
On the Initialization of Clocks in Timed Formalisms1

Marcello M. Bersania, Matteo Rossia, Pierluigi San Pietroa,b
2

aDipartimento di Elettronica Informazione e Bioingegneria, Politecnico di Milano,3

Piazza Leonardo da Vinci 32, Milano, Italy4

bCNR IEIIT-MI, Milano, Italy5

Abstract6

Constraint LTL over clocks (CLTLoc) is an extension of LTL allowing for atomic
formulae of the form x < c or x = c, which constrain the time delay measured
by clock x with respect to constant value c. In a previous work, we showed that
CLTLoc is equivalent to Timed Automata. The result was proven by considering
a clock semantics that conforms to the original definition by Alur and Dill, i.e.,
when clocks are reset (i.e., equal to 0) in the origin, both CLTLoc and Timed
Automata define the class of Timed ω-Regular languages. In this paper, we
show that if we allow the clocks to have any value in the origin, the power
of the formalism to express timed languages does not change, as long as non-
Zeno languages are considered. If Zeno languages are allowed, then CLTLoc is
strictly more powerful than TA. As a consequence of these results, we also show
that non-Zeno Timed ω-Regular languages are closed with respect to the left
quotient operation with timed regular languages over finite words.
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equivalence, Timed Automata, Timed regular languages, Zenoness.8

1. Introduction9

Timed Automata (TA) [1] are the standard operational formalism for real10

time modeling, with a large number of applications and theoretical results.11

Among the latter, logic characterizations are of great relevance, since they show12

whether techniques such as model or satisfiability checking can be applied to13

TA as well.14

In previous work, we have bridged the gap between TA and temporal logic15

over the pointwise semantics, by considering the logic Constraint LTL over16

clocks (CLTLoc), an extension of LTL that still considers discrete positions,17

but it has also a finite set of variables over a dense time domain, behaving18

like clocks of TA, to measure time elapsing among events occurring at discrete19

positions. Unlike MTL, clocks are explicit resources in CLTLoc and, as in20

TA, they can be compared with constants over N≥0 (or Q). In [2], we prove21

that satisfiability of CLTLoc is PSPACE-complete, by combining results on the22

decidability of CLTL [3],[4] over R with Region Graphs [1] capturing the time23
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behavior of variables. Moreover, the satisfiability of CLTLoc can be reduced to24

an instance of an SMT (Satisfiability Modulo Theories) problem. A decision25

procedure was then easily devised and implemented,1 by adopting SMT solvers26

such as Z3 [5]. CLTLoc has been successfully employed to reduce MITL over27

continuous semantics [6], allowing us to implement the first effective tool solving28

the satisfiability of MITL.229

In [7], we proved the language equivalence of CLTLoc and TA over timed30

sequences. However, in TA all clocks are assumed to be initialized to 0, while31

CLTLoc does not impose any a priori constraint on clock values. Equivalence32

with TA was actually proved under the assumption that clocks in CLTLoc are33

well-initialized—i.e., all clocks in the first position are either equal to 0 or to a34

constant, the same for all clocks. This very naturally poses the question whether35

well-initialization in CLTLoc and the zero initialization of TA are essential con-36

straints.37

Indeed, under the assumption that clocks are initialized to zero, it is possible38

to show that a number of syntactic extensions of TA do not increase the expres-39

sive power of the formalism. A notable example is that of so-called diagonal40

constraints of the form x ∼ y + c, where x and y are clocks [8].41

In this paper, we wish to understand whether it would be possible to define42

a wider class of timed regular languages by not enforcing these restrictions on43

the initial value. Indeed, in Sec. 3, we show a Zeno language (i.e., in which44

timestamps accumulate) that is not timed regular, and that can be defined by45

means of a TA with one clock that is not initialized at 0. However, the main46

result of this paper is that in the common case of non-Zeno behaviors, the class47

of timed languages does not change.48

We also wish to investigate whether the possibility that clocks initially have49

arbitrary values can make syntactic extensions such as the admissibility of diago-50

nal constraints also semantically more powerful. Indeed, for non-Zeno behaviors51

diagonal constraints do not increase the expressive power, while they are more52

powerful in the Zeno case.53

The proof is based on CLTLoc rather than TA, since a logic formalism allows54

for the addition of various properties as further logic constraints or through55

syntactic substitution in the original formula. Most of the proof is, however,56

completely independent of the formalism used (TA or CLTLoc), since it is based57

on the study of properties of regions and intervals of the real line.58

As a consequence of the above equivalence result, we also show that Timed ω-59

Regular languages are closed under left quotient with Timed Regular Languages60

over finite words. A left quotient operation deletes from a timed ω-language the61

prefixes belonging to the language of a Timed Automaton that accepts finite62

timed words.63

Whereas it is certainly possible to obtain these results directly for TA, to the64

best of our knowledge neither of them has been proved or stated in the existing65
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literature on TA. In addition, it is not clear that the syntactic extensions to TA66

that seem most likely to lead to the desired results (e.g., clock updates to non-67

zero values [9], silent transitions [8]) can be translated in this case into standard68

TA.69

We also want to point out that, apart from its theoretical interest, the ability70

of a more general initialization may also be useful in practice. For example,71

when describing a timed system it may be the case that we want to focus only72

on “regime” behavior, i.e., one can abstract away from initialization and startup73

issues, but concentrate only the long-term behavior of the system. For instance,74

when modeling a real-time operating system we may not want to deal with75

system bootstrap, but only with a system which has already ended the startup76

phase and is ready to run. The bootstrap phase can thus be removed by the77

left-quotient operation, in order to focus only on the modeling and verification78

of regime behavior.79

To summarize, after laying down in Sect. 2 some necessary background no-80

tions on CLTLoc and TA—including the fundamental definitions concerning the81

initialization of clocks in CLTLoc and TA—the paper studies various properties82

of CLTLoc and TA, and it introduces the following results:83

• When arbitrary initialization of clocks is allowed, CLTLoc (with diago-84

nal constraints) is strictly more expressive than TA over Zeno behaviors85

(Sect. 3, Corollary 2), which in turn are strictly more expressive than stan-86

dard TA; to obtain these results, Sect. 3 also investigates the expressive87

power of different types of initializations of clocks for CLTLoc and TA.88

• Over non-Zeno timed words, allowing diagonal constraints (i.e., of the form89

x ∼ y + c) does not increase the expressive power of CLTLoc, even when90

clocks are not initialized at 0 (Sect. 5, Theorem 2). This result can be91

extended to TA (Sect. 7, Corollary 3). When Zeno timed words are con-92

sidered, only certain kinds of diagonal constraints increase the expressive93

power of the logic (Sect. 5, Prop. 9).94

• Over non-Zeno timed words, allowing for arbitrary initialization of clocks95

does not increase the expressive power of CLTLoc (Sect. 6, Theorem 3).96

The same holds for TA (Sect. 7, Corollary 3).97

• TA are closed under left quotient (Sect. 8, Theorem 5).98

2. Constraint LTL over clocks and Timed Automata99

Constraint LTL over clocks [2] (CLTLoc) is a semantic fragment of CLTL [3]100

where formulae are defined with respect to a finite set AP of atomic propositions,101

a finite set V of clocks and the set of nonnegative reals R≥0. CLTLoc formulae102

are defined as follows:103

φ := p | x ∼ c | x ∼ y + c | φ ∧ φ | ¬φ | Xφ | Yφ | φUφ | φSφ
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where x and y are variables in V , c is a constant in N≥0, ∼ is a relation of104

{<,=} and X, Y, U and S are the usual “next”, “previous”, “until” and “since”105

operators of LTL. In the following, formulae of the form x ∼ c or x ∼ y + c106

are called “atomic formulae over clocks”. The fragment of CLTLoc without107

atomic formulae over clocks is just LTL. The operators “eventually” F and108

“globally” G may be introduced as customary as abbreviations: F(φ) = >Uφ,109

and G(φ) = ¬F(¬φ). Similarly for the past operators P(φ) and H(φ), which are110

the dual of F and G. Also, formulae such as x > α, x 6= α, etc., where α can be111

c or y+ c, are abbreviations of ¬(x = α∨ x < α), ¬(x = α). Notice that in this112

paper CLTLoc allows for atomic formulae of the clocks of the form x ∼ y + c,113

with c ≥ 0, whereas in previous works, for simplicity, we only considered the114

case c = 0. We study in Section 5 how this affects the expressive power of the115

logic.116

The semantics of CLTLoc is defined with respect to a strict linear order117

(N≥0, <) representing positions in time.118

Clock values are defined by a mapping σ : N≥0 × V → R≥0, assigning, for119

every position i ∈ N≥0, a value σ(i, x) to each clock x ∈ V . Intuitively, a clock x120

measures the time elapsed since the last time when x = 0—i.e., the last “reset”121

of x. To ensure that time progresses at the same rate for every clock, σ is called122

a clock assignment when it satisfies the following condition: for every position123

i ∈ N≥0, there exists a “time delay” δi > 0 such that for every clock x ∈ V :124

σ(i+ 1, x) =

{
σ(i, x) + δi, time progress

0 reset x.

For each clock x, its initial value σ(0, x) may be any non-negative real. By defi-125

nition of the sequence of δi, it follows that time progress is strongly monotonic.126

Resets in a clock assignment are represented by value 0. In order to reset a clock127

x, it suffices to use the formula x = 0. For this reason, there is no distinction128

between the action of resetting a clock x and of testing whether x = 0 holds in129

the clock assignment.130

An interpretation for a CLTLoc formula φ is a pair (π, σ), where σ is a131

clock assignment and π : N≥0 → ℘(AP ) maps every position to a set of atomic132

propositions. The semantics of φ at position i ≥ 0 over (π, σ) is defined in133

Figure 1, where we assume that σ(i, c) = c holds whenever c is a constant.134

A CLTLoc formula φ is satisfiable if (π, σ), 0 |= φ holds, for some (π, σ); in135

this case, (π, σ) is called a model of φ, and we write (π, σ) |= φ.136

CLTLoc does not contain quantifiers, but it can express properties beyond137

counter-free languages. For instance, the language of all the (timed) words such138

that in every even position there is an occurrence of a (which is not first-order139

definable [10]) can be expressed by a CLTLoc formula using one clock variable.140

In the following formula, (the value of) clock z is used to describe the parity of141

the position of the timed word. So, the clock constraint z = 0 (resp. z > 0)142

indicates that the position is odd (resp. even):143

z = 0 ∧G(z > 0⇒ a) ∧G (z = 0⇔ X (z > 0)) . (1)
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(π, σ), i |= p ⇔ p ∈ π(i) for p ∈ AP
(π, σ), i |= x ∼ c ⇔ σ(i, x) ∼ σ(i, c)

(π, σ), i |= x ∼ y + c ⇔ σ(i, x) ∼ σ(i, y) + σ(i, c)

(π, σ), i |= ¬φ ⇔ (π, σ), i 6|= φ

(π, σ), i |= φ ∧ ψ ⇔ (π, σ), i |= φ and (π, σ), i |= ψ

(π, σ), i |= X (φ) ⇔ (π, σ), i+ 1 |= φ

(π, σ), i |= Y (φ) ⇔ (π, σ), i− 1 |= φ and i > 0

(π, σ), i |= φUψ ⇔ ∃ j ≥ i : (π, σ), j |= ψ and

∀ i ≤ n < j, (π, σ), n |= φ

(π, σ), i |= φSψ ⇔ ∃ 0 ≤ j ≤ i : (π, σ), j |= ψ and

∀ j < n ≤ i, (π, σ), n |= φ

Figure 1: Semantics of CLTLoc.

144

We now introduce the timed language of a CLTLoc formula φ.145

A timed ω-word (sometimes called simply timed word) over ℘(AP ) is a pair146

(πw, τ) where πw : N>0 → ℘(AP ) and the timed sequence τ is a monotonic147

function τ : N>0 → R≥0 such that, for all i > 0, τ(i) < τ(i + 1) holds (strong148

monotonicity). The value τ(i) is called the timestamp at position i, i ∈ N>0. To149

relate a timed ω-word (πw, τ) and a CLTLoc model (π, σ) we need to introduce150

timestamps also in (π, σ). A very simple definition may assume that there is151

a clock in V which is never reset, except possibly at (the initial) position 0152

(if no clock of this kind is in V , one can always just add it), whose values are153

conventionally assumed to correspond to time stamps. We call such a clock Now,154

verifying the axiom XG(Now > 0) (i.e., it is different from 0 in every position,155

except possibly at 0). A timed ω-word (πw, τ) corresponds to a CLTLoc model156

(π, σ), denoted as (πw, τ) = [(π, σ)], if πw(i+1) = π(i) and τ(i+1) = σ(i,Now)157

for all i ≥ 0. Since πw and π are clearly the same sequence of elements of158

℘(AP ), only differing in the set of indexes, in the rest of the work we will abuse159

the notation and indicate the propositions of the timed words deriving from160

CLTLoc models with the same symbol π.161

Definition 1. The timed language of a CLTLoc formula φ is the set of timed162

ω-words (π, τ) such that there exists a CLTLoc model (π, σ) verifying (π, σ) |=163

φ and (π, τ) = [(π, σ)].164

Definition 2. A timed word (π, τ) is Zeno if there is t ∈ R>0 such that, for165

all i ∈ N>0, τ(i) ≤ t. Given a Zeno timed word (π, τ), there exists T ∈ R>0166

such that limi→∞ τ(i) = T (notice that T > τ(1), since we are assuming strong167

monotonicity).168

We say that a timed language is Zeno, if it includes at least one Zeno timed169

word.170
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Remark 1. Given a CLTLoc formula φ that defines timed language L, one171

can build a formula φNZ , which defines the timed language LNZ that includes172

exactly all timed words of L that are non-Zeno. To this end, it is enough for173

instance to define φNZ
def
= φ ∧ GF(xNZ > 1 ∧X(xNZ = 0)), where xNZ is a174

clock that does not appear in φ. In the models of φNZ , there are infinitely many175

positions where clock xNZ is strictly greater than 1 (i.e., at least one time unit176

has passed since its last reset) and it is restarted by means of a reset.177

Definition 3. We say that two CLTLoc formulae are language equivalent when178

they define the same timed language. They are model equivalent (or simply179

equivalent) when they have the same CLTLoc models.180

In the following, we generalize language equivalence to any timed formalism,181

by saying that two formalisms are language equivalent when they define the182

same family of timed languages.183

Definition 4. A clock x ∈ V is well-initialized (w.i.) in an assignment σ184

if it holds that σ(0, x) = 0 or σ(0, x) = σ(0,Now) (recall that by definition185

σ(0,Now) ≥ 0 holds). A timed ω-word (π, τ) belongs to the initialized timed186

language of φ if, and only if, there exists a clock assignment σ such that both187

(π, σ) |= φ and (π, τ) = [(π, σ)] hold, and each clock x ∈ V is well-initialized in188

σ.189

We now recall the basic definitions of Timed Automata, in a version allowing190

so-called diagonal constraints [8].191

Let X be a finite set of clocks with values in R≥0. Γ(X) is the set of clock192

constraints γ over X defined by the syntax γ := x ∼ c | x ∼ y + c | ¬γ | γ ∧ γ,193

where ∼∈ {<,=}, x, y ∈ X and c ∈ N≥0. A clock valuation is a function194

v : X → R≥0. We write v |= γ when the clock valuation satisfies γ. For t ∈ R≥0,195

v + t denotes the clock valuation mapping each clock x to value v(x) + t—i.e.,196

(v + t)(x) = v(x) + t for all x ∈ X.197

A Timed Automaton [1] is a tuple A = (Σ, Q, T, q0, B) where Σ is a finite198

alphabet (sometimes, without loss of generality, we will consider Σ = 2AP for199

a set AP of atomic propositions), Q is a finite set of control states, q0 ∈ Q is200

the initial state, B ⊆ Q is a subset of control states (corresponding to a Büchi201

condition) and T ⊆ Q × Q × Γ(X) × Σ × 2X is a set of transitions. Thus, a202

transition has the form q
γ,a,S−−−→ q′ where q, q′ ∈ Q, γ is a clock constraint of203

Γ(X), a ∈ Σ, and S is a set of clocks to be reset. Two transitions q
γ,a,S−−−→204

q′ and p
γ′,b,P−−−−→ p′ of T are consecutive when q′ = p. A pair (q, v), where205

q ∈ Q and v : X → R≥0 is a clock valuation, is a configuration of A. A run206

ρ of A over a timed ω-word (π, τ) ∈ (Σ × R≥0)ω is an infinite sequence of207

configurations (qi0 , v0)
π(1)−−−→
τ(1)

(qi1 , v1)
π(2)−−−→
τ(2)

(qi2 , v2) . . . , satisfying the following208

three constraints:209

• qi0 = q0;210
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• qi0
γ1,π(1),S1−−−−−−→ qi1

γ2,π(2),S2−−−−−−→ qi2 . . . is a sequence of consecutive transitions211

and, for all i > 0, vi−1 + τ(i)− τ(i− 1) |= γi (conventionally τ(0) = 0);212

• for all x ∈ X, v0(x) = 0 and for all i > 0 either vi(x) = 0, if x ∈ Si, or213

vi(x) = vi−1(x) + τ(i)− τ(i− 1) otherwise.214

Let inf (ρ) be the set of control states q ∈ Q such that q = qij for infinitely215

many positions j ≥ 0 of ρ. A run is accepting when inf (ρ) ∩B 6= ∅—i.e., when216

a Büchi condition holds.217

We can extend the notion of initialization in TA by allowing for some218

clocks to have a value different from zero in the initial state. More precisely,219

an arbitrarily initialized Timed Automaton A (a.i. TA for short) is a tuple220

A = (Σ, Q, T, q0, B,N) where Σ, Q, T, q0, B are as before, and N is a set of221

clocks (N ⊆ X) such that for each x ∈ N , for every run of A, the initial state222

(q0, v0) of the run must satisfy v0(x) > 0—i.e., the initial value of each x ∈ N223

is greater than 0. We call a TA non-initialized if N = X, and initialized if224

N = ∅—obviously, an initialized TA is just a “classic” TA.225

Remark. Traditionally, the usual definition of timed words allows the timestamp226

τ(1) at the first point to be 0. However, for technical reasons, in the rest of the227

paper we restrict the timestamp τ(1) of every timed word to be strictly greater228

than 0 (hence, σ(0,Now) > 0).229

The following result states that initialized timed languages of CLTLoc are230

the same of timed regular languages (i.e., the timed languages recognized by231

Timed Automata).232

Theorem 1. The class of initialized timed languages associated with CLTLoc233

formulae coincides with the class of timed ω-regular languages.234

Proof sketch. The statement was proved in [12, Theorem 4] for a version of235

CLTLoc in which atomic formulae on the clocks of the form x ∼ y + c are236

admissible only if c = 0, but in the following we extend it to the general case.237

In fact, given a (initialized) TA which includes diagonal constraints of the238

form x ∼ y+c, there is an equivalent (initialized) diagonal-free TA [8], to which239

Theorem 4 of [12] can be applied to produce an equivalent CLTLoc formula.240

Conversely, given a CLTLoc formula φ that includes diagonal constraints, it is241

easy to build another CLTLoc formula φ′ which does not include constraints242

of the form x ∼ y + c, with c > 0, and such that the w.i. timed language of243

φ′ is the same as the one of φ. To show this, consider that the negation of a244

constraint of the form x < y + c, with c > 0, is equivalent to the formula:245

(x > 0)S(y = 0 ∧ x ≥ c)
stating that x ≥ y+ c holds if x was never reset since a time instant when both246

y was reset and x ≥ c held (so x is still greater or equal to y + c at the current247

instant). Notice that if y was never reset, then y = Now holds at position 0 and248

the above formula is false: this is correct since x = Now or x = 0 hold at 0,249

hence x < y + c holds in both cases (since c > 0).250
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Therefore, ¬ ((x > 0)S(y = 0 ∧ x ≥ c)) can replace a constraint of the form251

x < y + c.252

Similarly, every constraint of the form x = y + c, with c > 0, is instead253

replaced by the formula:254

(x > 0 ∧ y > 0)S(y = 0 ∧ x = c)

stating that both x and y were never reset since a time instant when y was reset255

and x = c (so the value of x is just y + c at the current instant).256

Theorem 4 of [12] can then be applied to formula φ′ resulting by the above257

replacements. Clearly, the atomic formulae over clocks occurring in φ′ can only258

be of the forms x ∼ c or x ∼ y.259

Remark 2. Temporal logic languages, such as CLTLoc, are customarily de-260

fined over infinite models, whereas the semantics of TA may also consider finite261

timed words (indeed, Section 8 considers the quotient of timed ω-languages with262

respect to timed languages over finite words). However, the results presented in263

the next sections for non-Zeno languages of timed ω-words are also valid when264

languages are restricted to finite timed words. In fact, it is always possible265

to interpret any finite timed word (π̄, τ̄), with π̄ : {1, . . . , n} → ℘(AP ) and266

τ̄ : {1, . . . , n} → R≥0, as the prefix of the non-Zeno timed ω-words (π, τ) where,267

for all j > n, π(j) = ∅ holds and τ(j) is arbitrary.268

3. Expressiveness of Constraint LTL over clocks and arbitrarily ini-269

tialized Timed Automata270

Consider the (Zeno) language Lni , taken from [8] (Example 22), made of271

timed words (π, τ) over the alphabet {a} such that, for each i ∈ N>0 and some272

fixed 0 < γ < 1, we have that π(i) = {a} and τ(i) < τ(1) + 1 − γ hold. In273

other words the sequence of timestamps accumulates to a value τ(1) + 1 − γ274

that depends on τ(1).275

We have the following proposition.276

Proposition 1 ([8]). Language Lni is not timed regular.277

However, it is easy to see that CLTLoc formula G(a ∧ 0 < x < 1) defines278

exactly Lni . In fact, it is not possible for the timestamp to go beyond τ(1) +279

1− σ(0, x), because 0 < σ(i, x) < 1, for all i ≥ 0, and σ(0, x) = γ.280

In addition, consider the slight variation of language Lni , called Lni1 , such281

that for all i ∈ N>0 it holds that τ(i) < 1−γ. The timed words in Lni1 are such282

that the sequence of timestamps accumulates to a value 1 − γ, which, unlike283

Lni , does not depend on the first timestamp τ(1).284

The following proposition holds.285

Proposition 2. Language Lni1 is not timed regular.286
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a
x < 1

Figure 2: Non-initialized TA that recognizes language Lni1.

Proof. If Lni1 were timed regular, then there would exist an initialized TA Ani1287

that accepts Lni1 . From Ani1 we could then build an initialized TA recognizing288

Lni in the following way. Let q0,ni1 be the initial state of Ani1 ; we introduce289

a new initial state q0,ni, from which a transition originates that reads symbol290

a and enters state q0,ni1, resetting all clocks of Ani1 in doing so; after entering291

qni1 , the automaton behaves exactly as Ani1 . Such initialized TA would accept292

language Lni , a contradiction.293

However, the non-initialized TA of Figure 2 accepts Lni1 ; in addition, Lni1294

is the language associated with CLTLoc formula G(a ∧ 0 < x < 1 ∧Now < x),295

where clock x is not well-initialized.296

Consider now the (non-Zeno) language L1 of the timed words (π, τ) over297

the alphabet {a, b} such that there exists an occurrence of a that occurs at298

timestamp 1—i.e., there exists an i such that π(i) = {a} and τ(i) = 1 hold. It299

is clear that L1 is timed regular, by using, e.g., an initialized TA with one clock300

x by checking that if x = 1 then there is an a. However, a TA where all clocks301

are not initialized cannot recognize L1, as stated in the next proposition.302

Proposition 3. There is no non-initialized TA that accepts the timed regular303

language L1.304

Proof. We show that a non-initialized TA A1 that accepts a timed word (π1, τ1)305

of L1 must also accept a timed word that does not belong to L1. Consider the306

run ρ1 of A1 corresponding to timed word (π1, τ1). Let α ∈ N>0 be such that307

π1(α) = a and τ1(α) = 1; that is, (qiα−1
, vα−1)

π1(α)−−−→
τ1(α)

(qiα , vα) is part of run ρ1,308

the corresponding transition is qiα−1

γα,π1(α),Sα−−−−−−−−→ qiα and the clock assignment309

vα−1 + τ1(α)− τ1(α− 1) satisfies γα. For each clock x of A1, let cx be the value310

bvα−1(x) + τ1(α)− τ1(α − 1)c. Two cases hold: either cx < vα−1(x) + τ1(α)−311

τ1(α−1) < cx+1, with cx ≥ 0, or vα−1(x)+τ1(α)−τ1(α−1) = cx, with cx > 1.312

In fact, if vα−1(x) + τ1(α)− τ1(α− 1) = 1 were true, then vα−1(x) = τ1(α− 1)313

would hold because τ1(α) = 1. Since vj(x) = v0(x) +
∑j
i=1(τ1(i) − τ1(i − 1)),314

where τ(0) = 0, then vα−1(x) = τ1(α − 1) if v0(x) = 0, which is impossible315

since A1 is non-initialized. Second, vα−1(x) + τ1(α)− τ1(α− 1) = 0 cannot be316

true because v0(x) > 0 holds and time is strictly monotonic (τ(i) > 0 holds for317

i > 0); hence, vα−1(x) + τ1(α)− τ1(α− 1) > 0 holds.318

9



Moreover, a clock x for which vα(x) = cx holds cannot satisfy vi(x) = d,319

where d ∈ N≥0 and 0 < i < α. In fact, if vi(x) = d were true, then 0 <320

vα(x) − d = τ1(α) − τ1(i) < 1 would hold, since 0 < τ1(α) − τ1(1) < 1 is true.321

Hence, vα(x) = d+ τ1(α)− τ1(i) cannot be an integer. So, for all i < α, guard322

γi in ρ1 cannot include a constraint of the form x = d, with d ≥ 0.323

We now define a timed word (π1, τ
′
1) where τ ′1 is the same as τ1 except for324

τ ′1(α) which is equal to τ(α) + ε for some ε < 1 and ε ∈ R>0. The timed word325

(π1, τ
′
1), where τ ′1(i) = τ1(i) if i 6= α, and τ ′1(α) = τ1(α)+ε, has also an accepting326

run ρ′1, where every clock x whose value vα−1(x)+τ1(α)−τ1(α−1) is an integer327

at α is shifted negatively of ε. More precisely, ρ′1 is such that: (i) the sequence328

of control states is the same as in ρ1; and (ii) the sequence of clock valuations329

is such that, for each clock x for which vα−1(x) + τ1(α)− τ1(α− 1) = cx (resp.330

cx − 1 < vα−1(x) + τ1(α) − τ1(α − 1) ≤ cx) holds, for each 0 ≤ i ≤ α it holds331

that v′i(x) = vi(x)− ε (resp. v′i(x) = vi(x)). In addition, ε can be chosen small332

enough that, for each clock such that cx < vα−1(x) + τ1(α)− τ1(α− 1) < cx + 1333

holds, vα−1(x) + τ1(α) − τ1(α − 1) + ε < cx + 1 also holds. Finally, if clock334

constraint x = y+ c holds for some clock valuation vi−1 + τ1(i)− τ1(i− 1), then335

vi−1(x)+τ1(i)−τ1(i−1) is a value in N>0 if, and only if, vi−1(y)+τ1(i)−τ1(i−1)336

also is; hence, in this case either both the values of x and y are offset by ε, or337

none is, so their relationship is preserved. Therefore, the timed word (π1, τ
′
1) is338

accepted by A1 but it is not in L1.339

From Proposition 2 and Proposition 3, since there is a non-initialized TA340

that accepts Lni1 and an initialized TA that accepts L1, we have the following341

result.342

Corollary 1. The family of timed languages recognizable by non-initialized TA343

is incomparable with the family of timed regular languages.344

We have shown above that timed language Lni can be defined through a345

CLTLoc formula. However, we have the following result.346

Proposition 4. There is no arbitrarily initialized TA that accepts timed lan-347

guage Lni.348

Proof. The proof is by contradiction. Assume there is an a.i. TA Ani that349

accepts language Lni—i.e., all and only the timed words (π, τ), where π(i) =350

{a}, for all i > 0, and 0 < τ(1) + 1 − limi→∞ τ(i) < 1, are accepted by Ani.351

We show that Ani also accepts a timed word (π, τ ′) such that limi→∞ τ ′(i) =352

τ ′(1) + 1.353

Let γ = limi→∞(τ(1) + 1 − τ(i)); intuitively, limi→∞(τ(i) − τ(1)) is the354

“duration” of the timed word, and γ is the gap from the latter to 1 (which is355

obviously less than 1). Let us call CAni
the maximum constant that appears in356

the guards of Ani , and consider a timed word (π, τ) that belongs to Lni such357

that τ(1) = CAni
+1 (which obviously exists). Let ρ = (qi0 , v0)

π(1)−−−→
τ(1)

(qi1 , v1) . . .358

be the run corresponding to (π, τ). The guard γ1 of the first transition taken359

qi0
γ1,π(1),S1−−−−−−→ qi1 clearly must allow x > CAni

for all clocks of Ani. Since360
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τ(1) = CAni + 1, and the value of clock x used to evaluate γ1 is v0(x) + τ(1),361

then v0(x) + τ(1) > CAni must be true. All subsequent transitions taken in the362

run must be such that, for each clock x, either constraint x > CAni
holds (if the363

clock is never reset), or constraint x < 1 does, if the clock has been previously364

reset. Indeed, if clock x is reset before (or at) a position i, then for every365

j > i, it holds that vj(x) = τ(j)− τ(i) < 1− γ because limi→∞(τ(i)− τ(1)) =366

1 − γ. As a consequence, the timed word (π, τ ′) such that τ ′(1) = τ(1) and367

τ ′(i) = τ(i) + γ for all i > 0 is also accepted by Ani, as it allows for the same368

sequence of transitions as ρ. However, since limi→∞ τ(i) = τ(1) + 1 − γ holds,369

then limi→∞ τ ′(i) = τ ′(1) + 1 also holds. However, (π, τ ′) does not belong to370

Lni .371

Proposition 5. Given an arbitrarily initialized TA A = (Σ, Q, T, q0, B,N),372

there exists a language equivalent CLTLoc formula which includes diagonal con-373

straints on Now.374

Proof. Let us consider the translation of automaton A into CLTLoc formula φA375

defined in [12, Section 4], slightly modified to account for the fact that A can376

now include diagonal constraints. More precisely, in the modified translation377

each constraint x ∼ y + c in guards γ becomes the following CLTLoc formula378

(where x1, x2 is a pair of CLTLoc clocks that are used to capture the value of the379

corresponding clock x of TA A, and x12 at every position acts as a “selector” of380

which of x1, x2 is to be used to express the guard on x; similarly for y1, y2, y12).381

In particular, when x12 = 0 the value of clock x corresponds to the value of382

clock x1, while it corresponds to the one of x2 when x12 > 0. Two CLTLoc383

clocks are needed to represent one clock in a TA because CLTLoc formulae384

cannot distinguish between clock resets and the tests of clock values. For this385

reason, it is not possible to write a formula that expresses simultaneous test386

and reset operations on a single clock (as this would yield a contradiction such387

as x > 1 ∧ x = 0), but they can be represented by using two distinct clocks,388

working alternatively. For instance, the clock constraint x > 1 can be expressed389

by the formula (x12 = 0∧ x1 > 1)∨ (x12 > 0∧ x2 > 1), together with a formula390

that forces resets of x1 and x2 to alternate and that constrains x12 to be 0, when391

the last reset was x1 = 0 (i.e., clock x1 is active), or not equal to 0, when the392

last reset was x2 = 0 (i.e., clock x2 is active). The CLTLoc formula translating393

clock constraints of the form x ∼ y + c is therefore:394

x12 = 0 ∧ y12 = 0 ∧ x1 ∼ y1 + c ∨
x12 = 0 ∧ y12 > 0 ∧ x1 ∼ y2 + c ∨
x12 > 0 ∧ y12 = 0 ∧ x2 ∼ y1 + c ∨
x12 > 0 ∧ y12 > 0 ∧ x2 ∼ y2 + c.

Let ρ be a run of A and (π, σ) a model of φA. In the proof of [12, Section395

4], the position 0 of (π, σ) is defined in order to represent the second config-396

uration (q1, v1) in ρ where either v1(x) = 0, if the first transition resets x, or397

v1(x) = τ(1). Recall also that τ(1) is equal to σ(0,Now). Since A is arbitrarily398
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initialized, to make clocks in A and φA initialized in the same way it is enough399

to introduce in φA the constraint400

xi = 0 ∨Now < xi (2)

(i.e., which holds at position 0) for each clock x ∈ N and i ∈ {1, 2}, and the401

constraint402

xi = 0 ∨Now = xi (3)

for each x ∈ X−N, i ∈ {1, 2}. It is easy to see that, also in the case of arbitrarily403

initialized automata, if the clocks are initialized in the same way in A and φA,404

then the language associated with φA is accepted by A. The case x ∈ X − N405

is dealt with as in [12, Section 4]: if xi = 0 holds at position 0 then v1(x) = 0406

holds in ρ, whereas for Now = xi it holds that v1(x) = τ(1), because v0(x) = 0407

holds, since x is well-initialized. In the other case, for Now < xi, it holds that408

σ(0, xi)− σ(0,Now) = v0(x), where v0(x) > 0 because x ∈ N .409

Then, from propositions 4 and 5 we have the following result.410

Corollary 2. The class of languages that can be defined through CLTLoc for-411

mulae is strictly larger than the class of languages recognizable through a.i. TA.412

4. Preliminaries on regions413

The proofs of the main results of this paper need the additional definitions414

and properties introduced in this section.415

Let X be a set of clocks, and C ∈ N≥0 a constant. A clock region [1] REG416

is a set of clock valuations that obeys a maximal consistent set of constraints417

on clocks of the form x ∼ c, x ∼ y + c, and their negations, with ∼∈ {<,=},418

c ∈ N≥0, c ≤ C, x, y ∈ X. The set R(X,C) of clock regions defines a finite419

partition of the |X|-dimensional space R|X|≥0 .420

We also introduce the notion of one-dimensional region, which will be mostly421

useful in Section 6. An open interval (α, β), for real numbers 0 ≤ α < β, is the422

set of real numbers ν such that α < ν < β. With a convenient abuse of423

notation, the singular point α in the following is usually denoted as an open424

interval (α, α)—also called a punctual interval. If I = (α, β), for real numbers425

0 ≤ α ≤ β, then define sup(I) = α and inf(I) = β.426

A one-dimensional region (1D-region) is an open interval R of the form427

(n− 1, n) for some n ∈ N>0, 1 ≤ n ≤ C, or a punctual interval (n, n) for some428

0 ≤ n ≤ C, or the open interval (C,+∞).429

Given a 1D-region R and a clock x, we write R(x) to denote that clock x430

is in region R, i.e., either inf(R) < x < sup(R) or x = inf(R) = sup(R) hold.431

When no confusion can arise on clock x, we denote R(x) as R.432

We can define the time-successor relationship among regions as in [1]; also,433

we can build a nondeterministic Büchi automaton TS(X,C) (hence, with no434

clocks), called region automaton, which captures the time-successor relationship435

between regions, in a similar vein as done in [2]. We may assume that every436
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state in TS(X,C) represents a region and it is both an initial and a final state.437

TS(X,C) may be encoded in CLTLoc by means of a formula based on a LTL438

encoding of a Büchi automaton. To this end, before sketching a construction439

that is useful to provide a suitable upper bound on its size, we first present the440

notion of “region clocks”, which are freshly introduced in this formula and do441

not appear in the automaton. Since a region is a set of constraints on clocks,442

the final CLTLoc formula represents the state space of the region automaton443

with a set ZX of additional (well-initialized) clocks, called region clocks: each444

region clock represents the truth value of a clock constraint. The clock is 0 if445

the constraint holds, greater than 0 if it does not. Hence, there is a region clock446

for each constraint of the form x ∼ c, x ∼ y+c, with x, y ∈ X, constant c ∈ N≥0447

(with c ≤ C) and ∼∈ {<,=}. Therefore, the region clocks in ZX are denoted as448

z[x∼c] or as z[x∼y+c], with the obvious meaning. For the sake of readability, the449

clock constraint z[x∼c] = 0 is written as [x ∼ c] (obviously, ¬[x ∼ c] indicates450

z[x∼c] > 0).451

Given a 1D-region R and a clock x, we indicate by JR(x)K the maximal452

consistent set of constraints on the region clocks of ZX defining R(x). For453

instance, if R(x) is 3 < x < 4, then J3 < x < 4K is [x < 4]∧¬[x < 3]∧¬[x = 3]—454

plus all constraints, such as [x < 5], which are implied by these, and which455

are not shown for the sake of brevity. Similarly, one can define Jx = 1K as456

¬[x = 0]∧¬[x < 1]∧ [x = 1]∧ [x < 2]∧ . . . . We can extend this notation also to457

diagonal constraints. For instance, a constraint of the form x < y < x + 1 can458

be encoded as the following formula Jx < y < x + 1K: [y < x+ 1] ∧ ¬[y < x] ∧459

[y < x+ 2] ∧ ¬[y = x+ 1] ∧ ¬[y = x] ∧ . . . .460

A CLTLoc formula, over the region clocks ZX , describing the region automa-461

ton TS(X,C) is denoted by ΘZX ,C . Intuitively, a model of ΘZX ,C symbolically462

represents the regions that clocks X satisfy and their evolution determined by463

the elapsing of time. The representation is symbolical because ΘZX ,C , and464

hence its models, does not constrain the actual value of clocks X. We show a465

fragment of ΘZX ,C , since the whole formula is tedious to define completely. Let466

Ξdx,y be the following formula, for 0 ≤ d ≤ C − 2:467

(Jd < x < d+ 1K ∧ Jd < y < d+ 2K)∨
((Jx = d+ 1K ∨ Jd+ 1 < x < d+ 2K) ∧ Jd+ 1 < y < d+ 2K) .

Intuitively, Ξdx,y describes the regions of x and y that are reachable in one step468

when both x and y start from (0, 1) and the time progress is equal to d+ ε, for469

some ε ∈ (0, 1) and 0 ≤ d ≤ C − 2.470

The fragment we define (where formulae Λd cover the cases where d = C−1471

and d = C, which are not shown for brevity) describes the time successors of472

a state where every clock is in the interval (0, 1); the general case can be dealt473

with by multiple instances of this formula, by considering all possible regions of474
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x and y rather than only (0, 1).475

G



∨
0≤d≤C−2

∧
x,y∈X



(J0 < x < 1K ∧ J0 < y < 1K ∧ Jx < yK)⇒

X



(
Ξd

x,y ∧ Jy − 1 < x < yK
)
∨

(Jx = 0K ∧ Jy = 0K ∧ Jx = yK) ∨Jy = 0K ∧

 (Jd < x < d+ 1K ∧ Jy + d < x < y + d+ 1K) ∨
(Jx = d+ 1K ∧ Jx = y + d+ 1K) ∨
(Jd+ 1 < x < d+ 2K ∧ Jy + d+ 1 < x < y + d+ 2K)

 ∨
Jx = 0K ∧ . . .




∨

∨
C−1≤d≤C

Λd


.

Notice that the set AP of atomic propositions used in ΘZX ,C is empty. It476

is easy to see that, since formula ΘZX ,C does not explicitly enumerate all clock477

regions, but it only considers relationships between pairs of clocks, its size is478

polynomial in the number of clocks and in the maximum constant C when479

considering a unary encoding of C—more precisely, it is O(|X|2C4). The size480

is instead exponential when considering a binary encoding of C.481

1D-subregions482

An interval I is a one-dimensional subregion (1D-subregion) if there exists483

a 1D-region R such that I ⊆ R, e.g., (2.14, 2.71) ⊆ (2, 3). Interval I is then also484

called a subregion of R. Notice that I must be either open or punctual.485

For every real number δ > 0, we define the δ-successors of a 1D-subregion.486

Definition 5. For all real number δ > 0, for all 1D-subregions I, let I ⊕ δ be487

the interval (not necessarily a subregion) (inf(I) + δ, sup(I) + δ). If I ⊕ δ is a488

1D-subregion I ′, then we call I ′ the δ-successor of I and we write I  δ I
′.489

Example: (0.2, 0.7)  0.2 (0.4, 0.9)  0.1 (0.5, 1); also, the δ-successor of490

(0.4, 0.9) is not defined for 0.1 < δ < 0.6, for 1.1 < δ < 1.6, and so on.491

Notice that if I  δ I
′, then I, I ′ have the same size, i.e., sup(I)− inf(I) =492

sup(I ′)− inf(I ′). The following propositions are immediate from the definition493

of  .494

Proposition 6. Let I, I ′′ be 1D-subregions and let δ′, δ′′ be positive real num-495

bers.496

1. If there is 1D-subregion I ′ such that I  δ′ I
′  δ′′ I

′′, then I  δ′+δ′′ I
′′.497

2. If I  δ′+δ′′ I
′′ and there is a 1D-region R such that both I ⊆ R, I ′′ ⊆ R,498

then there exists I ′ ⊆ R such that I  δ′ I
′  δ′′ I

′′.499

3. If I is of the form (α, α), then I ′′ = I ⊕ δ′ is a 1D-subregion, and it holds500

that I  δ′ I
′′.501

The following statement is an obvious consequence of the definition of  .502

Statement 1. Let P be the partition {(0, 1−η), (1−η, 1−η), (1−η, 1)}, where503

0 < η < 1 is a real number. For all I0 ∈ P, for all 1D-subregion I, for all504

n ∈ N≥0, if I0  n+η I, then:505
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1. The following table shows all possible cases for I and I0:506

I0 I

(0, 1− η) (n+ η, n+ 1) ⊆ (n, n+ 1)

(1− η, 1− η) (n+ 1, n+ 1)

(1− η, 1) (n+ 1, n+ 1 + η) ⊆ (n+ 1, n+ 2)

2. For all nonempty I ′0 ⊆ I0, there exists one, and only one, 1D-subregion I ′507

such that I ′0  n+η I
′; moreover, I ′ ⊆ I.508

The strict dominance relation among 1D-regions is the total order ≺ on509

1D-regions defined by:510

(0, 0) ≺ (0, 1) ≺ (1, 1) ≺ · · · ≺ (C,C) ≺ (C,+∞)

The reflexive closure of ≺ is denoted by � and it is called non-strict dominance.511

It is also possible to extend the dominance relation to 1D-subregions. If I, I ′512

are 1D-subregions, then I ≺ I ′ if sup(I) ≤ inf(I ′) and inf(I) < sup(I ′). For513

instance, (0.2, 0.5) ≺ (1.3, 1.7) but also (0.2, 0.5) ≺ (0.5, 0.7) and (0.5, 0.5) ≺514

(0.5, 0.7), whereas (0.5, 0.5) 6≺ (0.5, 0.5).515

Partitioning of 1D-regions516

To prove the main results of this paper, it is fundamental to consider (finite517

or infinite) partitions of the 1D-region R0 = (0, 1), e.g.,518

{(0, 0.3), (0.3, 0.3), (0.3, 0.8), (0.8, 0.8), (0.8, 1)}.
We are actually interested in a special case of partition, defined next. Let519 −→

∆ = ∆1∆2 . . . , be a finite or infinite sequence of positive real numbers. The520

sequence is called a temporal sequence if it is monotonically increasing (i.e.,521

∆1 < ∆2 < . . . ); if
−→
∆ is infinite and lim

i→+∞
∆i is a finite real value, then

−→
∆ is522

called a Zeno sequence.523

Denote with 〈w〉 the fractional part of a real value w and with bwc its integer524

part.525

Definition 6. Given an integer constant C > 0 and a temporal sequence
−→
∆,526

the maximal partition P−→
∆

of the interval (0, 1) is the partition in 1D-subregions527

including all, and only, the singular points 1 − 〈∆j〉 < 1, for all ∆j < C, and528

1− 〈 lim
i→+∞

∆j〉 < 1 if lim
i→+∞

∆j < C.529

In the above definition, if lim
i→+∞

∆i is finite, with 〈 lim
i→+∞

∆i〉 = η > 0, then530

the sequence is Zeno and (1−η, 1−η) is called the limit interval. Notice that, if531

there is a punctual interval (1− η, 1− η) ∈ P−→
∆

, for some 0 < η < 1, then there532

exists h ∈ N≥0, with h + η < C, such that either ∆j = h + η for some j ≥ 1,533

or lim
i→+∞

∆i = h + η. Also, by definition, (0, 0) and (1, 1) do not belong to the534

maximal partition.535
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Example 1. For instance, P−→
∆

= {(0, 0.2), (0.2, 0.2), (0.2, 0.9)(0.9, 0.9)(0.9, 1)}536

is the maximal partition of (0, 1) for
−→
∆ = ∆1∆2, with ∆1 = 1.8,∆2 = 5.1 (with537

C ≥ 6). In fact, the fractional parts 〈∆1〉 and 〈∆2〉 are, respectively, 0.8 and 0.1538

and the singular points in P−→
∆

are 0.2 = 1− 0.8 and 0.9 = 1− 0.1. Notice that,539

e.g., (0.2, 0.2)  ∆1 (2, 2) and (0.9, 0.9)  ∆2 (6, 6)—i.e., from every punctual540

1D-subregion in the maximal partition it is possible to reach a punctual 1D-541

region by a delay ∆1 or a delay ∆2.542

Consider the Zeno temporal sequence
−→
∆ = 1.1, 1.11, 1.111, 1.1111, . . . ; the543

corresponding maximal partition contains all the following punctual intervals:544

(0.9, 0.9), (0.89, 0.89), (0.889, 0.889), (0.8889, 0.8889), . . .

together with the limit interval (8/9, 8/9) since the temporal sequence converges545

to 1 + 1/9.546

An immediate consequence of the definition is that for every temporal se-547

quence the maximal partition is unique. Moreover, the number of punctual548

intervals in the maximal partition for a finite temporal sequence of length m549

is obviously at most the number m itself; it can be smaller than m when two550

fractional parts are equal, in the sense that ∆j = n+η and ∆i = k+η, for some551

i 6= j, n 6= k ∈ N≥0, 0 < η < 1. Therefore, the maximal partition for a temporal552

sequence of length m has at most 2m + 1 elements, as it can immediately be553

verified.554

Let P−→
∆

be a maximal partition for a temporal sequence
−→
∆ and let I0, I1 be555

distinct 1D-subregions in P−→
∆

. The following results are immediate. Proposi-556

tions 7 and 8 state that the dominance relation between two intervals I0 and557

I1—with the possible exception of the limit interval—respects the dominance558

relations of the pairs of regions reached by a ∆ shift. In particular, the relation559

is strict since they can reach—with the same  ∆ shift—a pair of 1D-regions560

whose dominance relation is strict.561

Proposition 7. Let P−→
∆

be a maximal partition for a temporal sequence
−→
∆ and562

let I0, I1 be 1D-subregions in P−→
∆

. If there is ∆ > 0 such that I1  ∆ I ⊆ R,563

I0  ∆ I ′ ⊆ R′, and R′ ≺ R hold, then I0 ≺ I1 holds.564

If a maximal partition P−→
∆

has a limit interval I = (η, η) and for all ∆′ in
−→
∆565

it holds that η+∆′ /∈ N>0 (that is, there are no ∆′ in
−→
∆ and h ∈ N>0 such that566

I  ∆′ (h, h) holds), then we say that the limit interval I is essential. Therefore,567

when I is not essential, then there is also a distance ∆ in
−→
∆ that takes I to an568

integer number. For instance, the limit interval (8/9, 8/9) of the Zeno temporal569

sequence of Example 1 is essential. Instead, the limit interval (8/9, 8/9) of570

the Zeno sequence
−→
∆ = 1/9, 1.1, 1.11, 1.111, 1.1111, . . . is not essential for the571

presence of 1/9.572

Proposition 8. Let P−→
∆

be a maximal partition for a temporal sequence
−→
∆,573

I0, I1 be 1D-subregions in P−→
∆

such that I0 ≺ I1.574
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1. If I1 is the essential limit interval and sup(I0) = inf(I1), then for all ∆575

in
−→
∆ and intervals I, I ′ such that I1  ∆ I and I0  ∆ I ′, there is a576

1D-region R such that both I ⊂ R and I ′ ⊂ R hold.577

2. Otherwise, there exists a value ∆ in
−→
∆ such that I0  ∆ I ′ ⊆ R′ and578

I1  ∆ I ⊆ R (for 1D-subregions I, I ′ of 1D-regions R,R′) and R′ ≺ R.579

Notice that Part 2 of Prop. 8, which enforces the dominance relation among580

regions, excludes the case where the limit interval I1 is essential, which is cov-581

ered by Part 1; indeed, when I1 is not essential, then the dominance relation582

is determined as for any other pair of intervals of the maximal partition. For583

instance, 1D-subregions I0 = (0, 8/9) and I1 = (8/9, 8/9) of the maximal parti-584

tion of the Zeno sequence of Example 1 verify the conditions of Part 1 of Prop.585

8 and for every  ∆ shift they reach the same 1D-regions.586

The definition of P−→
∆

considers a temporal sequence
−→
∆ where every ∆i repre-587

sents the distance in time from the first instant. In some cases, it is useful to have588

a different notation for a maximal partition, based instead on time increments.589

We define it only for the case of finite sequences. Let
−→
δ = δ1δ2 . . . δm, where590

m = |
−→
δ |, be a sequence of m > 0 positive real numbers, called region distances.591

The region distances induce a corresponding temporal sequence
−→
∆ = ∆1 . . .∆m592

as follows: for every i, 1 ≤ i ≤ m, let ∆i =
∑

1≤j≤i δj . The maximal partition593

P−→
δ

for
−→
δ is just the maximal partition P−→

∆
.594

5. Elimination of Diagonal Constraints595

Theorem 1 shows that, for CLTLoc formulae—as well as for TA—if one596

considers only initialized timed languages, then diagonal constraints can be597

eliminated without loss of generality. A similar result, with some restrictions,598

holds over CLTLoc models that are not necessarily well-initialized. A CLTLoc599

formula is called diagonal-free if it does not include diagonal constraints of the600

form x ∼ y + c, with c ∈ N≥0. As shown in Section 3, the CLTLoc formula601

defining non-timed regular language Lni of Proposition 1 does not include diag-602

onal constraints. Then, eliminating diagonal constraints, as done in Theorem 2603

below, does not guarantee the regularity of the defined language.604

Theorem 2. Let φ be a CLTLoc formula. Then:605

1. If no diagonal constraint in φ is of the form x ∼ Now + c or of the form606

Now ∼ y+c, then there exists a diagonal-free CLTLoc formula φ′ language607

equivalent to φ.608

2. There exists a CLTLoc formula φ′ language equivalent to φ over non-Zeno609

timed words and without diagonal constraints.610

Let C > 0 be an integer constant.611
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Consider a set of clocks X. Define the following formula that relates the612

1D-region of each x ∈ X with the values of its corresponding region clocks:613

bridge(X)
def
=

∧
x∈X

G


(x = 0⇔ [x = 0])

∧∧
1≤k≤C

(x = k ⇔ [x = k]) ∧ (x < k ⇔ [x < k])


It is clear that every model (π, σ) of the above bridge formula must be such614

that, for all x ∈ X, for all 0 ≤ c ≤ C:615

σ(i, z[x∼c]) = 0 if, and only if, σ(i, x) ∼ c holds. (4)

The goal of the bridge formula is to determine the actual 1D-region of each616

clock, to make the values of region clocks consistent with the values of the617

corresponding clocks: the actual 1D-region of clocks x and y may help the618

region automaton to determine whether a constraint x ∼ y + c holds or not.619

For example, if both x = c′ and y = c′ + 2 hold, with 0 < c′ ≤ C − 2, then the620

region automaton ensures that [x = y + 2] holds, i.e., the diagonal constraint621

x = y + 2 is determined to be true, without checking the actual constraint.622

However, the region automaton cannot always discriminate whether [x ∼623

y + c] holds: for instance, if neither clocks x and y have ever been reset in the624

past, x is in the open interval (c′−1, c′) and y is in the open interval (c′′−1, c′′),625

then the region automaton can only ensure that the difference x − y is in the626

open interval (c′ − c′′ − 1, c′ − c′′ + 1), but it cannot decide whether x− y is in627

the open interval (c′ − c′′ − 1, c′ − c′′) or in (c′ − c′′, c′ − c′′ + 1)—i.e., it cannot628

decide which of x and y has the greatest fractional part.629

Let X̂ be a set of clocks. To simplify the following proofs, we introduce a630

new set X̃ of clocks as a marked copy of clocks in X̂, with the intended meaning631

that a clock x and its marked copy x̃ have the same fractional part. Let ZX̂∪X̃632

be the set of region clocks for X̂∪X̃. Notice that the clock Now is still necessary,633

since Now determines the time stamps, hence it cannot be completely replaced634

by clock Ñow with the same fractional part.635

The following Formula (5) (where Jc ≤ x < c + 1K is an abbreviation for636

Jx = cK ∨ Jc < x < c + 1K) is used to restrict the sequences of regions, defined637

by ΘZ
X̂∪X̃ ,C

, only to those conforming to the following property. At position638

0, either both x, x̃ have the same fractional part, but the integer part of x̃ is639

equal to 0; or both are greater than C (in which case the relation among their640

fractional parts is irrelevant). In all other positions, the resets of x, x̃ always641

occur at the same time (hence, their fractional parts are always the same).642
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fract(ZX̂∪X̃)
def
= (5)

∧
x∈X̂



∧
0≤c<C

(Jc ≤ x < c+ 1K⇒ [x = x̃+ c]) ∧

([x = C]⇒ [x = x̃+ C]) ∧
([C < x]⇒ ([C < x̃] ∧ [x = x̃])) ∧
XG ([x = 0]⇔ [x̃ = 0])


Define:

constrX̃,C
def
= ΘZ

X̂∪X̃ ,C
∧ bridge(X̃) ∧ fract(ZX̂∪X̃).

Formula constrX̃,C represents the runs of the region automaton ΘZ
X̂∪X̃ ,C

and643

constrains the value of clocks in X̃ according to fract(ZX̂∪X̃) (the clocks x and644

x̃ have the same fractional part). Both ΘZ
X̂∪X̃ ,C

and constrX̃,C are defined over645

ZX̂∪X̃ , whereas clocks in X̃ appear explicitly in bridge(X̃). The presence of646

bridge(X̃) guarantees that the value of [x̃ ∼ c] is “in agreement” with x̃ ∼ c647

in all positions of the models. The following Lemma 1 allows us to extend this648

property to diagonal constraints over clocks in X̃ also; i.e., [x̃ ∼ ỹ + c] is “in649

agreement” with x̃ ∼ ỹ + c. The proof is based on the idea of changing the650

values of clocks x̃ without changing their 1D-regions, but so that the diagonal651

constraints x̃ ∼ ỹ+c actually agree with constraints [x̃ ∼ ỹ+c]. This is crucial652

for proving the main theorem of this section about the elimination of diagonal653

constraints.654

Lemma 1. For every model (π, σ′) of formula constrX̃,C there exists another655

model (π, σ) of the same formula such that σ(i, z) = σ′(i, z) for all z ∈ ZX̂∪X̃ ∪656

{Now} and i ∈ N≥0, and657

1. for all x̃, ỹ ∈ X̃, i ∈ N≥0, 0 ≤ c ≤ C if neither x̃ nor ỹ are Now, then the658

relation659

(∗) σ(i, z[x̃∼ỹ+c]) = 0 if, and only if, σ(i, x̃) ∼ σ(i, ỹ) + c

holds;660

2. if (π, σ′) is non-Zeno, then relation (∗) holds also when x̃ or ỹ are Now.661

Proof. We first prove Part (1). In general, defining σ(i, x̃) = σ′(i, x̃) for x̃ ∈ X̃662

does not ensure that Relation (∗) holds: the value of region clocks at position663

0 (which are linked to the values of constraints x̃ ∼ c by Formula bridge(X̃)664

of constrX̃,C) uniquely determines an initial symbolic region REG, which in665

general may be different from the initial region REG′ defined by the actual clock666

assignment σ′. As already noticed, the definition of constrX̃,C (and in particular667

of subformula bridge(X̃)) ensures that the only case when REG 6= REG′ is if668

19



the fractional parts of two clocks x̃, ỹ are not in the same order determined by669

the region clocks z[x̃∼ỹ+c] (i.e., Relation (∗) does not hold).670

We show how to change the value of the clocks to be consistent both with671

the region clocks and the non-diagonal clock constraints.672

All clocks that start at position 0 with a value greater than C can easily be673

redefined to verify the constraints given by the region clocks. We separate two674

cases. If at position 0 both x̃ > C and ỹ > C hold, then any constraints of the675

form z[x̃∼ỹ+c] = 0 can easily be made true or false by simply modifying the values676

of x̃ and ỹ as necessary. If, on the other hand, x̃ > C and ỹ ≤ C, the value of x̃677

can be redefined to satisfy not only the constraints defined by regions clocks, but678

also those that can be inferred from them (which are guaranteed to be satisfiable679

by the region automaton); for example, if σ′(0, z[C<x̃]) = 0, σ′(0, z[ỹ<1]) =680

0, σ′(0, z[0<ỹ]) = 0, σ′(0, z[2<y]) = 0, σ′(0, z[y<3]) = 0, σ′(0, z[y=ỹ+2]) = 0,681

σ′(0, z[x=y+C−1]) = 0 (where C > 3 and x, y ∈ X̂) all hold, then it must also682

hold that C+1 < σ(0, x̃) < C+2 (notice that region clocks z[C+1<x̃] and z[x̃<C+2]683

do not exist, but the truth of the corresponding constraint C + 1 < x̃ < C + 2684

can be inferred from the other region clocks).685

Clearly, this can be done for any number of clocks that are greater than C686

at 0. We can thus focus in the following on the subset X≤C ⊆ X̃ of clocks of X̃687

that are not greater than C at position 0, hence their initial value is less than688

1.689

Define the equivalence relation ≈⊆ X≤C × X≤C as the reflexive and sym-690

metric closure of the following relation: For every x̃, ỹ ∈ X≤C , x̃ ≈ ỹ if691

σ′(0, z[x̃=ỹ]) = 0. Hence, x̃ ≈ ỹ holds if, according to the symbolic region692

REG′, the two clocks start with the same value at position 0.693

It is obvious that x̃ ≈ ỹ is an equivalence relation over X≤C . Clocks in the694

same equivalence class must be assigned the same value (i.e., the same fractional695

part) by σ at position 0.696

Let ι be the smallest value of all i ∈ N≥0 such that σ′(i,Now)−σ′(0,Now) >697

C if any such i exists, otherwise (with an abuse of notation) let ι = +∞. Clearly,698

the latter case may only occur if the timed word is Zeno.699

Similarly, for every x̃ ∈ X≤C let ιx̃ be the smallest value of all i ∈ N≥0 such700

that i < ι and σ′(i, x̃) = 0 if any such i exists, otherwise (with an abuse of701

notation) let ιx̃ = +∞. Hence, ιx̃ is the position of the first reset of x̃ (if any)702

before C.703

If x̃ ∈ X≤C and ιx̃ < +∞ then for all i ≥ ιx̃ let σ(i, x̃) = σ′(i, x̃), since704

the value given by σ′(i, x̃) after x̃ is reset is in fact compatible with the region705

clocks by definition of constrX̃,C .706

For every i ∈ N≥0, 0 < i < ι, let ∆i = σ′(i,Now) − σ′(0,Now). Let
−→
∆ be707

the temporal sequence ∆1,∆2, . . . , and let P−→
∆

be the maximal partition for the708

temporal sequence
−→
∆.709

Consider first the subsetN ⊆ X≤C of clocks ỹ such that: (i) for some i < ιỹ it710

holds that σ′(i, ỹ) = c, for some integer 0 < c ≤ C—that is, there is ∆i ∈
−→
∆ such711

that σ′(0, ỹ)+∆i = c, which in turn entails that (〈σ′(0, ỹ)〉, 〈σ′(0, ỹ)〉) belongs to712
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P−→
∆

; or (ii) σ′(0, ỹ) = 0. The fractional part of these clocks cannot be changed,713

otherwise the constraint ỹ = c would be violated at position i. Therefore,714

for every ỹ ∈ N , let σ(i, ỹ) = σ′(i, ỹ) for every i ∈ N≥0. This assignment is715

consistent also with the auxiliary clocks. Hence, every clock x̃ ∈ X≤C −N has716

a fractional part different from zero in every position i < ιx̃.717

We now show how to adjust the initial value of the fractional parts of every718

clock x̃ ∈ X≤C−N in order to assign it a correct value also before ιx̃. For every719

position i with 0 < i < ιx̃, the assignment σ will be just based on the initial720

value and the elapsed time since the origin, i.e., σ(i, x̃) = σ(0, x̃) + σ′(i,Now)−721

σ′(0,Now).722

Finally, we can assume that, even in the case when the limit interval (η, η)723

is in the maximal partition, then σ′(0, x̃) 6= η for every x̃ ∈ X≤C −N . In fact,724

if x̃ ∈ X≤C − N , then (η, η) is the essential limit interval. This is the case of725

Prop. 8, Part 1, which means that the limit interval and the open interval I in the726

maximal partition P−→
∆

that immediately precedes it (i.e., such that sup(I) = η)727

are indistinguishable from the point of view of the 1D-regions they traverse on728

sequence
−→
∆. Then, if σ′(0, x̃) = η we can just modify σ′(0, x̃) by assigning it any729

value in the open interval I preceding the limit interval: the region automaton730

does not differentiate the two cases (starting from I or starting from (η, η)).731

The first case we consider is when x̃, ỹ are two clocks in X≤C such that at732

some position i, with i < ιx̃, i < ιỹ, there exist two 1D-regions Rx̃, Rỹ such733

that σ′(i, x̃) ∈ Rx̃, σ′(i, ỹ) ∈ Rỹ and Rx̃ ≺ Rỹ hold. By Prop. 7, σ′(0, x̃) and734

σ′(0, ỹ) must be in two distinct intervals Ix̃, Iỹ of the maximal partition
−→
∆, with,735

moreover, Ix̃ ≺ Iỹ. Therefore, the values of x̃, ỹ in σ′ are already consistent with736

the region clocks and nothing needs to be changed. Constraint [x̃ < ỹ] holds737

at position 0, because of the form of the region automaton. Moreover, σ(0, x̃)738

(resp., σ(0, ỹ)) may be assigned any value in Ix̃ (resp., Iỹ) without affecting739

both the truth of constraint [x̃ < ỹ] and of the actual constraint x̃ < ỹ.740

The second case we consider is when x̃, ỹ are two clocks in X≤C such that in741

all positions i, with i < ιx̃, i < ιỹ, the clock assignment σ′ is such that x̃ and ỹ742

belong to the same 1D-region. By Prop. 8, Part 2, σ′(0, x̃) and σ′(0, ỹ) must be743

in the same interval I of the maximal partition
−→
∆ (since we assumed that neither744

can start in the limit interval (η, η) of the maximal partition). In addition, either745

it holds that x̃, ỹ ∈ N , or that x̃, ỹ ∈ X≤C −N . As argued above, in the former746

case the fractional parts of the values of the clocks are exactly the same since747

there exist a position i, with i < ιx̃, i < ιỹ, where σ′(i, x̃) = σ′(i, ỹ) = c ≤ C.748

Hence, formula constrX̃,C enforces that constraint [x̃ = ỹ] holds at position 0.749

If both x̃ and ỹ are in X≤C −N , then by the form of the region automaton I750

is not punctual (i.e., inf(I) < sup(I)). Let σ(0, ỹ) = σ′(0, ỹ); for the value of751

σ(0, x̃) consider the following three cases.752

1. If the auxiliary clock z[x̃=ỹ] is 0 at position 0, then let σ(0, x̃) have the753

same fractional value of σ′(0, ỹ) in I (recall that, by the considerations754

above, we can safely assume that at position 0 all clocks are in intervals755

(0, 1) or (0, 0)): σ(0, x̃) = σ′(0, ỹ).756
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2. If the auxiliary clock z[x̃<ỹ] is equal to 0, since I is not punctual let757

σ(0, x̃) = α, where α < σ′(0, ỹ) is a value in I.758

3. The case of the auxiliary clock z[ỹ<x̃] equal to 0 is symmetrical to the759

previous one: let σ(0, x̃) = β, where β > σ′(0, ỹ) is a value in I.760

Since I is not punctual, this procedure can be applied to any number of clocks761

with the same property, defining their fractional part in I to verify the order of762

the fractional parts determined by the region clocks, which in turn guarantees763

that Relation (∗) holds when Part (1) is true.764

We now prove also Part (2). The proof is the same as Part (1), with the765

difference that the auxiliary clocks of the form z[x̃∼ỹ+c] that occur in constrX̃,C766

may have Now instead of either x̃ or ỹ.767

As in the proof of Part (1), we focus only on the subset X≤C −N of clocks.768

Since, crucially, the timed word is assumed to be non-Zeno, there is no limit769

interval. Hence, the case covered by Prop. 8, Part 1 never occurs. Then, any770

pair of clocks x̃, ỹ different from Ñow can be ordered as in the proof of Part (1)771

to be consistent with the region clocks. If ỹ is Ñow, the case where ỹ ∈ N772

is as before (since ỹ cannot be moved); if ỹ ∈ X≤C − N , then Iỹ is an open773

interval and the fractional parts of the other clocks can be distributed around774

it as necessary.775

Proof of Th. 2. We only show Part (1), since the proof of Part (2) is identical,776

using Condition (2) of Lemma 1 instead of Condition (1). We define:777

φ′ = φAUX ∧ constrX̃,C

where φAUX is obtained by replacing all constraints in φ with the corresponding778

tests on auxiliary clocks, i.e., replacing every atomic formula of the form x ∼ c779

and x ∼ y + c by the formula [x ∼ c] and [x ∼ y + c], respectively.780

We first show that if a timed word (π, τ) is in the timed language of φ then781

it is also in the timed language of φ′. Let (π, σ) be a CLTLoc model of φ such782

that (π, τ) = [(π, σ)], with σ : N≥0 × X̂ → R+.783

Define a clock assignment σ′ for X̂ ∪ X̃ ∪ZX̂∪X̃ where for all i ∈ N≥0, x ∈ X̂784

and x̃ ∈ X̃:785

1. if σ(0, x) ≤ C then σ′(0, x̃) = 〈σ(0, x)〉, else σ′(0, x̃) = σ(0, x);786

2. σ′(i, x̃) = 0 if, and only if, σ(i, x) = 0.787

3. if σ′(i, x̃) 6= 0 and i > 0, then σ′(i, x̃) = σ′(i − 1, x̃) + σ(i,Now) − σ(i −788

1,Now).789

4. σ′(i, x) = σ(i, x)790

also, for all region clocks z ∈ ZX̂∪X̃ of the form z[x∼c] or of the form z[x∼y+c]791

(with x, y ∈ X̂ ∪ X̃) and for all 0 ≤ c ≤ C:792
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1. If σ′(i, x) ∼ σ′(i, y) + c holds true, then let σ′(i, z[x∼y+c]) = 0, else let793

σ′(i, z[x∼y+c]) be defined as Now if i = 0, and as σ′(i − 1, z[x∼y+c]) +794

σ′(i,Now)− σ′(i− 1,Now) if i > 0.795

2. If σ′(i, x) ∼ c holds true, then let σ′(i, z[x∼c]) = 0, else let σ′(i, z[x∼c]) be796

defined as Now if i = 0, and as σ′(i−1, z[x∼c])+σ′(i,Now)−σ′(i−1,Now)797

if i > 0.798

Mapping σ′ is a clock assignment for φ′ by definition. Clearly, (π, σ′) is a799

CLTLoc model for φAUX (it includes assignments to clocks of set X̂, which do800

not appear in φAUX , hence whose value is irrelevant for the satisfiability of the801

formula): in φAUX , every clock constraint in φ corresponds to a constraint on802

a region clock that has the same truth value by construction in every position.803

Also by construction, (π, σ′) is a model for constrX̃,C . Thus, (π, σ′) is a model for804

φ′; moreover, (π, τ) = [(π, σ′)] (since σ′(i,Now) = σ(i,Now) for every i ∈ N≥0).805

Therefore, (π, τ) is also in the timed language of φ′.806

We now show the converse, i.e., that if a timed word (π, τ) is in the timed807

language of φ′, then it is also in the timed language of φ. Let (π, σ′) be a808

CLTLoc model of φ′ such that (π, τ) = [(π, σ′)]. The thesis follows by Relation809

(∗) since Lemma 1, Condition (1) holds, only requiring to assign the correct810

integer parts to clocks in X̂. More precisely, define σ(i, x) for i ∈ N≥0, x ∈ X̂811

as follows:812

• if σ′(0, x̃) < 1 then let σ(0, x) = σ′(0, x̃)+h where h is the smallest integer813

such that σ′(0, z[x<h]) = 0 or σ′(0, z[x=h]) = 0 holds; if σ′(0, x̃) ≥ 1—which814

corresponds, by formula constrX̃,C , to the condition σ′(0, x̃) > C—let815

σ(0, x) = σ′(0, x̃) matching constraint [x = x̃] of constrX̃,C ;816

• σ(i, x) = 0 if, and only if, σ′(i, x̃) = 0;817

• if σ(i, x) 6= 0 and i > 0, then σ(i, x) = σ(i − 1, x) + σ′(i,Now) − σ′(i −818

1,Now).819

820

We remark that the size of formula φ′ defined in the proof of Theorem 2 is821

equal to the size of φ plus the size of constrX̃,C , where the dominant term is the822

size of the region automaton ΘZ
X̂∪X̃ ,C

(see Sect. 4).823

Notice that Theorem 2 does not cover the case of Zeno timed words when for-824

mula φ contains diagonal constraints on Now. Indeed, consider the Zeno timed825

language Lni1 of Section 3, which is defined by CLTLoc formula826

G(a ∧ 0 < x < 1 ∧Now < x). We have the following result that shows how,827

in the case of Zeno timed words, diagonal constraints of the form Now ∼ x828

increase the expressive power of the logic.829

Proposition 9. There is no CLTLoc formula that does not include constraints830

of the form Now ∼ x that defines language Lni1.831
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The proof of Proposition 9 is a straight consequence of the following lemma.832

Lemma 2. Let φ be a CLTLoc formula, whose set of clocks is X̂, that does not833

include constraints of the form Now ∼ x. If φ admits a model (π, σ) such that834

limi→+∞ σ(i,Now) = γ for some γ < 1, then it also admits a model (π, σ′) such835

that limi→+∞ σ′(i,Now) = 1.836

Proof. Since clock Now is, by definition, always greater than 0, for all i ∈ N≥0 it837

holds that 0 < σ(i,Now) < 1 (and, in general, that σ(i,Now) < c for all c ∈ N≥0,838

with c > 0). Now, consider (π, σ′) such that, for all i ∈ N≥0, σ′(i,Now) =839

σ(i,Now) + 1 − γ and, for all x ∈ X̂ − {Now}, σ′(i, x) = σ(i, x). Clearly, it840

holds that limi→+∞ σ′(i,Now) = 1. In addition, the value of constraints x ∼ c,841

x ∼ y + c is the same in both σ and σ′, since the values of clocks x, y do not842

change between σ and σ′. Also, for all i ∈ N≥0 it holds that 0 < σ′(i,Now) < 1843

(and, in general, that σ′(i,Now) < c). Hence, the values of clock constraints are844

the same in σ and σ′ (similarly for propositional letters, since π is the same),845

so if it holds that (π, σ) |= φ, then it also holds that (π, σ′) |= φ.846

6. All non-Zeno CLTLoc timed languages are timed regular847

The goal of this section is to show that, under a non-Zeno assumption, every848

timed language of CLTLoc is timed regular. In general, this does not hold for849

languages including Zeno timed words, as shown by language Lni of Section 3.850

The following proposition summarizes the results obtained in Section 5 for851

non-Zeno timed languages, since they will be useful in this section.852

Proposition 10. Let φ be a CLTLoc formula over the clocks of a set X̂, and let853

C be the greatest constant occurring in φ. There exists a diagonal-free CLTLoc854

formula φ′ such that:855

• φ′ is defined over a set of clocks X ∪ {Now};856

• φ′ is language equivalent to φ over non-Zeno timed words;857

• for every non-Zeno timed word (π, τ) in the language of φ, there is a model858

(π, σ) of φ′ such that (π, τ) = [(π, σ)] with a clock assignment σ such that859

for all x ∈ X:860

0 ≤ σ(0, x) < 1 or σ(0, x) > C or σ(0, x) = σ(0,Now).

The proof of the following statement is the focus of the remainder of this861

section.862

Theorem 3. For every non-Zeno CLTLoc timed language L, there exists a863

CLTLoc formula whose initialized timed language is L.864
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We here outline the proof of the main theorem to facilitate the reading of865

the next sections. By Proposition 10, we can assume that a formula φ defining866

a timed language L is diagonal-free and it is defined on clocks in X ∪ {Now},867

which are not well-initialized in general.868

Our goal is to define a formula φ′ whose initialized timed language is L. To869

achieve this goal, formula φ′ has a set of well-initalized fresh clocks, including870

region clocks that are used to evaluate constraints on a clock x ∈ X in the871

positions preceding the first reset of x (if any) or before x becomes greater than872

C. Since x is only evaluated symbolically, its actual value in the first position is873

irrelevant: in every model (π, σ′) of φ′, σ′(x, 0) can be assumed to be 0 or Now.874

The core of the proof is showing that, given a model (π, σ′) as above, there is875

actually a non-empty interval of values for the clock valuation of x in the initial876

position, which can be used to define a model (π, σ) for the original formula φ.877

In other words, we prove that there is indeed a non-emtpy interval for initial878

clock valuation σ(0, x), with 0 ≤ σ(0, x) < 1 or σ(0, x) > C and such that (π, σ)879

is a model of φ.880

The existence of a non-empty interval for the initial assignment σ(0, x)881

(Lemma 3) is based on the maximum constant occurring in φ and on the se-882

quence of timestamps of a model of φ′. The sequence of timestamps can be883

determined by introducing a finite set of well-initialized clocks D, that are used884

to measure the distance among the positions where x reaches or leaves a 1D-885

region along the prefix (Lemma 4). The relation among the clocks in X and886

clocks D is captured by a formula encoding a region automaton over X ∪ D,887

with the region for clocks D being “bridged” to their actual values (Lemma 5).888

889

To prove the claim, we need some new definitions and various intermediate890

lemmata and propositions.891

Initially Normalized Clock Regions892

The goal of the following construction is to replace every clock x ∈ X with893

fresh, well-initialized clocks. To this end, we consider the sequence of regions894

that each x ∈ X traverses from the origin until its first reset: this may be895

represented symbolically by using a finite number of (well-initialized) region896

clocks. Along the prefix, the value of a clock constraint over x can be exactly897

determined by the region clocks, whereas, after the first reset of x, it can be898

determined by the actual value of the clock in the clock assignment. Hence, we899

focus on the sequences of regions traversed by clocks, until they are reset for900

the first time. Clearly, each clock may be reset independently of the others or901

it might not even be reset ever.902

To avoid some complications in the proof, instead of a formula φ we consider903

its language equivalent formula φ′ of Proposition 10. Since we are dealing with904

non-Zeno behavior, we consider finite sequences of clock regions where each905

clock starts from [0, 1) and, assuming it is never reset, it eventually reaches906

region (C,+∞). Hence, it always stays in intervals of the form (n, n + 1), or907

in single points n, with n ∈ N≥0, n < C, or in the open region (C,+∞). If,908

instead, the clock already starts from region (C,+∞), it always stays there.909
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As a consequence, we introduce next some definitions about finite sequences910

of regions.911

Features of sequences of 1D-regions912

Through the concept of monotonic sequence defined below, we capture the913

fact that in our models time is strictly increasing, therefore it is forbidden to914

stay in a region of the form (n, n) for more than one instant. For instance, the915

sequence916

(0, 1)(0, 1)(0, 1)(1, 1)(1, 2)(2, 2)(3, 4)

is monotonic, whereas (1, 1)(1, 2)(2, 2)(2, 2) is not, since (2, 2) is consecutively917

repeated in the latter example. We also introduce the notion of complete se-918

quences, in which time is always progressing at least until the clock hits C.919

A finite sequence of m ≥ 1 1D-regions Rm = R0R1 . . . Rm is called mono-920

tonic if, for every 1 ≤ i ≤ m, Ri−1 � Ri and each punctual interval of the921

form (h, h), with 1 ≤ h ≤ C, appears at most once in the sequence; it is called922

complete if R0 is (0, 1), Rm−1 ≺ Rm holds, and Rm is (C,+∞).923

While in general a monotonic sequence may also define Zeno behaviors ac-924

cumulating before C, in a complete, monotonic sequence time cannot stop pro-925

gressing before clock x has reached C.926

A monotonic sequence R0R1 . . . Rm(x) of m+1 1D-regions is called compact927

(or compactly monotonic) if for all i, 1 ≤ i ≤ m− 1, we have Ri−1 ≺ Ri or Ri ≺928

Ri+1. For example, the monotonic sequence (0, 1)(1, 1)(1, 2)(1, 2)(2, 2)(3, 4) is929

also compact since it stays in the same region (1, 2) only for two positions,930

whereas (0, 1)(1, 1)(1, 2)(1, 2)(1, 2)(2, 2)(3, 4) is not, since there are three con-931

secutive positions in region (1, 2). This definition is intended to abstract away932

long sequences of the same 1D-region, by considering only the entrance and the933

exit positions in the region and ignoring all intermediate positions.934

It is immediate to prove that m ≤ 3C holds for every compactly monotonic935

sequence of m + 1 1D-regions. Moreover, it is always possible to “extract” a936

compactly monotonic sequence from a monotonic one, i.e., for every monotonic937

sequence of 1D-regions R0R1 . . . Rn, there exist a value m ≤ n, 1 ≤ m ≤ 3C,938

and m + 1 positions 0 = i0 < i1 < · · · < im ≤ n such that Ri0Ri1 . . . Rim is939

a complete, compactly monotonic sequence; such a sequence with Ri0 = R0 is940

also the only one.941

Feasible sequences; extensions of compactly monotonic sequences942

We first specify a notion of time-successor relation between clock regions, as943

introduced by [1], but applied to 1D-regions.944

Definition 7 (time-successors of 1D-regions). For all η ∈ R, with η ≥ 0, the945

relation ↪→η over 1D-regions is defined for all h ∈ N≥0 as:946

• If the fractional part of η is 0, then (h, h) ↪→η (h+ η, h+ η) and947

(h, h+ 1) ↪→η (h+ η, h+ η + 1).948

• If the fractional part of η is greater than 0, then let n = bηc and:949
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1. (h, h) ↪→η (h+ n, h+ n+ 1);950

2. (h, h+ 1) ↪→η (h+ n, h+ n+ 1);951

3. (h, h+ 1) ↪→η (h+ n+ 1, h+ n+ 1), and952

4. (h, h+ 1) ↪→η (h+ n+ 1, h+ n+ 2).953

The special case (0, 1) ↪→η R means that R is one of (n, n + 1), (n + 1, n +954

1), (n + 1, n + 2), for n = bηc. For example, (1, 2) ↪→3.15 (4, 5), but also955

(1, 2) ↪→3.15 (5, 5) and (1, 2) ↪→3.15 (5, 6) (notice that 1.85 + 3.15 = 5, and956

1.9 + 3.15 > 5).957

We have the following proposition.958

Proposition 11. Let R, R′ be 1D-regions, and let g, g′, γ, γ′ be such that:959

• g, g′ ∈ N≥0, γ, γ′ ∈ R, 0 ≤ γ′ ≤ γ < 1960

• (0, 1) ↪→g+γ R and (0, 1) ↪→g′+γ′ R
′ hold961

• if g+γ ≤ g′+γ′, then R ↪→(g′+γ′)−(g+γ) R
′ holds, otherwise R′ ↪→(g+γ)−(g′+γ′)962

R does.963

Then, the following tables list all possible cases for R,R′, depending on the964

order relation of γ and γ′:965

γ′ = γ


R R′

(g, g + 1) (g′, g′ + 1)
(g + 1, g + 1) (g′ + 1, g′ + 1)
(g + 1, g + 2) (g′ + 1, g′ + 2)

γ′ < γ



R R′

(g, g + 1) (g′, g′ + 1)
(g + 1, g + 1) (g′, g′ + 1)

(g + 1, g + 2)

 (g′, g′ + 1)
(g′ + 1, g′ + 1)
(g′ + 1, g′ + 2)

Proof sketch. If γ′ = γ, then (g′ + γ′) − (g + γ) is an integer number, and the966

left table is obvious.967

If γ′ < γ, let us consider for simplicity the case where g′ + γ′ > g + γ, the968

other being similar. We have that b(g′+γ′)− (g+γ)c = g′− g−1 holds. Then,969

the fractional part of (g′+γ′)−(g+γ) is (g′+γ′)−(g+γ)−(g′−g−1) = 1+γ′−γ,970

and it holds that 0 < 1+γ′−γ < 1, from which the second line of the right-hand971

table easily follows from Definition 7. The first line of the right-hand table is972

obtained by noticing that, by Definition 7, (g′, g′ + 1) is the only 1D-region R′973

for which both (g, g + 1) ↪→(g′+γ′)−(g+γ) R
′ and (0, 1) ↪→g′+γ′ R

′ hold—in fact,974

(g, g+ 1) ↪→(g′+γ′)−(g+γ) (g′, g′ + 1) is obtained by applying case 4 in Definition975

7, whereas (0, 1) ↪→g′+γ′ (g′, g′ + 1) is obtained by applying case 2. The last976

line of the right-hand table essentially does not constrain R′.977

Definition 8. A monotonic sequence of 1D-regions R0R1 . . . Rm is feasible for978

a sequence
−→
δ = δ1 . . . δm of positive real numbers if, for every i, j, with 0 ≤ i <979

j ≤ m, Ri ↪→δi+1+δi+2+...δj Rj .980
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For instance, the region sequence (0, 1)(1, 2)(2, 3) is feasible for δ1 = 1.8, δ2 =981

0.5, since (0, 1) ↪→1.8 (1, 2), (0, 1) ↪→2.3 (2, 3) and (1, 2) ↪→0.5 (2, 3), whereas982

(0, 1)(1, 2)(3, 4) is not feasible for the same δ1 = 1.8, δ2 = 0.5, since (0, 1) ↪→2.3983

(3, 4) but (1, 2) 6↪→0.5 (3, 4). In fact, by case γ′ < γ (first line) of Proposition 11,984

if (0, 1) ↪→1.8 R and (0, 1) ↪→2.3 R
′, with γ′ = 0.3 < 0.8 = γ and g = 1, g′ = 2,985

then when R is (1, 2) = (g, g+1) it follows that R′ can only be (g′, g′+1) = (2, 3).986

The next definition relies on relation  of Definition 5.987

Definition 9. For all m ≥ 0, for all sequences
−→
δ = δ1 . . . δm of positive re-988

als, for all region sequences Rm = R0R1 . . . Rm feasible for
−→
δ let I0 ⊆ R0 be a989

1D-subregion and for all 1 ≤ i ≤ m let Ii = I0⊕
∑i
j=1 δi. We say that I0 is com-990

patible with Rm if I1 ⊆ R1, . . . , Im ⊆ Rm hold—i.e., I0  δ1 I1  δ2 · · · δm Im991

holds. Moreover, I0 is called maximally compatible if every 1D-subregion I,992

disjoint from I0, is not compatible with Rm. The notion of (maximal) compat-993

ibility is naturally extended to infinite sequences of 1D-regions.994

The next lemma is crucial in proving the main result. It is first exemplified995

on a few concrete cases, as follows.996

Example 2. Consider again the maximal partition997

P−→
∆

= {(0, 0.2), (0.2, 0.2), (0.2, 0.9)(0.9, 0.9)(0.9, 1)} of Example 1. Clearly, the998

sequence R2 = (0, 1)(1, 2)(5, 6) is feasible for
−→
δ = δ1δ2 (where δ1 = ∆1 = 1.8999

and δ2 = 3.3 = ∆2−∆1), since (0, 0.2) δ1 (1.8, 2) ⊆ (1, 2), and (0, 0.2) δ1+δ21000

(5.1, 5.3) ⊆ (5, 6). Also, the 1D-subregion (0, 0.2) is maximally compatible for1001

−→
δ , since any point outside (0, 0.2) cannot traverse the sequence R2: as already1002

noticed, (0.2, 0.2) δ1 (2, 2), with region (2, 2) not being in the sequence. There-1003

fore, (0, 0.2) includes all, and only, points compatible with the sequence R2 and1004

the given values δ1, δ2. This is a general fact, stated in Part 1 of the lemma. It1005

should be clear that every 1D-subregion in the maximal partition corresponds to1006

one, and only one, monotonic sequence compatible with the same values δ1, δ2.1007

This is expressed by Part 2 of the lemma.1008

To give the intuition on the existence of an initial assignment for a clock x,1009

proven in the next Lemma 3, consider Fig. 3, showing some positions of a prefix1010

of a timed word and the corresponding temporal sequence. Assume that clock1011

x has initial value in the interval [0, 1), according to Prop. 10. Based on the1012

temporal sequence
−→
∆, the clock assignment for x in every position is determined1013

by the initial value of x plus the time elapsed since position 0. Curly brackets1014

indicate the positions that satisfy a certain constraint. Assume that the valid1015

constraints are those shown in the figure, whose value depends on the value1016

of x and on the constraints enforced by formula φ. The positions that are1017

indicated with a big circle are the ones that are relevant to determine the initial1018

assignment for a clock, as the intermediate ones are implicit. From the first1019

constraint 1 < x < 2, given the delays defined by the temporal sequence, the1020

value σ(0, x) of clock x at position 0 such that 1 < x+ 0.4 and x+ 1.2 < 2 both1021

hold can only be in the interval (0.6, 0.8). Similarly, the second constraint entails1022
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0.4 1.2
1.3

1.9 2.5 3.1

1 < x < 2 2 < x < 3 3 < x < 4

−→
∆ :

Figure 3: A timed sequence and the positions satisfying different clock constraints.

that σ(0, x) ∈ (0.7, 1) and the third entails σ(0, x) ∈ (0.5, 0.9). Therefore, all1023

constraints can be satisfied together if σ(0, x) ∈ (0.7, 0.8).1024

Before enunciating the lemma, recall that a sequence of region distances1025 −→
δ = δ1 . . . δm induces a corresponding temporal sequence

−→
∆ = ∆1 . . .∆m as1026

follows: for every i, 1 ≤ j ≤ m, let ∆j =
∑

1≤i≤j δi; also, the maximal partition1027

P−→
δ

for
−→
δ is just the maximal partition P−→

∆
(see end of Sec. 4).1028

Lemma 3. For all m ≥ 0, for all sequences
−→
δ = δ1 . . . δm of positive real1029

numbers:1030

1. If a monotonic sequence Rm = (0, 1)R1 . . . Rm is feasible for
−→
δ , then there1031

exists I0 ∈ P−→δ maximally compatible with Rm for
−→
δ .1032

2. For all I0 ∈ P−→δ there exists one, and only one, monotonic sequence Rm =1033

(0, 1)R1 . . . Rm feasible for
−→
δ , such that I0 is compatible with Rm for

−→
δ .1034

Proof. We prove Parts 1 and 2 together.1035

The proof is by induction on m ≥ 0. In the base case m = 0, the sequence1036

δ is empty and thus P−→
δ

= {(0, 1)}. It is then vacuously true that the sequence1037

of regions R0 = (0, 1) is feasible for δ and I0 = (0, 1) is maximally compatible1038

with R0; also Part (2) is obvious.1039

Assume the induction hypothesis holds for m ≥ 0. Let
−→
δ
′

be a sequence of1040

m + 1 positive reals δ1 . . . δmδm+1, corresponding to a maximal partition P−→
δ
′ .1041

We apply Part (1) of the induction hypothesis: if Rm = (0, 1)R1 . . . Rm is a1042

feasible sequence for
−→
δ , then I ′0 ∈ P−→δ is a 1D-subregion maximally compatible1043

with Rm. Let I ′i ⊆ Ri be defined by I ′0  ∆i
I ′i, for all 1 ≤ i ≤ m.1044

We show, given the positive real δm+1, how the new partition P−→
δ
′ may1045

differ from P−→
δ

. We first identify, depending on the value δm+1, a 1D-region1046

Rm+1 such that Rm+1 = (0, 1)R1 . . . RmRm+1 is feasible for the sequence1047

−→
δ
′

= δ1 . . . δmδm+1. If ∆m+1 ≥ C, then Rm+1 = (C,+∞) and by defini-1048

tion P−→
δ
′ = P−→

δ
, i.e., P−→

δ
is a maximal partition also for sequence

−→
δ
′
: moreover,1049

it is obvious in this case that there is I ′m+1 such that I ′m  δm+1
I ′m+1, hence1050

I ′0  δ1 I
′
1 · · ·  δm I ′m  δm+1

I ′m+1. To prove Part 1, we can select I0 = I ′0,1051

which is compatible also with the sequenceRm+1. I ′0 is also maximally compati-1052

ble with Rm+1 since it is maximally compatible with Rm, thus verifying Part 1.1053

Part 2 in this case follows immediately from the same part of the induction1054

hypothesis, by defining I0 = I ′0, and by the uniqueness of Rm+1.1055
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Assume now ∆m+1 < C. Let n and η be, respectively, the integer and1056

the fractional part of ∆m+1. By Statement 1, 1D-region Rm+1 must be one of1057

(n, n+1), (n+1, n+1), (n+1, n+2). When n = C−1, 1D-region (n+1, n+2)1058

corresponds to (C,+∞). In this case, for simplicity, with a slight abuse of1059

notation we will still indicate the region as (n+ 1, n+ 2).1060

If η = 0 then let I ′0 = (α, β), for some 0 ≤ α < β ≤ 1. Then, Rm+1 =1061

(n, n + 1) is the only possible region reachable from (0, 1) with ∆m+1 = n. .1062

Let I0 = I ′0, I1 = I ′1, . . . , Im = I ′m. Then, let Im+1 be the 1D-subregion such1063

that Im  δm+1
Im+1, with Im+1 = (n + α, n + β) ⊆ Rm+1, since Im must be1064

(α+n−δm+1, β+n−δm+1), henceRm+1 = RmRm+1 is feasible for the sequence1065

δ′. I0 is maximally compatible with Rm+1 since it is maximally compatible with1066

Rm and Im  δm+1 Im+1.1067

If η > 0 there are two cases, whether the punctual interval (1 − η, 1 − η) is1068

in the partition P−→
δ

or not.1069

Case (1−η, 1−η) 6∈ P−→
δ

. Then, there exist α, β, such that 0 ≤ 1−α < 1−η <1070

1−β ≤ 1 and (1−α, 1−β) ∈ P−→
δ

. Then, P−→
δ
′ = P−→

δ
∪{(1−α, 1−η), (1−1071

η, 1 − η), (1 − η, 1 − β)} − {(1 − α, 1 − β)}. We separate three subcases:1072

(1) I ′0 = (1− α, 1− β); (2) I ′0 ≺ (1− α, 1− β); (3) (1− α, 1− β) ≺ I ′0.1073

1. Subcase I ′0 = (1− α, 1− β) (i.e., 1− α < 1− η < 1− β).1074

We consider each possible form for Rm+1, using Statement 1 to define1075

I0 ⊆ I ′0 = (1− α, 1− β) leading to a subregion Im+1 ⊆ Rm+1.1076

if Rm+1 = (n, n + 1) then let I0 = (1 − α, 1 − η) ⊆ (1 − α, 1 − β),1077

hence I0 ⊆ (0, 1− η), Im+1 = (n+ η+ 1−α, n+ 1) ⊆ (n, n+ 1).1078

if Rm+1 = (n+ 1, n+ 1) then let I0 = (1− η, 1− η) ⊆ (1−α, 1−β):1079

Im+1 = (n+ 1, n+ 1);1080

if Rm+1 = (n+ 1, n+ 2) then let I0 = (1− η, 1−β) ⊆ (1−α, 1−β):1081

I0 ⊆ (1− η, 1), Im+1 = (n+ 1, n+ η + 1− β) ⊆ (n+ 1, n+ 2).1082

Since for each form of Rm+1 we selected I0 ⊆ I ′0 such that Im+1 ⊆1083

Rm+1, I0 is compatible with Rm+1. To prove maximality of I0,1084

consider a real value γ 6∈ I0, 0 < γ < 1 and let I = (γ, γ). If1085

γ 6∈ I ′0, then by maximality of I ′0 it follows that the 1D-subregion1086

I is not compatible with Rm; therefore, I is also not compatible1087

with Rm+1 = RmRm+1. If γ ∈ I ′0 = (1 − α, 1 − β), then let1088

I  n+η (n+η+γ, n+η+γ) = I ′. We consider the three above cases1089

for I0. If I0 = (1−α, 1− η), then 1− η ≤ γ < 1−β: since γ ≥ 1− η,1090

it follows that n+ η + γ ≥ n+ 1, thus I ′ 6⊆ Rm+1 = (n, n+ 1). The1091

case I0 = (1− η, 1− β) is symmetrical. The case I0 = (1− η, 1− η)1092

is obvious, since if γ 6= (1− η) then I ′ 6= (n+ 1, n+ 1). Hence, I0 is1093

maximally compatible with Rm+1, i.e., Part 1 holds. Part 2 follows1094

from the fact that for each I0 in the three possible subcases there is1095

exactly one corresponding 1D-region Rm+1.1096

2. Subcase I ′0 = (1− λ, 1− κ), with 0 ≤ 1− λ ≤ 1− κ ≤ 1− α < 1− η,1097

i.e., I ′0 ⊆ (0, 1 − η). We claim that it is enough to let I0 = I ′0. By1098
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Statement 1, Im+1 ⊆ (n, n+ 1). By maximality of the partition P−→
δ

,1099

there exist 1 ≤ h ≤ m and k ∈ N≥0 such that k+κ = δ1+δ2+· · ·+δh.1100

By Statement 1, if I0 ⊆ (0, 1 − κ) and I0  k+κ Ih, we have Ih ⊆1101

(k, k+ 1). Hence, Rh = (k, k+ 1) or Rh = (k+ 1, k+ 1) by induction1102

hypothesis. Since 1 − κ < 1 − η, we have κ > η. By Proposition 111103

(with R = Rh, γ = κ, g = k and R′ = Rm+1, g
′ = n, γ′ = η), the only1104

possible value for Rm+1 to make Rm+1 feasible is Rm+1 = (n, n+1).1105

Hence, I0 is compatible with Rm+1, while maximality of I0 follows1106

from the maximality of I ′0: Part 1 holds.1107

Part 2 is immediate by induction hypothesis and uniqueness of Rm+1.1108

3. Subcase I ′0 = (1− κ, 1− λ), with 1− η < 1− κ ≤ 1− λ. This case is1109

symmetrical to the previous one and just briefly sketched here: there1110

are h, k such that k + κ = δ1 + δ2 + · · ·+ δh and Rh = (k + 1, k + 2)1111

by Statement 1. By Proposition 11, third case (with R = Rm+1, g =1112

n, γ = η and R′ = Rh, γ
′ = κ, g′ = k), Rm+1 = (n + 1, n + 2). Let1113

I0 = I ′0: Im+1 ⊆ (n+ 1, n+ 2) by Statement 1.1114

Case (1 − η, 1 − η) ∈ P−→
δ

. Then, P−→
δ
′ = P−→

δ
. By maximality of the partition1115

P−→
δ

, there exist h and k, with 1 ≤ h ≤ m and k ∈ N≥0 such that k +1116

η = δ1 + δ2 + · · · + δh. Since n + η = δ1 + · · · + δm+1, it follows that1117

δh+1 + · · ·+δm+1 = n−k. Since (1−η, 1−η) ∈ P−→
δ

, there exist α, β, with1118

0 ≤ 1−α < 1−η < 1−β ≤ 1 such that both (1−α, 1−η), (1−η, 1−β) are1119

in P−→
δ

. By Proposition 11, case γ′ = γ, 1D-region Rh uniquely determines1120

Rm+1.1121

Let I0 = I ′0 and let Ii = I ′i, for all 1 ≤ i ≤ m. Again, by induction1122

hypothesis I0 is maximally compatible with Rm. We now show that in1123

each of the possible values for I ′0 = I0, 1D-region Rm+1 makes Rm+11124

feasible; moreover, we can define Im+1 such that I0  n+η Im+1, showing1125

that Im+1 ⊆ Rm+1 by applying Statement 1. Thus, I0 is compatible1126

with Rm+1 and, by the maximal compatibility of I0 with Rm, it is also1127

maximally compatible, thus proving Part 1.1128

1. Subcase I ′0 = (1−α, 1− η). We have Im+1 = (n+ η+ 1−α, n+ 1) ⊆1129

(n, n+ 1) (since η + 1− α < 1, being 1− α < 1− η by hypothesis).1130

Ih = (k + η + 1 − α, k + 1), hence Rh = (k, k + 1). Therefore,1131

Rm+1 = (n, n+ 1) ⊇ Im+1 makes Rm+1 feasible.1132

2. Subcase I ′0 = (1 − η, 1 − η). We have Im+1 = (n + 1, n + 1) and1133

Ih = (k + 1, k + 1), which is also Rh. Therefore, Rm+1 = (n+ 1, n+1134

1) = Im+1 makes Rm+1 feasible.1135

3. Subcase I ′0 = (1 − η, 1 − β). We have Im+1 = (n + 1, n + η + 1 −1136

β) ⊆ (n + 1, n + 2). Again, Ih ⊆ (k + 1, k + 2) = Rh. Therefore,1137

Rm+1 = (n+ 1, n+ 2) makes Rm+1 feasible.1138

The subcases where I ′0 ≺ (1−α, 1− β) or (1−α, 1− β) ≺ I ′0 are identical1139

to the subcases 2 and 3 of the previous Case (1− η, 1− η) 6∈ P−→
δ

and may1140

be skipped.1141
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Part 2 derives from the fact that, in each of three above subcases for I0,1142

exactly one region Rm+1 was shown to exist, such that Im+1 ⊆ Rm+1, with1143

I0  δ1+···+δm+1
Im+1, and (0, 1)R0 . . . Rm+1 is feasible for δ1, . . . , δm+1:1144

by induction hypothesis, (0, 1)R0 . . . Rm is the only feasible sequence for1145

δ1, . . . , δm, thus uniqueness is proved.1146

1147

Elimination of non-initialized clocks1148

Let X̃ be a set of clocks. Define a new set D of clocks di,x, for all 0 ≤ i ≤1149

1 + 3C and for all x ∈ X̃. For simplifying some of the following formulae, we1150

add Now to set D. Let ZX̃ be the set of region clocks for X̃, which is included1151

in the set ZD∪X̃ of the region clocks for D ∪ X̃.1152

We summarize here the remainder of the proof. In the proof of Theorem 3,1153

we define a formula φ′, language equivalent to φ, such that all its clocks are1154

well-initialized. Formula φ′ includes region clocks ZX̃ over X̃, that are used to1155

replace the clock constraints over the clocks X of φ until their first reset. Each1156

clock x̃ ∈ X̃ is a copy of a clock x ∈ X, behaving in the same way until the1157

first reset of x: x̃ is instead never reset. The region clocks in ZX̃ keep track of1158

the regions visited by clocks in X̃ so that clock constraints of the form x ∼ c1159

can be replaced, before a reset, by [x̃ ∼ c]. The regions of x̃ are relevant in φ′1160

only in the prefix ending at the first reset of the corresponding clock x, since1161

after this reset formula φ′ may use the actual value of x. Since formula φ′ does1162

not use the actual value of a clock x ∈ X before the first reset of x itself, the1163

initial value of x can be assumed to be 0—i.e., well-initialized. Formula φ′ does1164

not actually include clocks in X̃, but only the region clocks ZX̃ ; the latter can1165

always be assumed to be well-initialized, as the only relevant value of a region1166

clock is whether it is greater than 0 or not. To define the correct evolution of1167

clocks in X (and X̃) by means of the region clocks in ZX̃ , the well-initialized1168

set D of clocks is used to measure the time distance among the positions of1169

the model when x enters or leaves a region, with some suitable constraints over1170

clocks D added to φ′. Given a model for φ, inducing a temporal sequence
−→
δ1171

and a region sequence for the clocks of X, there exists a model of φ′ such that1172

the clocks in D determine the same sequence
−→
δ , which is compatible with the1173

region sequence for clocks X̃.1174

Lemma 5 is fundamental to show that the evolution of the regions captured1175

by clocks in ZX̃ can be determined only by using clocks in D, without actually1176

“bridging” the region clocks ZX̃ and the clocks in X̃. Thus, clocks in X̃ can be1177

eliminated and do not actually appear in the formula φ′ of Theorem 3. Note that1178

it would be possible to prove the same result for region clocks ZX , instead of1179

ZX̃ ; however, having a different set of clocks X̃, which cannot be reset, simplifies1180

both the statement and the proof of Lemma 5, and allows us to directly reuse1181

the previous results on complete and monotonic sequences of regions.1182

Define the following shorthand, with the intended meaning that there is1183

region change for x if the current region is different from the previous or the1184
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next one (which is captured by a change in one of the clocks z[x∼c] associated1185

with x):1186

changex
def
=

∨
z[x∼c]∈Z

(¬[x ∼ c] ∧ (Y ([x ∼ c]) ∨X ([x ∼ c])))

As defined by the following formula, clock di,x is reset at the i-th change of1187

region as defined by changex:1188

reset(di,x)
def
= di,x = 0⇔ changex ∧Y

 ∧
1≤j≤3C

dj,x > 0

S(di−1,x = 0)


Next, formula initX̃ captures sequences of regions in which each x is in [0, 1)1189

or greater than C in the initial instant, while noreset(ZX̃) that each x is never1190

0 after the first position:1191

init(ZX̃) =
∧
x∈X̃

([x < 1] ∨ [C < x])

noreset(ZX̃) =
∧
x∈X̃

XG(¬[x = 0])

while initD captures the correct initialization of the new clocks in D and the1192

fact that d0,x is never reset outside position 0:1193

initD =
∧
x∈X̃

1≤i≤3C

di,x > 0 ∧ d0,x = 0 ∧XG(d0,x > 0)

Finally, updD is defined as follows:1194

updD = ΘZ
D∪X̃ ,C

∧ bridge(D) ∧ initD ∧
∧
x∈X̃

1≤i≤3C

G (reset(di,x))

Correspondence between clock assignments for X̃ and for D ∪ ZX̃ .1195

The natural sequence for clock x ∈ X̃ for a model (π, σ) of the region1196

automaton ΘZ
X̃
,C—with σ : N≥0 × ({Now} ∪ ZX̃) → R≥0—is the (unique)1197

infinite sequence R0(x)R1(x) . . . of 1D-regions such that, for every i ∈ N≥0,1198

(π, σ), i |= JRi(x)K (recall that JRi(x)K is the maximally consistent set of clock1199

constraints on the region clocks ZX̃ that represents the region Ri).1200

The following property ensures that if a 1D-subregion I0 ∈ R0(x) for a clock1201

x ∈ X̃ is compatible with a sequence of length limited by 3C, then it is also1202

compatible with the infinite natural sequence. This immediately entails that1203

the number of clocks in D is bounded by (1 + 3C)|X̃|, which will allow us to1204

replace the set of clocks X̃ with a bounded number of well-initialized clocks.1205
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Lemma 4. Let (π, σ) be a model of init(ZX̃) ∧ noreset(ZX̃) ∧ updD, with σ :1206

N≥0 × ({Now} ∪ D ∪ ZD∪X̃) → R≥0 ; let ∆i = σ(i,Now) − σ(0,Now) and1207

δi = ∆i −∆i−1 for all i ≥ 1, and let R0(x)R1(x) . . . be the natural sequence of1208

σ for x.1209

For all x ∈ X̃ there exist one, and only one, value m ≤ 1 + 3C and one, and1210

only one, sequence of m positions 0 = i0 < i1 < · · · < im ∈ N≥0 such that:1211

1. for all i ∈ N≥0, if Ri(x) 6= Ri+1(x), then there is 0 ≤ j ≤ m− 1 such that1212

ij = i, ij+1 = i+ 1;1213

2. the sequence of 1D-regions Rm = Ri0(x)Ri1(x) . . . Rim(x) is compactly1214

monotonic and complete;1215

3. Rm is feasible for
−→
δ′ = ∆i1 −∆i0 , . . . ,∆ij −∆ij−1 , . . . ,∆im −∆im−1 .1216

4. If a 1D-subregion I0 ⊆ (0, 1) is compatible with Rm for
−→
δ′ , then I0 is1217

compatible with the natural sequence R0(x)R1(x) . . . for δ1δ2 . . ..1218

Proof. Parts (1) and (2) follow from the definition of reset and changex. In1219

fact, the positions i1, . . . , im are exactly those where changex holds; moreover,1220

reset(dj,x) holds whenever at position ij both changex holds and the last position1221

where changex held was ij−1.1222

Part (3) follows from the fact that at a position ij the only clock to be1223

reset is dj,x. Therefore, at position ij the value of clock dh,x, for h < j, is1224

equal to ∆ij −∆ih . Moreover, the region automaton in updD ensures that the1225

region clocks in ZX̃ are consistent with the region clocks in ZD, and the latter1226

are consistent with the actual values of clocks in D by virtue of the bridge(D)1227

formula in updD. Therefore, the sequence of regions is feasible for
−→
δ′—the1228

definition of feasibility (for a clock x) considers all possible distances between1229

pairs of regions (Rij (x), Rih(x)), which are tracked by the clocks d0,x, d1,x, . . .1230

in D.1231

We now prove Part (4). By definition of compatible subregion, there ex-1232

ist m non-empty subregions, here denoted Ii1 ⊆ Ri1 , . . . , Iim ⊆ Rim such that1233

Iij−1
 δ′j

Iij for every 1 ≤ j ≤ m, where δ′j =
∑
ij−1<i≤ij δi. By defini-1234

tion of compactly monotonic sequence, for every 1 ≤ j ≤ m, if i ∈ N≥0 is1235

such that ij−1 < i < ij , then we have Ri = Rij−1
= Rij . By definition of1236

δ′j and by Proposition 6, Part 2, there exist 1D-subregions I1+ij−1 , . . . , Iij−11237

such that Iij−1  δ1+ij−1
I1+ij−1

· · ·  δij
Iij . Every finite prefix of the nat-1238

ural sequence is monotonic because init(ZX̃) ∧ noreset(ZX̃) guarantees that1239

for each clock x, z[x=0] always captures that x = 0 is false—that is, 1D-1240

region (0, 0) is never reached, apart possibly in position 0. Then, it holds that1241

I1+ij−1
⊆ Rij−1

= Rij , . . . , Iij−1 ⊆ Rij−1 = Rij . Therefore, we can find a1242

1D-subregion Ii for every position i from 0 to im. Since Rim is (C,+∞), also1243

Ri = (C,+∞) for every i ≥ im, hence just define Ii to be the 1D-subregion such1244

that Iim  σ(i,Now)−σ(im,Now) Ii for every i > im.1245
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The following lemma is fundamental to prove the existence of an initial1246

assignment for all the clocks in X̃ if there is a clock assignment satisfying formula1247

updD. The proof is based on Lemma 3, which guarantees the existence of a non-1248

empty 1D-subregion for each clock, and on Lemma 4.1249

Notice that no clock of X̃ appears in updD, since the latter does not include1250

the bridge formulae over clocks in X̃. The idea of the next lemma is to show1251

that the bridge formula over X̃ is indeed not necessary to evaluate correctly the1252

region clocks of ZX̃ .1253

Lemma 5. Let ψ be a diagonal-free CLTLoc formula defined over a set of clocks1254

Y such that Y ∩ (D ∪ X̃) = {Now}; Y may also include region clocks of ZX̃ ,1255

but only of the form z[x∼c]. Then, the following two formulae are language1256

equivalent:1257

ψD = ψ ∧ init(ZX̃) ∧ noreset(ZX̃) ∧ updD (6)

ψX̃ = ψ ∧ init(ZX̃) ∧ noreset(ZX̃) ∧ bridge(X̃) ∧ΘZ
X̃
,C (7)

Moreover, every timed word in the language of ψD has a model where all1258

clocks in D ∪ ZX̃ are well-initialized.1259

Proof. We first prove that every timed word (π, τ) in the language of ψX̃ is also1260

in the language of ψD.1261

Let σX̃ : N≥0 × ({Now} ∪ Y ∪ X̃ ∪ ZX̃) → R≥0 be a clock assignment such1262

that [(π, σX̃)] = (π, τ); thus, (π, σX̃) |= ψ∧ init(ZX̃)∧noreset(ZX̃)∧bridge(X̃)∧1263

ΘZ
X̃
,C .1264

We define a clock assignment σD : N≥0 × (D ∪ Y ∪ ZD∪X̃) → R≥0 such1265

that σD(i, z) = σX̃(i, z) for all i ∈ N≥0, z ∈ {Now} ∪ Y ∪ ZX̃ . We have to1266

complete σD by assigning values also to the other clocks in D, but obviously1267

by the previous assignments we already ensured that (π, σD) |= ψ ∧ init(ZX̃) ∧1268

noreset(ZX̃)∧ΘZ
X̃
,C . Since no clock in set D∪ X̃ is in ψ, if (π, σX̃) satisfies ψ,1269

then also (π, σD) satisfies ψ.1270

Since no clock in X̃ is reset after the first position according to σX̃ , for each1271

x ∈ X̃ there exists n > 0 such that the clock assignment σX̃ defines a complete1272

monotonic sequence of n 1D-regions, one region for each position, which can1273

be enumerated as R0R1 . . . Rn, with σX̃(i, x) ∈ Ri for all 0 ≤ i ≤ n, with1274

Rn = (C,+∞) and R0 being either (0, 0) or (0, 1).1275

Let Ri0Ri1 . . . Rim , with m ≤ n be the complete, compactly monotonic se-1276

quence extracted from R0R1 . . . Rn, with Ri0 = R0.1277

We complete the definition of σD as follows, by assigning the values of the1278

clocks in D so that (π, σD) |= updD. For every x ∈ X̃, σD(0, d0,x) = 0.1279

For all 1 ≤ j ≤ m− 1, for all h ∈ N≥0:1280

1. If 0 ≤ h < ij , then let σD(h, dj,x) = σX̃(h,Now).1281

2. If ij ≤ h, then let σD(h, dj,x) = σX̃(h,Now)− σX̃(ij ,Now).1282
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We also assign the values of region clocks ZD∪X̃ that are not in ZX̃ to1283

match the values assigned to clocks D and X̃ to satisfy bridge(D) and the region1284

automaton ΘZ
D∪X̃ ,C

; for example, for all i ∈ N≥0 we assign σD(i, z[di,x∼c]) = 01285

if, and only if, σD(i, di,x) ∼ c holds and σD(i, z[di,x∼x+c]) = 0 if, and only if,1286

σD(i, di,x) ∼ σX̃(i, x) + c.1287

By construction, σD is well-initialized (since region clocks can always be1288

modified to be well-initialized) and satisfies updD. It is immediate to verify that1289

mapping σD is a clock assignment, since at each position h ≥ 1 all clocks, which1290

are not reset, are incremented of the same amount σX̃(h,Now)−σX̃(h−1,Now).1291

We now prove that every timed word (π, τ) in the language of ψD is also in1292

the language of ψX̃ .1293

First, we notice that in every model σD satisfying updD, all clocks in D1294

and all region clocks in ZX̃ can be assumed to be well-initialized. Hence, let1295

σD : N≥0 × (Y ∪D ∪ ZD∪X̃)→ R≥0 be a well-initialized clock assignment such1296

that [(π, σD)] = (π, τ), thus satisfying ψ∧updD∧init(ZX̃)∧noreset(ZX̃). Notice1297

that by definition of updD, formula ΘZ
D∪X̃ ,C

holds, which implies that also1298

ΘZ
X̃
,C is satisfied. Thus, the values of clocks in ZX̃ define a natural sequence1299

of regions R0(x)R1(x) . . . for every clock x, one region for each position. Notice1300

that init(ZX̃)∧ noreset(ZX̃) symbolically imposes that 1D-region (0, 0) is never1301

reached for all clocks in X̃ (no clock reset), apart possibly in position 0, hence1302

the sequence is monotonic. By Lemma 4, Parts (1), (2) and (3), there exist a1303

value m, with 1 ≤ m ≤ 3C, and m+1 positions 0 = i0 < i1 < · · · < im such that1304

Rm = Ri0(x)Ri1(x) . . . Rim(x) is a complete and compactly monotonic sequence1305

which is feasible for region distances δi1 , . . . , δim , with R0 = Ri0 .1306

We now define a clock assignment σX̃ : N≥0× (Y ∪{Now}∪ X̃ ∪ZX̃)→ R≥01307

satisfying also bridge(X̃). For every i ∈ N≥0, let σX̃(i, z) = σD(i, z) for all1308

z ∈ Y ∪ {Now} ∪ ZX̃ . If R0(x) = (0, 0), then for every h ≥ 0, let σX̃(h, x) =1309

σD(h,Now)−σD(0,Now). It is obvious that σX̃ is a clock assignment for x and1310

it is in agreement with the regions of x assigned by σD.1311

If R0(x) = (0, 1), by Lemma 3, Part 1, applied to sequence Rm, there exists1312

a non-empty 1D-subregion I0(x) ⊆ Ri0(x) = R0(x), compatible with Rm for1313

δi1 , . . . , δim . Let σX̃(0, x) = α, where α is any value in I0. For every h > 0,1314

let σX̃(h, x) = α + σD(h,Now) − σD(0,Now). It is obvious that σX̃ is a clock1315

assignment (although in general it is not well-initialized). We show that it is in1316

agreement with σD. By Lemma 4, Part (4), I0(x) is also compatible with the1317

sequence R0(x)R1(x) . . . for the region distances δh = σD(h,Now) − σD(h −1318

1,Now) = σX̃(h,Now) − σX̃(h − 1,Now), 1 ≤ h. Therefore, σX̃(h, x) ∈ Rh(x),1319

which means that σX̃(h, x) ∼ c holds if, and only if, σX̃(h, z[x∼c]) = 0 holds.1320

Thus, the clock assignment σX̃ satisfies bridge(X̃). This entails that, since Y1321

may only include region clocks of the form z[x∼c], but not of the form z[x∼y+c],1322

correctly satisfying rectangular constraints x ∼ c through formula bridge(X̃) is1323

enough to make the value of formula ψ accurate, even if the ordering of the1324

fractional parts of the clocks of X̃ does not match the value of region clocks1325

z[x∼y+c].1326
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Proof of Theorem 31327

Given a formula φ defining L, we can assume by Proposition 10 that it1328

is a diagonal-free formula defined over a set of clocks X ∪ {Now}. Moreover,1329

by the same proposition, we may assume that every non-Zeno timed word in1330

the language of φ has a clock assignment σ such that for all x ∈ X we have1331

0 ≤ σ(0, x) < 1, or σ(0, x) > C or σ(0, x) = σ(0,Now).1332

Let X̃ be a copy of set X and let ZX̃ be the set of region clocks of X̃.1333

We define a new formula r(φ), defined over the set of clocks X∪{Now}∪ZX̃ ,1334

by replacing every clock constraint over a clock x ∈ X with the corresponding1335

constraint on a region clock in ZX̃ as long as clock x has not been reset. For1336

every integer c, 0 < c ≤ C:1337

r(x ∼ c) := (P(x = 0)⇒ x ∼ c) ∧ (¬P(x = 0)⇒ [x̃ ∼ c])
r(x = 0) := x = 0

Recall that P(ψ) is an abbreviation for >Sψ (i.e., ψ holds now or in the1338

past). For instance, r(x < c) replaces the constraint x < c with a formula1339

stating that, if x was reset, then x < c holds, otherwise [x̃ < c] holds—i.e., the1340

symbolic region of x is such that x < c holds. Therefore, r(φ) does not include1341

clocks in X̃; in addition, it includes region clocks of the form z[x̃∼c], but none of1342

the form z[x̃∼ỹ+c]—therefore it satisfies the hypotheses for formula ψ of Lemma1343

5. Define the following formula1344

φ′ = r(φ) ∧ updD ∧ init(ZX̃) ∧ noreset(ZX̃)

over the set of clocks D ∪ X ∪ ZX̃ . Since the actual value of the clocks that1345

are not reset at position 0 is irrelevant for the evaluation of r(φ), we can safely1346

assume that all those clocks are equal to Now in the initial position—i.e., all1347

clocks in a model of φ′ can be assumed to be well-initialized.1348

We notice that, by Lemma 5, φ′ is language equivalent to

φ′′ = r(φ) ∧ bridge(X̃) ∧ noreset(ZX̃) ∧ init(ZX̃) ∧ΘZ
X̃
,C

defined over the set of clocks X ∪ ZX̃ ∪ X̃ ∪ {Now} (i.e., it also includes the1349

copy clocks X̃, but no clock in D). Notice that, in every model of φ′′, every1350

constraint of the form x̃ ∼ c has a value compatible with that of z[x̃∼c] because1351

of the bridge formula.1352

To show that φ is language equivalent to φ′, it is enough to show that φ is1353

language equivalent to φ′′.1354

Given a timed word (π, τ) in the language of φ, we prove that (π, τ) is also1355

in the language of φ′′. Let σ : N≥0× (X ∪{Now})→ R≥0 be a clock assignment1356

such that [(π, σ)] = (π, τ). Define a clock assignment σ′′ : N≥0 × (X ∪ {Now} ∪1357

ZX̃ ∪ X̃)→ R≥0 for φ′′ as follows.1358

37



As in the proof of Lemma 1, let ι be the smallest value of all i ∈ N≥01359

such that σ(i,Now)− σ(0,Now) > C (which must always exist since the timed1360

word is non-Zeno); for every x ∈ X let ιx be the smallest value of all i ∈1361

N≥0 such that i < ι and σ(i, x) = 0 if any such i exists, otherwise (with an1362

abuse of notation) let ιx = +∞. Let σ′′(i, x) = σ(i, x) for all i ≥ 0 and1363

x ∈ X ∪ {Now}. For every clock x̃ ∈ X̃, let σ′′(0, x̃) = σ(0, x) and σ′′(i, x̃) =1364

σ(i,Now)− σ(0,Now) + σ(0, x). Finally, define σ′′(i, z[x̃∼c]) = 0 if, and only if,1365

σ′′(i, x̃) ∼ c and σ′′(i, z[x̃∼ỹ+c]) = 0 if, and only if, σ′′(i, x̃) ∼ σ′′(i, ỹ) + c. Thus,1366

(π, σ′′) is a model of bridge(X̃)∧noreset(ZX̃)∧ init(ZX̃)∧ΘZ
X̃
,C . To show that1367

(π, σ′′) is a model of φ′′, we are left to prove that it is a model of r(φ).1368

Consider in fact a subformula of the form r(x ∼ c): we have that for i ≥ ιx,1369

(π, σ′′), i |= r(x ∼ c) holds if, and only if σ(i, x) ∼ c also holds; for 0 ≤ i < ιx,1370

(π, σ′′), i |= r(x ∼ c) if, and only if, σ′′(i, z[x̃∼c]) = 0, which (because of the1371

bridge formula) holds if, and only if, σ′′(i, x̃) ∼ c holds; by definition of σ′′, the1372

latter formula, before ιx, holds if, and only if, σ(i, x) ∼ c holds. Hence, in every1373

position the evaluation of r(φ) according to (π, σ′′) is the same of evaluation of1374

φ according to (π, σ).1375

Given a timed word (π, τ) in the language of φ′′, we now prove that (π, τ)1376

is also in the language of φ. Let (π, σ′′) be such that [(π, σ′′)] = (π, τ), with1377

σ′′ : N≥0 × (X ∪ {Now} ∪ ZX̃ ∪ X̃)→ R≥0. For every x ∈ X, let ιx be defined1378

as above, considering clock assignment σ′′.1379

Let σ : N≥0 × (X ∪ {Now}) → R≥0 be defined as follows. For every i ≥ 0,1380

let σ(i,Now) = σ′′(i,Now); for every x ∈ X, if i ≥ ιx, then let σ(i, x) = σ′′(i, x)1381

and if 0 < i < ιx then let σ(i, x) = σ(0, x) + σ(i,Now)− σ(0,Now).1382

We need to assign the initial value σ(0, x). By Lemma 4, Part (1) to (3), the1383

natural sequence of regions determined by region clocks in ZX̃ corresponds to1384

a compactly monotonic and complete sequence Rm = Ri0(x)Ri1(x) . . . Rim(x),1385

feasible for
−→
δ = ∆i1 − ∆i0 , . . . ,∆ij − ∆ij−1

, . . . ,∆im − ∆im−1
(where ∆i =1386

σ(i,Now)− σ(0,Now)).1387

By Lemma 3, Part 1, there exists I0 maximally compatible with Rm for δ.1388

We can select thus any value in I0 as the initial value σ(0, x). As in the first1389

part of the proof, we can show that, also before ιx, σ(i, x) ∼ c holds if, and only1390

if (π, σ), i |= r(x ∼ c).1391

We remark that in the size of formula φ′ defined in the proof of Theorem 3,1392

as for the case of formula φ′ in the proof of Theorem 2, the dominant terms are1393

the size of formula φ and the size of the region automaton ΘZ
D∪X̃ ,C

.1394

7. On arbitrarily initialized Timed Automata1395

In this section we extend the results of Section 5 and of Section 6 to ar-1396

bitrarily initialized TA, focusing on non-Zeno timed languages. To this end,1397

we exploit Proposition 5, and in particular the translation defined in its proof1398

which shows how, given an a.i. TA A, we can build a CLTLoc formula φA that1399

is language equivalent with respect to A.1400
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Theorem 4. Consider an arbitrarily initialized TA A, which can include clock1401

constraints of the form x ∼ y + c, and which accepts the non-Zeno timed lan-1402

guage LA. There exists an initialized TA A′, which does not contain diagonal1403

constraints x ∼ y + c, which accepts LA.1404

Proof. From Proposition 5, given an a.i. TA A we can define a CLTLoc formula1405

φA that is language equivalent with respect to A. Thanks to the non-Zenoness1406

of language LA and Theorem 3 we can build a CLTLoc formula φ′A, whose ini-1407

tialized timed language is the same one defined by φA, that is, LA. In addition,1408

the translation defined in the proof of Theorem 3 is such that formula φ′A does1409

not include diagonal constraints.1410

Finally, from Theorem 1, we can build from φ′A an initialized TA A′ that1411

accepts language LA. A close inspection of the translation from φ′A to A′ (which1412

ultimately is the one of the proof of Theorem 4 of [12]) shows that it does not1413

introduce any diagonal constraints.1414

Corollary 3. A non-Zeno timed language L is recognized by an a.i. TA A if,1415

and only if, there is an initialized TA A′ that recognizes L.1416

Corollary 4. Given an a.i. TA A that recognizes non-Zeno timed language L,1417

there is a diagonal-free TA A′ that recognizes L.1418

8. Closure of non-Zeno timed regular languages with respect to left1419

quotient1420

Let us consider timed languages made of finite words, i.e., timed words1421

with a finite number of positions. To denote that a timed word is finite, or1422

that a language only includes timed words that are finite, we add a subscript1423

F , as in (πF , τF ) and LF . A language LF is hereto called timed ∗-language1424

if it only includes finite timed words. A timed word (πF , τF ) with n posi-1425

tions is recognized by a TA A if, and only if, (qi0 , v0)
πF (1)−−−−→
τF (1)

(qi1 , v1)
πF (2)−−−−→
τF (2)

1426

(qi2 , v2), . . . , (qin−1
, vn−1)

πF (n)−−−−→
τF (n)

(qin , vn) is a finite run of A that ends in an1427

accepting state (i.e., such that qin ∈ B). We say that a timed ∗-language LF1428

is timed ∗-regular if there is a Timed Automaton recognizing all, and only, the1429

words of LF .1430

We define the finite left quotient of a timed ω-language with respect to a1431

timed ∗-language as follows.1432

Definition 10. Let L be a timed ω-language and let QF be a timed ∗-language.1433

The finite left quotient, written L/QF , of L with respect to QF is the timed ω-1434

language such that a timed word (π′, τ ′) is in L/QF if, and only if, there is a finite1435

timed word (πF , τF ) ofQF such that (πF (1), τF (1)), . . . , (πF (n), τF (n)), (π′(1), τ ′(1)), (π′(2), τ ′(2)), . . .1436

is a timed ω-word of L.1437

Consider, for example, the timed ∗-language QF such that a timed word1438

(πF , τF ), with πF : {1, . . . , n} → ℘({a, b}) and τF : {1, . . . , n} → R≥0, is in1439
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QF if, and only if, the last symbol of the timed word is b, and it occurs at a1440

timestamp greater than 1, while all others are a’s—that is, for all 1 ≤ i < n,1441

it holds that πF (i) = {a}, and also πF (n) = {b} and τF (n) > 1. Let L be1442

the timed ω-language over alphabet {a, b} such that (π, τ) ∈ L if, and only1443

if, there is j ∈ N>0 such that π(j) = {b} holds, and for all i ∈ N>0, i 6= j,1444

it holds that π(i) = {a}—that is, L is made of all and only timed words in1445

which exactly one b appears, and all other symbols are a’s. Then, L/QF is1446

the timed ω-language of all timed words in which only a’s appear, and they1447

have timestamps greater than 1. For example ({a}, 0.7), ({b}, 1.2) is in QF ,1448

({a}, 0.7), ({b}, 1.2), ({a}, 1.5), ({a}, 2.5), ({a}, 3.5) . . . is in L, and1449

({a}, 1.5), ({a}, 2.5), ({a}, 3.5) . . . is in L/QF . Notice that the timed word that1450

belongs to the quotient starts from the first timestamp after the removed prefix,1451

so the timestamps of the suffix are unchanged.1452

We can prove the following result.1453

Theorem 5. Let L be a non-Zeno timed ω-regular language and let QF be a1454

timed ∗-regular language. Then, the finite left quotient L/QF is timed ω-regular.1455

Proof. To prove the claim, we show that we can build a CLTLoc formula that1456

defines L/QF , and we use it to obtain an initialized TA that accepts L/QF .1457

Let AL and AQF be two TA accepting the two languages. The idea is to1458

keep track of the regions in which the clocks of AL and AQF are during their1459

execution, compose the two automata to recognize timed words whose prefix1460

is in QF , and recognize the regions that are reached by the clocks when the1461

prefix ends. Those are the regions from which the TA recognizing the finite left1462

quotient starts its execution.1463

More precisely, consider automaton A′QF , which is the same as AQF , except1464

that all control states are accepting. In addition, we introduce a fresh clock, ts,1465

which is never reset, hence it tracks the value of the timestamp. If we build the1466

intersection of AL and A′QF through the usual TA (over ω-words) intersection,1467

we obtain a new TA, which accepts all timed ω-words of L that have a prefix1468

with a (not necessarily accepting) run in AQF . Let AL·QF be this automaton.1469

The set of control states of AL·QF is the product of the control states of AL1470

and of AQF , as the latter are the same as those of A′QF . Then, consider a1471

timed ω-word (π, τ) that has an accepting run in AL·QF that goes through an1472

accepting control state qQF of AQF . The timed ω-word that corresponds to the1473

suffix of (π, τ) starting from qQF belongs to the finite left quotient L/QF . In1474

addition, all timed ω-words of L/QF have an accepting run in AL·QF that visits1475

at least once an accepting control state qQF of AQF .1476

Let us now consider the region automaton [1]R(AL·QF ) corresponding to TA1477

AL·QF . The transitions of the region automaton are labeled with the symbols1478

of the transitions of the original TA, but the automaton embeds in its states the1479

evolution of the clocks (including the constraints that hold on the clocks when1480

the transitions are taken). In addition, we explicitly add the clock constraints1481

of the target region of each transition to the guard of that transition. More1482

precisely, each transition 〈q,R〉 R′S ,a−−−→ 〈q′, R′〉 of R(AL·QF ) corresponds to a1483
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transition q
γ,a,S−−−→ q′ of AL·QF (where R′S is the set of clock constraints of1484

region R′ minus all constraints where a clock x ∈ S appears), and the clock1485

constraints of region R′S satisfy guard γ. We build the composition of AL·QF1486

and R(AL·QF ), whose set of control states is the product of the control states1487

and of the regions of AL·QF , and which includes, for each pair of transitions as1488

above, the transition 〈q,R〉 γ∧R′S ,a,S−−−−−−→ 〈q′, R′〉. A state 〈q,R〉 of the composed1489

automaton is accepting if, and only if, q inAL·QF is accepting. We callAL·QF×R1490

the composed automaton. AL·QF×R recognizes the same timed ω-language as1491

AL·QF , but it also keeps track of the clock regions reached by the automaton in1492

the accepting states.1493

By Proposition 5, we translate automaton AL·QF×R into a language equiv-1494

alent CLTLoc formula φAL·QF×R . The quotient language L/QF corresponds to1495

the suffixes of timed words (π, σ) of AL·QF×R that start from states in which1496

the component qQF from the state space of AQF is accepting in the latter au-1497

tomaton. To define these suffixes, we define a new formula φL/QF , by modifying1498

φAL·QF×R as follows: we replace the subformulae that capture the first tran-1499

sition of automaton AL·QF×R [12, Formula (3) of Section 4.1] with new ones,1500

each representing a transition originating from a state that is reachable from the1501

initial one and in which the qQF component is accepting. Also, we remove the1502

constraints (2) and (3) that link clocks xi with clock Now, and we add a con-1503

straint Now = ts1 establishing the equality of clock Now of formula φAL·QF×R1504

with clock ts1 representing the value of clock ts introduced above—that is, we1505

establish that the clock tracking the timestamp in formula φL/QF has the same1506

value of the one tracking the timestamp in the original automaton.1507

It is standard to show that the timed language of formula φL/QF is indeed1508

the quotient L/QF . In fact, each a timed word (π′, τ ′) of L/QF is such that there1509

is an accepting run (qi0 , v0)
π(1)−−−→
τ(1)

(qi1 , v1), . . . , (qin−1
, vn−1)

π(n)−−−→
τ(n)

(qin , vn)
π′(1)−−−→
τ ′(1)

1510

(qin+1
, vn+1)

π′(2)−−−→
τ ′(2)

(qin+2
, vn+2), . . . of automaton AL·QF×R such that the QF1511

component of state qin is accepting. It can be shown as in the proof of Theorem1512

2 of [12] that from the suffix (qin , vn)
π′(1)−−−→
τ ′(1)

(qin+1
, vn+1)

π′(2)−−−→
τ ′(2)

(qin+2
, vn+2), . . .1513

of the run one can build a CLTLoc model (π′, σ′) that satisfies formula φL/QF1514

and such that (π′, τ ′) = [(π′, σ′)] holds.1515

Dually, consider a CLTLoc model (π′, σ′) of formula φL/QF and the timed1516

word (π′, τ ′) such that (π′, τ ′) = [(π′, σ′)] holds. As in the proof of Theorem1517

2 of [12], one can build an accepting run (qin , vn)
π′(1)−−−→
τ ′(1)

(qin+1
, vn+1)

π′(2)−−−→
τ ′(2)

1518

(qin+2
, vn+2), . . . of automaton AL·QF×R starting from a configuration (qin , vn)1519

in which the QF component of qin is accepting. By construction, (qin , vn) is1520

reachable from the initial configuration (qi0 , v0) of AL·QF×R. Then, thanks1521

to the fact that qin includes the information about the region of clock ts, one1522

can choose a delay δn, a configuration (qin−1 , vn−1), and a π(n) ∈ ℘(AP ) such1523
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that (qin−1 , vn−1)
π(n)−−−−−−→

τ ′(1)−δn
(qin , vn)

π′(1)−−−→
τ ′(1)

(qin−1 , vn−1), . . . is an accepting run1524

starting from (qin−1 , vn−1), and so on, until an accepting run (qi0 , v0)
π(1)−−−→
τ(1)

1525

(qi1 , v1), . . . , (qin−1
, vn−1)

π(n)−−−→
τ(n)

(qin , vn)
π′(1)−−−→
τ ′(1)

(qin+1
, vn+1), . . . of AL·QF×R is1526

obtained.1527

By Theorem 3, there exists a CLTLoc formula φ′L/QF
whose initialized timed1528

language is L/QF and by Theorem 1 we can build an initialized TA A′L/QF that1529

accepts language L/QF , hence L/QF is timed ω-regular.1530
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