rd) is locally quadratic, and satisfies

b1 ‖ eR(R,Rd) ‖2≤ Ψ(R,Rd) ≤ b2 ‖ eR(R,Rd) ‖2 (13)

where b1 = (h1/h2 + h3), b2 = (h1h4/h5(h1 − ψ)), h1 = min{k1 + k2, k2 + k3, k3 + k1}, h2 = max
{
(k1 −

k2)
2, (k2−k3)

2, (k3−k1)
2
}
, h3 = max

{
(k1+k2)

2, (k2+k3)
2, (k3+k1)

2
}
, h4 = max{k1+k2, k2+k3, k3+k1},

h5 = min
{
(k1+k2)

2, (k2+k3)
2, (k3+k1)

2
}
, and ψ is a positive constant and satisfies Ψ(R,Rd) < ψ < h1.

2.2. Constraint modeling and handling

The constraints during the trajectory tracking process are assumed to be the boundary conditions and

the actuator constraints of the chaser spacecraft.

2.2.1. Matching the boundary conditions

The rendezvous problem consists of determining the optimal positions ri, the directions and magnitudes

of Δvi such that the trajectory of the target spacecraft can be tracked in the predefined time tf . At the

terminal time tf , both the positions and velocities of the two spacecraft must be equal to each other, which

means the following terminal conditions must be satisfied

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

rtarget(tf ) = r+N (tf ) = r−N (tf )

vtarget(tf ) = v+
N (tf ) = v−

N (tf ) + ΔvN

tf = tN − t1 = Δt1 + · · ·+ΔtN−1

(14)

To meet the above boundary conditions, the last two velocity impulses will be computed via the Lambert

theorem. The trajectory generated by the N − 2 (N ≥ 2) impulses can be obtained through Eq. (3), and

also the running time Δt1 + · · ·+ΔtN−2 ≥ 0 by Eq. (5). Thus, the initial position rN−1, the final position

rtf , and the running time ΔtN−1 are all known. Then, we can obtain the relationship between the transfer

time ΔtN−1 and the semimajor axis aN−1 from Lagrange’s formulation of the Lambert problem, which can

be expressed as

ΔtN−1 =

√
a3N−1

μ

[
2nπ + (δ1 − δ2)− (sinδ1 − sinδ2)

]
(15)

where n is the number of revolutions, cosδ1 = 1 − s/aN−1, cosδ2 = cosδ1 + d/aN−1, d =‖ rN−1 − rtf ‖,
s = (‖ rN−1 ‖ + ‖ rtf ‖ +d)/2. It should be noted that multiple-revolution solutions are not considered for
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the (N − 1)th Keplerian arc, which means that n = 0. When aN−1 = s/2, the transfer orbit is minimum-

energy, and when aN−1 > s/2, there are two solutions, namely the short-path orbit and the long-path orbit.

Once ΔtN−1 and aN−1 have been obtained, the semilatus rectum of the Lambert orbit is [34]

p = sin
(δ1 + δ2

2

)‖ rN−1 ‖‖ rtf ‖ −rTN−1rtf

d · sin(δ1 − δ2
2

) (16)

Then, the velocities of the Lambert orbit at rN−1 and rtf are [34]

v+
N−1 =

√
μp

‖ rN−1 ‖‖ rtf ‖ sinθ
[(‖ rtf ‖

p
(1− cosθ)− 1

)
rN−1 + rtf

]

v−
N =

√
μp

‖ rN−1 ‖‖ rtf ‖ sinθ
[(
1− ‖ rN−1 ‖

p
(1− cosθ)

)
rtf − rN−1

] (17)

where θ = arcos
( rT

N−1rtf

‖rN−1‖‖rtf‖
)
is the transfer angle between the two position vectors. Then the last two

impulsive velocity changes can be obtained ΔvN−1 = v+
N−1−v−

N−1, and ΔvN = vtarget(tf )−v−
N . Moreover,

ai > 0 should be guaranteed such that the assumption of the rendezvous trajectory composed by N − 1

Keplerian arcs holds. In addition, from Eq. (5) we can see that the running time of the rendezvous process can

be expressed by a function of eccentric anomaly ΔEi. Thus, ΔEi ≥ 0 and tf = f3(ΔE1)+ · · ·+ f3(ΔEN−1)

must hold. Thereby, the boundary conditions are all satisfied.

2.2.2. Control limits

Since the configuration of attitude actuators is fully-actuated with reaction wheels, thus only the upper

bound of U needs to be considered. The constraint function can be expressed as [35]

Uj = sign(Uj)min
(|Uj |, umax

)
, j = 1, 2, 3 (18)

where umax is the maximum torque that the actuators can provide along the spacecraft body axes.

Fig. 2. The decomposition of Δvi.

In the case of impulsive thruster, our focus is on the magnitude and direction of the impulsive velocity
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change Δvi, which can be decomposed as shown in Fig. 2. Then, Δvi can be represented by

Δvi =

⎡
⎢⎢⎢⎣

Δvi · cosαi · cosβi

Δvi · cosαi · sinβi

Δvi · sinαi

⎤
⎥⎥⎥⎦ (19)

where Δvi =‖ Δvi ‖. Thus, the limitations on the thruster can be obtained by restricting 0 ≤ Δvi ≤ Δvmax,

−π/2 ≤ αi ≤ π/2, and 0 ≤ βi ≤ 2π. Δvmax is the upper bound of the velocity search space.

2.3. Control objective

The cost function that needs to be optimized is

minJ =
N∑
i=1

Δvi (20)

while the constraints and boundary conditions in Eqs. (14) and (19) must be satisfied. As illustrated in [36],

as many as four impulses are enough for an optimal fixed-time rendezvous problem. Thus, in this paper we

set N = 4. In addition, an attitude controller is required such that the optimized thruster vector Δvi can

be tracked by the chaser spacecraft in finite-time to guarantee the thruster could fire in time.

3. Optimal rendezvous trajectory generation via PSO

PSO was first introduced by Kennedy and Eberhart [37] by mimicking the unpredictable behavior of bird

flock while searching for food and sharing information among the flock. Conventional PSO is unable to deal

with equality and inequality constraints placed on the unknown parameters to be optimized [1]. Thus, many

improved PSO (IPSO) methods, which are able to deal with constraints, have been proposed and applied to

solve spacecraft trajectory optimization problems, such as optimal spacecraft rendezvous [1], optimal orbit

transfer [19], and spacecraft optimal reentry [18, 38]. Based on conventional PSO, an improved PSO is

proposed in this section to develop the optimal RPO trajectory.

3.1. Conventional PSO

The PSO technique is a population-based method with N1 particles. Each particle k(k = 1 · · ·N1) is

associated with a position Xk = (xk,1, xk,2, · · · , xk,D) and a velocity νk = (νk,1, νk,2, · · · , νk,D), where D

is the dimension of the search space (in this study D = 8, X = {Δv1, α1, β1,ΔE1,Δv2, α2, β2,ΔE2}),
Xk, corresponding to a value of the objective function, represents a possible solution to the optimization

problem, and νk is used to update Xk. The final optimal solution is sought by moving the particles in

the search space with νk. If Pk = (pk,1, pk,2, · · · , pk,D) is the best position of the kth particle so far, and
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Pg = (pg,1, pg,2, · · · , pg,D) is the best position of the entire swarm in the current iteration, then the position

of the kth particle can be updated by [38]

⎧⎪⎨
⎪⎩
νt+1
k,d = �νtk,d + c1rand1(·)(pk,d − xt

k,d) + c2rand2(·)(pg,d − xt
k,d)

xt+1
k,d = xt

k,d + νt+1
k,d

(21)

where d = 1, · · · , D, t is the current iteration number, rand1(·) and rand2(·) are random numbers uniformly

distributed in the interval [0, 1], and� is the inertia weight. Initially, � is set to a static value. Then, research

conducted by Shi and Eberhart showed that a linearly decreasing� will improve the PSO performance better

[39]. c1 > 0 is the cognitive component, which reflects the importance of the personal best position on the

update of the particle, c2 > 0 is the social component, which reflects how much confidence the particle has

in the swarm, and these two parameters are commonly set to 2.

3.2. The improved PSO of this paper

For a constrained optimization problem, usually the constraints can be expressed by equalities and

inequalities, then the nonlinear programming problem can be expressed mathematically by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

minJ = f(X),X = [x1, · · ·xD]

s.t.

g�(X) ≥ 0, � = 1, 2, · · · , q1
h�(X) = 0, � = q1 + 1, q1 + 2, · · · , q1 + q2

(22)

where X is a vector composed by the control variables of the optimization problem, and q1 and q2 are the

numbers of inequality constraints and equality constraints, respectively.

Since the equality constraints will reduce the degrees of freedom of the optimization problem and the

inequality constraints only reduce the search space of the possible solutions, it is common to transfer equality

constraints into inequality constraints with

gq1+�(X) = h�(X) + ε ≥ 0 (23)

where ε > 0 is the threshold. Then, the constraints considered are only the inequality terms g�(X) ≥
0, � = 1, 2, · · · , (q1 + q2). To address the constrained optimization problem described by Eq. (22), a penalty

function is constructed using the multiplier method [40] to incorporate constraints,

Φ(X, ζ, σ) = f(X) +
1

2σ

q1+q2∑
�=1

{
max2

(
0, ζ� − σg�(X)

)− ζ2�

}
(24a)
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ζ�(t+ 1) = max
(
0, ζ�(t)− σg�

(
X(t)

))
(24b)

where ζ is the multiplier, and σ > 0 is a sufficient large scalar.

In practice, the unknown parameters xk,d are constrained within suitable ranges, and are described by

xl,d ≤ xk,d ≤ xu,d (25)

where xl,d is the lower bound and xu,d is the upper bound of xk,d, respectively. Consequently, the corre-

sponding velocity should also be constrained by

νl,d ≤ νk,d ≤ νu,d (26)

where the lower bound is νl,d = xl,d − xu,d and the upper bound is νu,d = xu,d − xl,d. These bounds are

designed due to the fact that if νk,d > xu,d or νk,d < xl,d, no matter where xk,d(t) starts from, xk,d(t + 1)

would violate the limitations in Eq. (25). If xk,d is out of the interval of Eq. (25), it will be changed to [38]

xt
k,d =

⎧⎪⎨
⎪⎩
x̄t
d + rand(·)(xl,d − x̄t

d), if xt
k,d < xl,d

x̄t
d + rand(·)(xu,d − x̄t

d), if xt
k,d > xu,d

(27)

where x̄t
d =

∑N1

k=1 x
t
k,d/N1 represents the mid-value of the swarm on the dimension d. If νk,d is out of the

limitations in Eq. (26), it will be assigned to

νtk,d =

⎧⎪⎨
⎪⎩
νl,d, if νtk,d < νl,d

νu,d, if νtk,d > νu,d

(28)

It can be found that the function in (24a) does not require σ to be infinite, and when σ is large enough,

Φ(X, ζ, σ) can be minimized to get the minimum value of f(X). In [1], the information of the position and

velocity of an infeasible particle is not used for velocity update. In contrast to [1], here the information of an

infeasible particle is used, and as shown in [18], the information of the infeasible particle with a best fitness

function value can improve the convergence of the optimizer. In addition, for the improvement of the global

search ability and the performance of the PSO, a linearly decreasing � in [39] is utilized

� = (�0 −�f )
tmax − t

tmax
+�f (29)

where tmax is the maximum iteration number, and �0 and �f are the initial and final values of �, respec-

tively. Initially, a larger �0 means that all particles can have a very large speed, which can help the global
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searching. At the end, a smaller �f means the particles can search more efficiently near to the optimal

point such that the convergence of the algorithm is guaranteed. Furthermore, as illustrated in [41], particles

with smaller self-learning ability and larger social learning ability will speed up the swarm to converge to its

optimal position, and particles with larger self-learning ability and smaller social learning ability will guar-

antee the swarm has a strong global searching, which means that if c1 decreases with time and c2 increases

with time, then these dynamical changes will have the similar effect as the change of � on the particles.

Therefore, we design c1 and c2 as follows

⎧⎪⎪⎨
⎪⎪⎩
c1 = γ1 −Θ1

t

tmax

c2 = γ2 +Θ2
t

tmax

(30)

where γ1, γ2,Θ1,Θ2 are all positive constants.

3.3. Thruster attitudes and pulse durations generated by IPSO

The flowchart of applying the improved PSO developed in this paper to generate the required thruster

attitude and its pulse duration of each step is shown in Fig. 3, which can be concluded as follows

Fig. 3. Flowchart of the IPSO.
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1) Design PSO parameters such as N1, tmax, �, c1, c2. Express the constraints of Xk and νk in the form

of (22). Initialize Xk and νk randomly.

2) Substituting Xk = {Δvk1, αk1, βk1,ΔEk1,Δvk2, αk2, βk2,ΔEk2} into the chaser spacecraft dynamics,

and using Eqs. (3) (5) (15) and (17) to calculate the spacecraft velocity changes. Then, calculate

Φ(X, ζ, σ) to obtain Pk and Pg.

3) Xk and νk are updated based on Eq. (21). If a particle violates the constraints, set a new Xk and νk

for it by Eqs. (27) and (28).

4) Go to Step 2, and update Pk and Pg.

5) Repeat Step 3-4 until tmax is reached, and then output Pg to obtain Δv1,Δv2,Δt1,Δt2.

4. Attitude controller design and stability analysis

In this section we develop a co-ordinate free, finite-time, attitude controller to guarantee that the thrust

direction Δvi/ ‖ Δvi ‖ is met as the prescribed time. Firstly, to facilitate the stability analysis of the

finite-time attitude controller, two lemmas are presented.

4.1. Lemmas

Lemma 1. [42] If η1 > 0, η2 > 0, and 0 < ρ < 1, then the following inequality holds

(η1 + η2)
ρ ≤ ηρ1 + ηρ2 (31)

Lemma 2. [35] Consider a nonlinear system ẋ = g(x), g(0) = 0,x ∈ R
n, where g(x) is a continuous

function defined on an open neighbourhood � of origin, and there exists a continuous positive definite function

V (x) : Rn → R defined on � such that

V̇ (x) ≤ −ρ1V (x)− ρ2V
ρ(x), ∀T > T0 (32)

where ρ1 > 0, ρ2 > 0, and 0 < ρ < 1. Then x = 0 is a locally finite-time equilibrium point, and the system

states can converge to it with the settling time

Tf ≤ T0 +
1

ρ1(1− ρ)
ln

ρ1V
1−ρ(x(t0)) + ρ2

ρ2
(33)

where x(t0) is the initial value of x. Moreover, if � = R
n, then x = 0 will be a globally stable point.
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4.2. Finite-time FTSMC design and stability analysis

The finite-time attitude controller will be designed based on the relative rotational dynamics of the chaser

spacecraft governed by Eqs. (7)-(12). A co-ordinate free sliding surface is designed directly on the Special

Orthogonal Group SO(3)

S = eΩi + ϑ1eRi + ϑ2sig
ϕ(eRi) (34)

where ϑ1 > 0, ϑ2 > 0, 0 < ϕ < 1, and sigϕ(eRi) =
[∣∣[eRi]1

∣∣ϕsgn([eRi]1), · · · ,
∣∣[eRi]3

∣∣ϕsgn([eRi]3)
]T

. Taking

the derivative of S, and substituting Eqs. (11) and (12) into it, then the attitude dynamics of the chaser

spacecraft can be modified to

Ṡ = ėΩi + ϑ1ėRi + ϑ2ϕ|eRi|ϕ−1ėRi = J−1(−Ω×
i JΩi +Ui) +L (35)

where L = Ω×
i R

T
eiΩdi−RT

eiΩ̇di+ϑ1Gi(Ri,Rdi)eΩi+ϑ2ϕ|eRi|ϕ−1Gi(Ri,Rdi)eΩi. Next, based on Eqs. (34)

and (35), the major result of this section can be summarized as follows:

Theorem 1. Consider the spacecraft attitude error dynamics governed by Eqs. (34) and (35). Design the

attitude control law as

Ui = Ω×
i JΩi − JL− K1

K3
S − K2

K3
sigϕ(S)− 1

K3
eRi (36)

where K1, K2, and K3 are all positive constants. Then, the finite-time stability of the closed-loop attitude

system can be guaranteed, which means limTi→Tfi
eRi = 0. The estimation of the attraction region is

Θ =
{
(Ri,Rdi) ∈ SO(3) : Ψi(Ri,Rdi) < ΥRe and ‖ S ‖2< 2

K3λmax(J)

(
ΥRe −Ψi(Ri,Rdi)

)}
(37)

where ΥRe = Λ(tr(K)I3−K) > 0. Therefore, the zb axis of the chaser spacecraft can rotate to the direction

of Δvi in finite-time.

Proof. To prove the finite-time stability of the resulted closed-loop system, we consider the following candi-

date Lyapunov function:

V = Ψi(Ri,Rdi) +
K3

2
STJS (38)

Taking the derivative of V along Eq.(35), and substituting Eq. (8) into it, one can obtain

V̇ = Ψ̇i(Ri,Rdi) +K3S
TJṠ

= eRieΩi +K3S
TJ

(
J−1(−Ω×

i JΩi +Ui) +L
) (39)
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Substituting the designed controller Eq. (36) into it, yields

V̇ = eRieΩi +K3S
T
(− K1

K3
S − K2

K3
sigϕ(S)− 1

K3
eRi

)
= eRieΩi −K1S

TS −K2S
Tsigϕ(S)− STeRi

(40)

From Eq. (34), it is obvious that

eΩi = S − ϑ1eRi − ϑ2sig
ϕ(eRi) (41)

Taking Eq. (41) into (40), after some algebraic manipulations, we have

V̇ ≤ −ϑ1 ‖ eRi ‖2 −ϑ2 ‖ eRi ‖1+ϕ −K1 ‖ S ‖2 −K2 ‖ S ‖1+ϕ (42)

From the Property 1 of Ψi(Ri,Rdi) in (13), we have
Ψi(Ri,Rdi)

b2
≤‖ eRi ‖2. Then (42) can be changed to

V̇ ≤ −ϑ1

b2
Ψi(Ri,Rdi)− 2K1

K3λmax(J)

K3

2
STJS

− ϑ2

b
(1+ϕ)/2
2

Ψ
(1+ϕ)/2
i (Ri,Rdi)−K2

( 2

K3λmax(J)

)(1+ϕ)/2(K3

2
STJS

)(1+ϕ)/2

≤ −Ka

(
Ψi(Ri,Rdi) +

K3

2
STJS

)
−Kb

(
Ψ

(1+ϕ)/2
i (Ri,Rdi) +

(K3

2
STJS

)(1+ϕ)/2
)

(43)

where λmax(·) is the maximum eigenvalue of a matrix, and

Ka = min
{ϑ1

b2
,

2K1

K3λmax(J)

}
> 0

Kb = min
{ ϑ2

b
(1+ϕ)/2
2

,K2

( 2

K3λmax(J)

)(1+ϕ)/2}
> 0

(44)

Since Ψi(Ri,Rdi) > 0,
K3

2
STJS > 0, and 0 <

1 + ϕ

2
< 1, thus by using Lemma 1, the following inequality

can be obtained

(
Ψ

(1+ϕ)/2
i (Ri,Rdi) +

(K3

2
STJS

)(1+ϕ)/2
)
≥

(
Ψi(Ri,Rdi) +

K3

2
STJS

)(1+ϕ)/2

(45)

Then, substituting (45) into (43) yields

V̇ ≤ −Ka

(
Ψi(Ri,Rdi) +

K3

2
STJS

)
−Kb

(
Ψi(Ri,Rdi) +

K3

2
STJS

)(1+ϕ)/2

≤ −KaV −KbV
(1+ϕ)/2

(46)
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Then from Lemma 2, we can find that Ψi(Ri,Rdi) and S can reach 0 in finite-time. From Property 1 of

Ψ(R,Rd), we know that Ri = Rdi is the unique solution of Ψi(Ri,Rdi) = 0. When Ri = Rdi, we can get

eRi = 0 from Eq. (9). Substituting eRi = 0 and S = 0 into Eq. (41) yields eΩi = 0.

Note that in this paper the disturbances are assumed to be negligible in the first two phases of a RPO.

However, in the presence of significant disturbances the control can be adapted to include a disturbance

rejection component with the inclusion of an extended state observer. In addition, an alternative approach

would be to include moving mass control technology [43–45] which can counteract the disturbance torques

to maintain stabilization by momentum exchange using internal moving masses.

The overall control strategy can be summarized as follows: 1) Using the PSO to obtain the optimal

two impulse vectors and their running times, namely [Δv1]o, [Δv2]o, Δt1, and Δt2. 2) Applying the

attitude controller (36) to control the zb axis of the chaser spacecraft to the directions of [Δv1]o and [Δv2]o,

respectively. Then, the actual velocity changes [Δv1]a, [Δv2]a can be obtained. The subscripts [·]o and [·]a
are used to represent the parameters of optimal and actual trajectory, respectively. 3) Using Eq. (3) to

calculate the actual position and velocity of the chaser spacecraft at t3 = t1 +Δt1 +Δt2. 4) Using Lambert

method to get the last two impulse vectors. 5) Repeating step 2 and 3 to obtain the actual positions and

velocities of the chaser spacecraft at t3 and tf . Then, the chaser spacecraft can track the trajectory of the

target spacecraft in finite time.

5. Simulation results

5.1. Simulation setup

In this section, several numerical examples are conducted to verify the effectiveness of the improved PSO

for optimal spacecraft rendezvous motion planning and the attitude control scheme for thrust-vectoring

spacecraft trajectory tracking. We set the preparation time for the chaser spacecraft to calculate its optimal

trajectory and rotate its attitude to the direction of Δvi to be Δtrotatei = 200s, and the attitude of the

chaser spacecraft when it is free of control is assumed that Fb is perfectly aligned with its orbit frame Fo,

and from the rotation matrix of FI to Fo in [31] we can get [Ri]
T
initial = Rz(wi+[θci]initial)Rx(Ii)Rz(Wi),

where [θci]initial is the true anomaly when the attitude controller starts to act on the spacecraft, and Rx(·)
and Rz(·) stand for transformation matrices about xaxis and zaxis by angles wi + [θci]initial, Ii, and Wi,

respectively. The orbit transfer time is tf = 10000s. The orbital elements of the target spacecraft and the

chaser spacecraft at t1 = 0 are given in Table. 1. The position of the target spacecraft at tf = 10000s can

be calculated using its orbit elements based on Eqs. (3)-(5). The system parameters of the chaser spacecraft

are assumed to be J = diag(400, 400, 400)kg ·m2 and m = 400kg, the search space of velocity is defined by

0 ≤ Δvi ≤ 2 km/s, i = 1, 2, and the upper bound of the control torque is umax = 4N ·m.
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Table 1: Orbit elements of the target spacecraft and the chaser spacecraft at t1.

Orbit parameters The target spacecraft The chaser spacecraft

Semi-major axis 27500km 7800km

Eccentricity 0.12 0.2

Inclination 50◦ 45◦

Argument of perigee 80◦ 55◦

Mean anomaly 0 −5◦

Right ascension of ascending node (RAAN) 60◦ 30◦

For the purpose of comparison, two cases are considered in the simulations. Case A: comparison between

the optimal velocity deviations generated by conventional PSO (CPSO is the short of it) and the improved

PSO in this paper to show the priority of the IPSO, and Case B: final position and velocity comparisons

between ideal trajectory and actual trajectory where the directions of Δvi are controlled by the attitude

controller (36), to show the performance of the proposed control strategy.

5.2. Comparison between CPSO and IPSO

The population size of the swarm is N1 = 40 and tmax = 1000, which will be fixed for these two scenarios.

For the IPSO, the parameters are designed as follows: σ = 100, γ1 = 2.5, γ2 = 0.5, Θ1 = 1.8, Θ2 = 1.6,

�0 = 0.9, �f = 0.4, and ζ1 = 1. In the CPSO, the linear weight of� is still used, but the constraint-handling

mechanism is not considered, and the two learning factors c1 and c2 are equal to 2.

Table 2: Variables optimized by IPSO.

Impulse i Δvi (km/s) αi/(
◦) βi/(

◦) ti(s)

1 1.9402 64.326 103.09 0

2 0.8366 54.563 115.67 0

3 1.811 55.36 336.213 1893.9

4 1.8447 -59.372 286.33 10000

Table 3: Variables optimized by CPSO.

Impulse i Δvi (km/s) αi/(
◦) βi/(

◦) ti(s)

1 2 52.57 133.3 0

2 0 - - 1453.3

3 2.60 79.0 1.46 1453.3

4 2.081 -58.1 285.04 10000
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Fig. 4. Rendezvous trajectory generated by IPSO and CPSO

Several independent simulations are undertaken for each PSO version to obtain the optimal solutions.

The trajectories generated by IPSO, CPSO and Lambert method are shown in Fig. 4, from which we can

see that the boundary conditions are well satisfied in each scenario. Since the final position and the running

time are naturally satisfied in both of the optimization methods, what we care about is the total velocity

deviations. The variables optimized by IPSO are shown in Table. 2, and the counterparts of CPSO are

given in Table. 3, from which we can find that all the optimal solutions satisfy the constraints in (19). From

the results, we can conclude that three impulses are enough to track the trajectory of the target spacecraft,

since the first and second impulses of IPSO can be finished at the initial time, and the second impulse of

CPSO is zero. Moreover, to illustrate that compared with the Lambert method, both the solutions of IPSO

and CPSO are optimal, the values of the cost functions of these three methods are calculated

JLambert =
4∑

i=1

Δvi = 8.6504km/s

JCPSO =
4∑

i=1

Δvi = 6.6825km/s

JIPSO =
4∑

i=1

Δvi = 6.4326km/s

(47)

from which we can conclude that the performance of IPSO is the best.
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5.3. Performance of the finite-time attitude controller
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Fig. 5. Time responses of eR1.
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Table 4: Attitude tracking errors during each impulse

Time Attitude tracking errors

t = 0 eR12 = [−0.206377015352078; 0.606097465124340; 0.443675718436785]× 10−8

i = 1, 2 eΩ12 = [0.068507994451558;−0.235551161964597;−0.296230314701513]× 10−5(deg/sec)

t = 1893.9s eR3 = [0.399986779656952; 0.334045627691576;−0.420339094267647]× 10−8

i = 3 eΩ3 = [−0.257768903573084;−0.339839817984818; 0.224325970036670]× 10−5(deg/sec)

t = 10000s eR4 = [−0.402183533587733; 0.477246542571585; 0.285693660800068]× 10−8

i = 4 eΩ4 = [0.234936401269850;−0.295155587973101;−0.426356100674213]× 10−5(deg/sec)

The optimal solutions of IPSO are applied, and the requirement for the attitude controller is to control

the zb axis of the chaser spacecraft to the directions of Δvi in finite-time, while ‖ Ui ‖≤ umax. The guideline

of choosing the parameters of the attitude controller is by trial-and-error until a good control performance

is obtained, and the parameters are designed to be: K = diag(0.8, 1.25, 1), ϑ1 = 0.03, ϑ2 = 0.05, ϕ = 2/3,

K1 = 12, K2 = 15 and K3 = 0.5. The attitude tracking errors over the entire mission are given in Table. 4 to

illustrate the performance of the attitude controller. Moreover, for the sake of brevity, only the plots of the

first two impulses are provided, and the simulation results under the attitude controller (36) are presented
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in Figs. 5-7. Figs. 5 and 6 show the time responses of the attitude tracking errors in term of eR, and eRi = 0

means the direction of Δvi has been synchronized by the zb axis of the chaser spacecraft under the effect

of the attitude controller. From the plots it can be seen that the attitude motion falls to tolerance with the

settling time about 50s. Thus, the preparation time Δtrotatei = 200s is enough for the chaser spacecraft to

prepare for the rendezvous process. In addition, the plots of the corresponding control torques applied on

the chaser spacecraft during the operation of the first two impulses are shown in Fig. 7, from which we can

see that the control limit in (18) is satisfied.
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Fig. 7. Time responses of control torques.

Fig. 8. Ideal rendezvous trajectory and the actual trajectory
under controller (36).
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Fig. 9. Norms of the positions of the two cases.

Moreover, to show the proposed attitude controller can guarantee that thrust-vectoring spacecraft ren-

dezvous maneuver can be undertaken with high accuracy, comparisons between the positions and velocities

of the ideal trajectory and the actual trajectory are conducted. The plots of the ideal trajectory optimized

by the IPSO and the actual trajectory, where the thruster directions are controlled by the attitude controller,

are shown in Fig. 8, and the plots of the norms of roptimal and ractual are shown in Fig. 9. From these two

20



figures, it can be seen that with the proposed attitude control scheme, the optimal rendezvous trajectory can

be tracked by the actual trajectory. To this end, the specific positions and velocities of the ideal trajectory

and the actual trajectory before and after each impulse are given in Table. 5 to illustrate the performance

of the proposed algorithm. As illustrated in the table, during the trajectory tracking maneuver, the track-

ing errors are at most 0.42m and 3.2 × 10−4m/s. From these simulation results we can conclude that the

trajectory of the target spacecraft can be tracked in a specified time with high-precision performance.

Table 5: Actual and ideal positions and velocities of the chaser spacecraft during each impulse

Position and velocity values during each impulse Tracking errors

t = 0

[r−
12]o = [r+

12]o = [2083.498682; 5033.403198; 3317.305696]km ‖ [Δr12]oa ‖= 0

[v−
12]o = [−7.742920794;−0.164226658; 3.729235939]km/s

[v+
12]o = [−8.016187926; 1.007304367; 6.231925781]km/s ‖ [Δv12]

−
oa ‖= 0

i = 1, 2 [r−
12]a = [r+

12]a = [2083.498682; 5033.403198; 3317.305696]km

[v−
12]a = [−7.742920794;−0.164226658; 3.729235939]km/s ‖ [Δv12]

+
oa ‖= 1.37× 10−4m/s

[v+
12]a = [−8.016187881; 1.007304324; 6.231925659]km/s

t = 1893.9s

[r−
3 ]o = [r+

3 ]o = [−11111.824828; 32.000436; 7366.509275]km ‖ [Δr3]oa ‖= 0.42m

[v−
3 ]o = [−4.934498155;−3.805812081;−0.290350922]km/s

[v+
3 ]o = [−3.992479666;−4.221012678; 1.199677979]km/s ‖ [Δv3]

−
oa ‖= 3.2× 10−4m/s

i = 3 [r−
3 ]a = [r+

3 ]a = [−11111.824659; 32.000264; 7366.508937]km

[v−
3 ]a = [−4.934497973;−3.805812187;−0.290351162]km/s ‖ [Δv3]

+
oa ‖= 1.2× 10−4m/s

[v+
3 ]a = [−3.992479772;−4.22101273; 1.199678007]km/s

t = 10000s

[r−
f ]o = [r+

f ]o = [−15369.00349;−22398.14162; 2515.64482]km ‖ [Δrf ]oa ‖= 0.17m

[v−
f ]o = [1.353060878;−1.088220548;−1.267736554]km/s

[v+
f ]o = [1.617343450;−1.990128898;−2.855113831]km/s ‖ [Δvf ]

−
oa ‖= 2.7× 10−5m/s

i = 4 [r−
f ]a = [r+

f ]a = [−15369.00361;−22398.14174; 2515.64482]km

[v−
f ]a = [1.353075924;−1.088198549;−1.267738963]km/s ‖ [Δvf ]

+
oa ‖= 1× 10−4m/s

[v+
f ]a = [1.617343431;−1.990128861;−2.855113738]km/s
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6. Conclusions

A constrained optimal orbit-attitude trajectory generation method is proposed for thrust-vectoring space-

craft rendezvous missions. In particular, the chaser spacecraft is equipped with a single impulsive thruster

that is pointed using a precise, finite-time, attitude control. It is shown that a typical rendezvous can

be undertaken with a thrust-vectored spacecraft using only 4 impulsive maneuvers. This scheme uses an

improved particle swarm optimization (PSO) to obtain the desired thruster pulse durations and desired at-

titude matrix. A coordinate-free finite-time attitude controller is designed, which enables the four impulses

to be delivered accurately and precisely at the required time. Formulating the problem on SO(3) allows

the reference attitude to be defined in a natural way, with one of the orthonormal vectors of the reference

attitude aligned with the thrust direction. The proposed finite-time attitude control formulation also has the

advantage that it does not require the computation of higher-order derivatives of the error function, which

is usually required to guarantee finite-time stability. From the simulation results, we can conclude that: 1)

The optimal trajectory obtained by the improved PSO requires less Δv than a conventional PSO; 2) The

attitude controller is able to track the desired force vectors with a settling time no more than 50s, while

satisfying the torque constraints on the reaction wheels; 3) The real-time implementation of the proposed

control scheme can track the optimal trajectory generated by the improved PSO with a position error less

than 0.2m, which is within the requirements of the spacecraft rendezvous missions described in [4].
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