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Abstract The recovery of the stress gradient in fi-

nite elements problems is a widely discussed topic with

many applications in the design process. The stress gra-

dient is related to the second derivative (Hessian) of

the nodal displacements and numerical techniques are

required for its calculation. Particular difficulties are

encountered in the reconstruction of the stress gradi-

ent in the boundary regions of the domain. This is of

particular concern in most applications, especially in

mechanical components, where the maximum values of

stresses are often located in these regions and the stress

gradient has a strong influence on the fatigue life of the

component.

This paper presents a comparison between some al-

ready published, partially modified, recovery techniques

and a different approach based on radial basis function

networks. The aim of the paper is to compare the per-

formances of the different approaches for a number of

element types with particular focus on the boundary

regions. Some examples of mechanical interest are con-

sidered.

1 Introduction

Finite elements analysis is a standard tool for the so-

lution of many problems in engineering. Finite element

codes can solve mathematical model based on partial

differential equations that cannot be solved in analyti-

cal form [12].
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Models based on standard C0 elements can provide

piecewise continuous approximation of the unknown so-

lution of the model. First order derivative of the solu-

tion can be computed with a good level of accuracy only

in given points of the elements [55] and are discontinu-

ous across different elements [57]. Second order deriva-

tives cannot be computed if linear or bi-linear (from

now on denoted as linear for the sake of simplicity) ele-

ments are used and are very poorly approximated with

quadratic elements.

The computation of first (gradient) and second deriva-

tive (hessian) of the solution field of finite element prob-

lems are well discussed topics. The use of C1 or mixed

C0−1 continuity elements can provide continuous deriva-

tives across the elements [50, 40, 51]. Such implemen-

tations require additional degrees of freedom [17] at

nodes leading to high computational costs. Moreover,

additional boundary conditions are required [51, 9, 34].

The computation of such boundary condition is still not

completely solved and these elements are still under de-

velopment [7, 11].

A different approach consists in the a posteriori re-

construction of the first and second derivatives [12]. Re-

covery methods smooth the derivative fields, are able

to extract high order information and can generally be

adapted to different applications and numerical schemes

[43]. In general, these methods start from some result

of the finite element analysis (typically the value of the

solution at nodes [54, 19] or of its derivative at some

particular point [55, 56]) and by means of interpola-

tion approximate the first or second derivative in some

points of interest. The interpolation is performed over

a patch of elements. The reconstructed derivatives are

continuous inside each patch.

The order of the interpolating polynomial of the gra-

dient field over a patch is usually limited by the num-
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ber of superconvergent points present inside the patch

[20]. Superconvergent points are locations inside the el-

ement where the solution is more accurate, i.e. they

are optimal sampling points in the elements where the

raw stresses obtained from the finite element solution

show a higher-order accuracy [20]. If interpolating func-

tions of order higher than the order of the shape func-

tions are used, ill-conditioned matrices can result in the

patch interpolation. To overcome this problem and im-

prove boundary stress recovery, equilibrium constraint

can be included in the patch recovery [20, 2, 24, 5, 48].

Alternative recovery techniques that do not require

the knowledge of superconvergent points are the ’poste-

riori equilibrium method’ (PEM) [41], the ’recovery by

equilibrium in patches’ (REP) [5] and the ’recovery by

compatibility in patches’ (RCP) [42]. As well explained

in [32], all these methods are based on a mixed in-

terpolation approach where the point-wise stress-strain

relationship of the displacement-based finite element

method is relaxed and applied over the entire element

volume using Lagrange multipliers. In the same paper

the authors also propose an improved procedure for

computing stresses based on the mixed interpolation

approach.

If the smoothing operator is applied to the whole

model (or large sections of the model) global recovery

techniques can be constructed. These approaches are

usually more computationally expensive, require more

complex recovery algorithms and in the early formu-

lations performed poorly near boundaries [20]. In [35]

a global approach with reduced computational cost is

presented and shows very interesting performances, in

particular a good accuracy in the stress recovery at

boundary nodes. However, the implementation in 3d

problems especially with quadratic polynomials and el-

ements with inside nodes seems yet to be developed.

The reconstruction of the derivatives finds many ap-

plications. In error estimation, the reconstructed and

smoothed gradient and Hessian are used to build a er-

ror index [12, 33, 43]. Many of these works are focused

on adaptive mesh refinement [38]. In plasticity models,

the stress gradient plays an important role in the com-

putation of the elasto-plastic behaviour of the materi-

als. In these models, reconstruction techniques can be

used during the solution of the system equations [49].

In mechanical problems, the first derivative of the

displacement field is related to the stress computation.

The correct computation of the stress field is of great

importance, especially in boundary regions. The com-

putation of the stress gradient (related to the Hessian

of the displacement field) is also important for fatigue

life assessment, where the stress gradient effect in fa-

tigue life is increasingly investigated [31], computation

of the plasticity deformations [15, 25] and Hydrogen

embitterment [25, 44].

The essence of the FE method is that a problem

domain can be divided into not overlapping elements.

The considered field function (displacement, tempera-

ture, velocity...) is approximated within the elements

through simple interpolation functions. The recovery

of function gradients and Hessians can be seen from a

mathematical point of view as a problem of interpola-

tion. Given that the primary solution of a finite element

problem is best approximated at nodes and gradients

at Gauss points, starting from these points other in-

terpolation techniques can be investigated. Being dif-

ferent from element-based technique, meshless meth-

ods approximate field functions within an influence do-

main instead of an element. Different influence domains

may overlap. Meshless methods have been achieved re-

markable progress in recent years. A point interpolation

meshless method based on radial basis function net-

works (RBFN) has been applied in [46]. Particularly,

Gaussian and multiquadric radial basis functions have

been considered in [8].

This paper is mainly concerned with mechanical

problems, so the first derivative recovery will be re-

ferred to as stress recovery and the second derivative

recovery as stress gradient recovery. However, the con-

siderations reported in the paper are of general appli-

cability respectively for gradient and hessian recovery

in finite element problems.

The paper is organized as follows. Firstly some stress

and stress gradient recovery techniques are presented.

The techniques have been chosen, among the many

available in the literature, on the base of previous pub-

lished performances and simplicity of implementation.

Also, one stress recovery and one stress gradient recov-

ery technique implemented in commercial finite element

software are considered. Then, RBFN are introduced

and applied to the recovery problems. Finally, two nu-

merical examples, of mechanical interest, one in two

dimensions and one in three dimensions, are presented

and discussed.

2 Stress recovery techniques

In this section the stress recovery techniques considered

in the paper are described. Three techniques have been

chosen, namely the nodal average, the ZZ patch recov-

ery and the polynomial preserving recovery. The first

one is implemented in most commercial finite element

software and deserves an analysis of its performances.

The other two are the most used techniques and have

proved to be a reliable tool. All these techniques are
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also the basis for the stress gradient recovery techniques

considered in the next section.

Before defining the stress recovery techniques, let us

consider the following notation.

Ω Region of the considered space R2 or R3

∂Ω Frontier of Ω

i Index of a generic node

j Index of a vertex, i.e. a node on a vertex of an

element but not on ∂Ω

Vk Approximation space of order k

vk Polynomial function of order k

nk Shape function of order k

σi Generic stress component at node i

σj Generic stress component at node j

·̃ Smoothing operator

2.1 Nodal average

The first recovery method considered is the weighted

average of nodal stress values (WANS) derived by ex-

trapolating the stresses computed at Gauss points [1].

This method is widely employed by finite elements com-

mercial codes [49, 23, 39, 29, 1]. By calling σi,l the

generic component of stress at a given node i from the

element l connected at the node, the weighted average

stress can be computed as

σ̃i =

∑m
l=1 ωlσi,l∑m
l=1 ωl

(1)

where m is the number of elements connected at

node i, and ωl are the weights (element areas or vol-

umes). Small differences in the definition of the weights

can be found in different implementation of the meth-

ods.

2.2 ZZ patch recovery

The ZZ patch recovery method (ZZPR) has been firstly

published by Zienkiewicz and Zhu [55, 56]. The method

is based on the definition of the optimal sampling points

of the elements, i.e. in the definition of those points in

which the FE solution of the stress field is best approx-

imated. For C0 elements, these points coincide with the

Gauss points of the reduced integration scheme [57] (see

[22] for a discussion on superconvergent points). For

regular quadrilateral meshes and strongly regular trian-

gular meshes these points are superconvergent [21, 53].

For triangular or irregular meshes, the superconver-

gent properties cannot be demonstrated analytically

but many numerical experiments have shown that at

these points the approximation of the stress field is ex-

cellent [57]. The values of stress at the optimal sampling

points is used to compute the stress value at nodes. The

procedure for the computation of the stresses at nodes

is the following.

(a) For each node a patch of elements is constructed.

For vertex nodes, the patch is constructed by con-

sidering all the elements connected to that node.

Boundary nodes and edge nodes require a special

treatment (see [57] for a detailed discussion on patch

assembly).

(b) The value of the stress at the Gauss points of the

elements of the patch are interpolated by a polyno-

mial function. The interpolation is performed in the

least square sense. Calling Pl the n sampling points

(i.e. the Gauss points of the elements belonging to

the patch), the residual function R reads

R =

n∑
l=1

(σ(Pl)− vk(Pl))
2 (2)

where σ(Pl) is the generic component of stress eval-

uated at point Pl and vk(Pl) is the value of the in-

terpolating polynomial function at Pl. Eq. 2 can be

minimized in the least square sense by the matricial

formula [3]

a = P †b (3)

where a =
[
a1 a2 . . . am

]T
is the vector of the m

coefficients of the polynomial function vk,

b =
[
σ(P1) σ(P2) . . . σ(Pl)

]T
is the vector of the

stress values at the sampling points, P is the matrix

of the coordinates of the sampling points defined

as follows and the symbol † represents the pseudo-

inverse operation [3].

Let us define ζk a base of monomial functions from

1 to xkr where xr represents the different coordinates

of the point (x and y for 2D models and x, y and z

for 3D models). Also mixed monomials can be con-

sidered. The actual composition of the base depends

on the choice of the order of the interpolating func-

tion. To avoid numerical problems, Zienkiewicz and

Zhu suggested that the order of the interpolating

polynomial function is the same of the order of the

shape function of the element. In Appendix A the

expressions of the bases used for different element
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types are reported. Matrix P can be assembled as

P =


ζk(P1)

ζk(P2)
...

ζk(Pn)

 (4)

The pseudo-inverse of P can be defined only if n ≥
m. If this condition is not satisfied, the number of

sampling points has to be increased by adding ele-

ments to the patch [43].

(c) The stress at nodes is computed from the interpolat-

ing polynomial function. For vertex nodes, the stress

value is computed directly from the patch centred

on that vertex. For non vertex nodes (i.e. nodes on

the edges of the elements or nodes on the vertex

of the elements but laying on ∂Ω), the stress value

is the mean of the stress values computed for that

node in all the patches where the node is present.

This recovery methods has been firstly developed

for linear elastic problems [55, 57] as error estimation

technique and for adaptive meshes. However, it has

also been successfully employed for non linear [14] and

elasto-plastic problems [15].

The patch recovery technique has been widely ap-

plied in the stress recovery and several modifications

have been proposed. In particular, the method can be

improved by considering weak ([48, 4]) or strong ([37])

equilibrium conditions. Since the following analysis is

focused not only on stress recovery but also on the re-

covery of the stress gradient, these improvements are

not considered in the present paper due to the complex-

ity of applying such conditions to the stress derivatives.

2.3 Polynomial preserving recovery

The polynomial preserving recovery method (PPR) has

been introduced by Zhang and Naga in [54, 30] where

they also proved that the method is superconvergent

for uniform linear triangular meshes and ultraconver-

gent (i.e. the convergence rate is two order higher than

the optimal global rate [52]) for quadratic regular ele-

ments. The method is similar to the ZZ patch recovery

in the sense that it interpolates the considered quan-

tities by polynomial functions over a set of sampling

points and the coefficients are computed by a least

square approach. The main difference is that only nodal

values are considered and the displacement field is in-

terpolated instead of the stress field.

An equation formally identical to eq. 3 can be build.

In this case, vector b contains nodal displacements Dr

and reads b =
[
Dr(P1) Dr(P2) . . . Dr(Pl)

]T
, with r =

x, y, z. Matrix P is build in the same way of eq. 4 but

the monomials basis are of order k+ 1 (as suggested in

[54]) and are reported in Appendix B.

It can be observed that in this method all the nodes

are treated in the same way and there is no distinction

between vertex or edge nodes. The number of consid-

ered nodes must be at lest equal to the number of the

coefficients of the interpolating polynomial function. In

this paper, the sampling nodes are chosen by consider-

ing a circle (or sphere) of radius ρ around the considered

node. If the number of nodes at a distance less than ρ is

less than a certain threshold, ρ is incremented to include

a sufficient number of nodes. The threshold values are

chosen for each interpolating function in order to have

a relatively large set of nodes and an over-constraint

system in eq. 3 and are reported in Appendix B. The

choice of large sets can guarantee a stable and accurate

solution [43].

The interpolating function is then derived at nodes

and the value of the derivative is the approximation of

the gradient of the finite element solution at nodes.

The method has been proposed for the recovery of

the gradient of a finite element solution, i.e. for a me-

chanical model where the solution is the displacement,

the recovered values correspond to the diagonal com-

ponents of the strain tensor.

Let us consider a 2D model and call Dx(x, y) and

Dy(x, y) the interpolating functions for the displace-

ments in x and y directions. Let ε̃j be the vector con-

taining the three components (ε̃x, ε̃y,γ̃xy) of the smoothed

strain tensor at the generic node j. ε̃j can be computed

as

ε̃j =

 ε̃yε̃y
γ̃xy

 =



∂Dx

∂x
∂Dy

∂y

∂Dx

∂y
+
∂Dy

∂x


(5)

Under the hypothesis of plane stress and linear elas-

tic material with young modulus E and poisson coeffi-

cient ν, the vector of the three components (σ̃x, σ̃y,τ̃xy)

of the smoothed stress tensor σ̃j reads

σ̃j =

 σ̃xσ̃y
τ̃xy

 =
E

1− ν2

1 ν 0

ν 1 0

0 0
1− ν

2


 ε̃yε̃y
γ̃xy

 (6)

By similar formulae it is possible to compute the

smoothed stress tensor components for 3D or 2D plain

strain linear models.
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This procedure is very simple for linear elastic ma-

terials and could be easily extended to compute the

stress of non linear elastic materials (such as hypere-

lastic materials). In case of materials where the stress

is function of the deformation history of the compo-

nent (for instance plasticity) or of other quantities (for

instance deformation velocity), this approach can be

quite complex if applicable at all.

3 Stress gradient recovery methods

In this section four different techniques for stress recov-

ery are described. In some cases more than one imple-

mentation can be found in the literature for the same

basic approach. In these cases, the different approach

are briefly described and the approach followed in this

paper is indicated. In one case (double ZZ recovery,

Sect. 3.2), a novel implementation is presented.

3.1 Shape functions based recovery

The shape functions based recovery (SFBR) is em-

ployed in some commercial software [23] and consists

in deriving the smoothed value of stress at nodes by

using the derivative of the shape functions.

In the finite element method, the value of a function

f (displacement, temperature, ...) can be computed at

any point of one element starting from the values fj of

the function at nodes as

f =
∑
j

Nj(x, y, z)fj , with

{x =
∑
j Nj(r, s, t)xj

y =
∑
j Nj(r, s, t)yj

z =
∑
j Nj(r, s, t)zj

(7)

where the expressions on the right represent the

isoparametric transformation with respect to the stan-

dard variables r, s and t. By defining the Jacobian ma-

trix of the isoparametric transformation J as

J =


∑
j

∂Nj
∂r

xj
∑
j

∂Nj
∂r

yj
∑
j

∂Nj
∂r

zj∑
j

∂Nj
∂s

xj
∑
j

∂Nj
∂s

yj
∑
j

∂Nj
∂s

zj∑
j

∂Nj
∂t

xj
∑
j

∂Nj
∂t

yj
∑
j

∂Nj
∂t

zj

 (8)

the gradient of f reads

∇f = J−1


∑
j

∂Nj
∂r

fj∑
j

∂Nj
∂s

fj∑
j

∂Nj
∂t

fj

 (9)

By replacing fj with the components of the smoothed

stress at nodes in eq. 9, the stress gradient at any node

can be computed. For each node a different value of the

stress gradient is computed from each of the elements

connected to that node. The gradient is then averaged

by applying eq. 1 where instead of the stress the stress

gradient is considered. In most cases, the nodal aver-

aged stress value (eq. 1) is utilized in eq. 9 as smoothed

stress value to replace fj .

3.2 Double ZZ patch recovery

The idea is to apply the ZZ patch recovery (Sect. 2.2)

twice. Different implementations of the double ZZ patch

recovery (DZZPR) can be found.

In [43] the ZZ patch recovery is applied after each

derivation. The value of stress smoothed over a patch is

derived with respect to the spatial coordinates. A con-

stant (for linear elements) or linear varying (for quadratic

elements) stress gradient over the patch is obtained.

These values of the stress gradient are then interpo-

lated over larger patches constructed over two levels of

elements surrounding the vertex node.

This approach has two major shortcomings. First

the search of the elements of the patches and the treat-

ment of vertex and non-vertex nodes is rather compli-

cated and leads to relative large matrices to be inverted

for each patch. Second, by employing larger patches, the

extrapolated values of the stress gradients at bound-

ary nodes (nodes lying on ∂Ω) have lower accuracy as

shown in [43].

In [33], the interpolating function of the stresses

(gradient) is derived at the location where the stress

gradient (Hessian) has to be computed. In this case,

just one level of surrounding elements can be consid-

ered, but in case of linear elements and linear interpo-

lating functions, the stress gradient is constant over the

patch.

A different implementation is presented in [11], where

structured patches of the same shape of the parent

elements are used. Then, the shape functions of the

(quadratic) parent elements are mapped on the patch

and derived in order to obtain the Hessian. In this way,

the use of C1 elements is avoided, while sufficient con-

tinuous strain fields are obtained. This approach, how-

ever, requires large patches with stringent requirements

both on patches shapes and orientation.

In [13], the ZZ patch recovery is applied to the recov-

ered values of stresses (gradient) at integration points.

This method can use the same patch for stress and

stress gradient. However, in [13] numerical proofs have

been given that this method is less effective than the

method described in the following section (Sect. 3.3)
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In this paper, to use the same patches of just one

level of surrounding elements both for stress and stress

gradient recovery and to take advantage of the good

properties of the Gauss points of the underlying mesh,

a different implementation is considered.

The smoothed value of stress obtained by the ZZ

patch recovery (Sect. 2.2) is derived for the Gauss points

of each element by applying eq. 9. In this way, a good

estimation of the stress gradient should be obtained at

the location of the Gauss point where the gradients are

usually well approximated. The values of the stress gra-

dient at nodes are then computed by applying the ZZ

patch recovery as shown in Sec. 2.2 where instead of

the stress the stress gradient is considered.

It can be observed that the same matrices P can

be used and the pseudo-inverse operation can be per-

formed just once to interpolate stress and stress gra-

dient. The stress gradient is function of two levels of

patches as the stress values have to be reconstructed at

each node of the patches before the reconstruction of

the stress gradient can be performed.

3.3 Double polynomial preserving recovery

This method consists in computing the second deriva-

tive of the smoothing functions used in the polyno-

mial preserving recovery applied twice. Different imple-

mentation of the double polynomial preserving recovery

(DPPR) can be found.

In [43] the Hessian is recovered by computing the

second derivatives of the interpolating functions of the

displacements (Sect. 2.3). To obtain the stress gradient,

the derivative of eq. 6 has to be computed. By consider-

ing also eq. 5, the smoothed stress gradient for a plane

stress problem reads

∇̃σj =



∂̃σx
∂x

∂̃σx
∂y

∂̃σy
∂x

∂̃σy
∂y

∂̃τxy

∂x

∂̃τxy

∂y


=

E

1− ν2


1 ν 0

ν 1 0

0 0
1− ν

2


·



∂2Dx

∂x2
∂2Dx

∂x∂y

∂2Dy

∂x∂y

∂2Dy

∂y2

∂2Dx

∂x∂y
+
∂2Dy

∂x2
∂2Dx

∂y2
+
∂2Dy

∂x∂y



(10)

In [13], the Hessian is recovered by applying the

polynomial preserving recovery to the recovered values

of gradient at nodes (Sect. 2.3). If the stress gradient

has to be obtained, the polynomial preserving recovery

can be applied to the recovered values of stresses (eq.

6).

In this paper, the last version is implemented.

3.4 Stress field gradient analysis

The stress field gradient analysis technique (SFGA)

has been presented in [49] as a procedure to have a sim-

ple and accurate estimation of the stress gradient also in

the preliminary analysis with low order finite elements.

The method is conceived to be a post processing add-

on for commercial finite element codes. Starting from

the averaged nodal stress (Sect. 2.1), the stress gradient

is computed from the locations and stress values of a

central node and a number of surrounding nodes.

Let us indicate with xj the location of a node, xl
the location of a surrounding node,

dlj =
√

(xl − xj)T (xl − xj) the distance between

the central node and the surrounding node and nlj =

(xl − xj)/dlj the corresponding versor. Then, the di-

rectional derivative of stress in direction nlj reads [49]

∂σ̃j
∂nlj

= lim
xl→xj

σ̃l − σ̃j
dlj

' (xl − xj)T

dlj



∂̃σj
∂x

∂̃σj
∂y

∂̃σj
∂z


= nTlj∇̃σj

(11)

One equation of the kind of eq. 11 can be written for any

node surrounding node j and a overdetermined system

of equations can be written as

A∇σj = b (12)

with

A =


nl1j
nl2j

...

nlnj

 b =


xl1 − xj
xl2 − xj

...

xln − xj

 (13)

where l1, l2, . . . , ln are the n surrounding nodes of

node j. From eq. 11, the gradient of each stress compo-

nent at node j can be computed as [3]
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∇σj = A†b (14)

WhereA† represents the pseudoinverse of matrixA.

The number n of considered surrounding nodes must

comply with n ≥ 2 for 2D models and n ≥ 3 for 3D

models. The sampling nodes are chosen by considering

a circle (or sphere) of radius ρ around the considered

node. If the number of nodes at a distance less than ρ is

less than a minimum number of nodes, ρ is incremented

to include a sufficient number of nodes. A minimum

number of 5 or 9 nodes for respectively 2D and 3D

elements is considered.

4 Radial basis function networks

Radial basis function networks (RBFN) can approxi-

mate any regular function [16] and the training is faster

than that of a multilayer perceptron neural network

[28]. The design of an RBFN is a curve-fitting (approx-

imation) problem in a high-dimensional space; the ap-

proach is similar to the use of a multidimensional sur-

face to interpolate data. A conceptual scheme of the

Radial Basis Function network is reported in Fig. 1.

Radial Basis Function networks can be used for the

approximation of a function and its derivatives (scat-

tered data interpolation) [18, 36]. Different basis func-

tions known as Gaussian, Multiquadrics and Inverse

Multiquadrics are generally used [28]. In problems re-

lated to structural analysis, also Cubic, Thin plate splines

and Wendland functions are used [10, 26]. These basis

functions are continuously differentiable and integrable,

this is useful for the approximation of the derivatives.

The Multiquadrics basis function approach yields a su-

perior accuracy in the approximation of the derivatives

as shown in [8].

The original RBFN method requires that there must

be as many RBFN centres as the training data points,

but a reduced set of centers can be successfully used.

In the case of a scalar output the model can be ex-

pressed (n is 2 for 2D problems , and 3 for 3D problems)

by

f̂(x,w) =

r∑
i=1

hi(x)wi (15)

The most widely used basis function hi are respec-

tively the Gaussian basis functions (Fig. 2)

ρi =

n∑
j=1

(xj − cij)2 hi(x) = exp
(
−(ρi σ)2

)
(16)

Fig. 1 A Radial Basis Function Network for multiple inputs
(3D) and one output with derivatives.

-3 -2 -1 0 1 2 3
1

2

3

4
Multiquadric Basis Function

-3 -2 -1 0 1 2 3
0

0.5

1
Gaussian Basis Function

Fig. 2 The most frequently used basis functions for RBFN.

and the Multiquadric function [6] (Fig. 2)

ρi =

n∑
j=1

(xj − cij)2 hi(x) =
(
1 + (ρi σ)2

)1/2
(17)

Being the most used and particularly suitable for

derivative approximation, these two basis functions will

be considered in the remainder of the paper.

Every basis function hi(x), i = 1, . . . , r depends only

on the scaled distance between the input x and a centre

ci scaled by the shape parameter σ that has to be prop-

erly selected [47]. There is experimental evidence show-

ing that the accuracy of the approximation strongly de-

pends on the value of the shape parameter σ. If σ is too

small the condition number of the resulting linear sys-

tem increases giving rise to numerical instabilities and
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loss of precision. By decreasing the shape parameter σ,

the RMS (root mean square) error of the fit drops to

a minimum and then grows thereafter, i.e. there exists

an optimal shape parameter that will yield minimum

RMS error for the fitted function [45].

As pointed out in [6], the choice of centres which

determines the number of free parameters is of crucial

importance. Too few centres in the network may be

not capable of generating a good approximation to the

target function, on the other hand, too many centres

may fit misleading variations due to noise in the data.

This is the bias/variance dilemma typical of this type

of problems. In the present application, a fixed number

(r = 1000) of centers has been used. The centers have

been selected by using a Sobol low discrepancy sequence

[27] in order to assure a uniform distribution in the

two/three dimensional space.

5 Examples and results

Two examples, one in two and one in three dimen-

sions, are considered to asses the performances of the

described recovery techniques for stress and stress gra-

dient. In many papers [12], analytical functions solved

over different meshes are used to isolate the error due to

the recovery procedure from the numerical errors of the

finite elements model. In the examples reported in this

section, the finite element solution is considered in order

to evaluate the actual level of approximation that can

be obtained in an engineering problem. In particular, if

the error is always decreasing with mesh refinement, it

means that the finite element solution has a small nu-

merical error compared with the recovery error. If the

error is not decreasing when the mesh dimension is be-

low a certain value, it means that the numerical error of

the finite element solution is greater than the recovery

error.

Table 1 reports the elements used to solve the two

examples. For quad and brick elements, the reduced

integration has been considered. In this case, for regu-

lar meshes, the Gauss points coincide with the super-

convergent points and for irregular meshes, the Gauss

points can be still considered optimal sampling points

[57].

Each of the two examples can be solved analytically.

Thus, the accuracy of the reconstructed fields can be

compared with the analytical solution. The finite ele-

ment models are solved for the considered elements for

five different element sizes. The reconstruction error is

evaluated both in the interior of the domain and on the

boundary where stresses and stress gradients assume

the maximum values.

Fig. 3 Infinite plate with hole under uniaxial stress. Data:
σ0 = 100MPa, hole radius = 5 mm, plate dimensions in the
finite element model 1000x1000 mm. A: hole boundary. B:
circumference at 2mm from the hole boundary.

The considered error measure evaluates the mean

error along two node lines (lines shapes and locations

are defined for each example). One line is located inside

the domain, the other one on the boundary. For each

line the mean error is defined as

e =

∑n
j=1‖g̃j − gj‖∑n

1‖gj‖
(18)

where n is the number of nodes on the line and g is

the considered field (g = σ for the vector of the stress

component, g = ∂σ\∂x, g = ∂σ\∂y and g = ∂σ\∂z
for the vectors of the stress gradients with respect to x,

y and z respectively). Eq. 18 represents a normalized

error with respect to the average value of the function

on the line and does not depend on the number of con-

sidered nodes.

5.1 2D example: infinite plate with hole under uniaxial

stress

The first example is the well known analysis of a infinite

plate with hole under uniaxial stress. The problem is

described in Fig. 3. The analytical solution of the stress

field in polar coordinates reads

σr =
1

2
σ0

(
cos (2θ)

(
3a4

r4
− 4a2

r2
+ 1

)
−
(
a2

r2
+ 1

))
σθ = −1

2
σ0

(
cos (2θ)

(
3a4

r4
+ 1

)
+

(
a2

r2
+ 1

))
τrθ = −1

2
σ0 sin (2θ)

(
−3a4

r4
+

2a2

r2
+ 1

)
(19)
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Table 1 Element types considered in the analysis

Element
type

Dimension
Number
of nodes

Number of
integration

points
Type Shape ABAQUS element type

T3 2D 3 1 linear triangle CPS3
Q4 2D 4 1 linear quad CPS4R
T6 2D 6 2 quadratic triangle CPS6
Q8 2D 8 4 quadratic quad CPS8R
T4 3D 4 1 linear tetra C3D4
B8 3D 8 1 linear brick C3D8R
T10 3D 10 4 quadratic tetra C3D10
B20 3D 20 8 quadratic brick C3D20R

where σ0 is the uniaxial stress value far from the hole

and a is the radius of the hole. The solution in polar

coordinates of eq. 19 has been rotated to be expressed

in the x− y reference system of Fig. 3 as

[
σx τxy
τxy σy

]
= R

[
σr τrθ
τrθ σθ

]
RT , R =

[
cos(θ) − sin(θ)

sin(θ) cos(θ)

]
(20)

being R the rotation matrix. The analytical expres-

sion of the stress gradient in the x− y reference system

can be obtained by deriving eq. 20. This derivation can

be performed by a symbolic solver, the expression is

quite complicated and is not reported for sake of space.

In Fig. 3, the two circumferences labelled A and B

represent the two locations where the error is evalu-

ated (A is on the boundary of the hole, B is inside the

domain at 2 mm from the hole).

The example is solved by using ABAQUS Standard

ver. 6.14 with full precision nodal output. The mesh
pattern used for the analysis for triangular and quad el-

ements is shown in Fig. 4. The triangular mesh pattern

has been obtained by dividing the quad elements along

one diagonal. In this way, the number of nodes (i.e. de-

grees of freedom) in the zone of interest is the same

for the two kinds of mesh for linear elements and the

quadratic triangles have one more node for each quad-

rangular cell than the eight nodes quad. By this choice,

for the same number of nodes on the hole boundary, the

computational cost of the solution is almost the same

for all the considered meshes. The example is solved

considering 32, 64, 128, 256 and 512 nodes on the hole

boundary, corresponding to an indicative mesh size of 1,

0.5, 0.25, 0.125 and 0.0625 mm for linear elements and

2, 1, 0.5, 0.25 and 0.125 mm for quadratic elements.

The meshes are refined maintaining the same kind of

patterns.

The radial basis neural network used for this exam-

ple has been constructed, for any mesh size and type of

elements, by considering 10 circles of nodes as training

Fig. 4 Detail of the mesh patterns around the hole used for
the solution of the infinite plate with hole example. The figure
reports the meshes with element size of 0.5 mm, correspond-
ing to 64 and 128 nodes on the hole border for linear and
quadratic elements respectively

points. To improve generalization, the number of cen-

tres has been limited to the minimum between the 60%

of the training points and 1000. The centres have been

evenly distributed in the region defined by the training

points. The activation functions are Gaussians to recon-

struct quantities inside the domain and multiquadric

for the reconstruction on the boundary. The shape pa-

rameter σ has been optimized in order to minimize the

SSD error on the training set. The optimization proess

has been repetated for any mesh size, type of element

and circle of nodes. The centres have been positioned

according to a quasi-uniform sobol sequence [27].

In Fig. 5, 6, 7 and 8 the results of the analysis are

reported in bi-logarithmic scale for the four considered

meshes. For stress gradients, for sake of space only er-

rors on the reconstruction of ∂σ\∂y are reported. Er-

rors on the reconstruction of ∂σ\∂x are very similar.

Quadratic meshes, as expected, show better results

than the corresponding linear meshes for any recon-

struction technique both with respect to stresses and

stress gradients. Quad elements perform slightly better

than the corresponding triangular elements.

Referring to stress reconstruction, in the region in-

side the domain (path B of fig. 3) all of the recon-

struction techniques show good performances, with the
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Fig. 5 T3 elements: normalized mean error (eq. 18) as function of the number of nodes on the considered line. Top: stress
estimation (Left: path B of fig. 3, Right path A of fig. 3). Bottom: stress gradient estimation (Left: path B of fig. 3, Right path
A of fig. 3).

nodal average that has slightly worse results for T3 and

T6 elements. On the boundary region (path A of fig.

3), the nodal average has a clearly lower rate of con-

vergence of the other techniques. In all considered sit-

uations, ZZ patch recovery and polynomial preserving

recovery show similar performances, with the ZZ patch

recovery that has smaller errors with quad elements.

The radial basis function network has generally good

performances, especially if quadrilateral elements are

considered. In this case, RBF shows the best perfor-

mances.

The reconstruction of the stress gradient shows, as

expected, higher values of error with respect to the re-

construction of the stress. The shape function based

recovery and the stress field analysis show the worst

performances and are not able to reconstruct the stress

gradient on the boundary when T3 and Q4 elements

are employed. The modified version of the double ZZ

patch recovery and the double polynomial preserving

recovery are the best performing with very close er-

rors for triangular elements and better results for the

double ZZ patch recovery for quad elements. Again, the

radial basis function network shows generally good per-

formances especially if quad elements are considered. In

case of triangular linear element, RBF seems not able to

get the recostruction of the stress gradient. Conversely,

very good performances are obtained for bilinear quad

elements.

Both for stress and stress gradient recovery, the er-

ror seems to be bounded by a value around 0.0003. This

limit is due to the approximation of the finite element

model in which the plate is large with respect to the

hole but not infinite. As a test, the analytical solution

at grid points has been used for the extrapolation and

smaller errors have been found (the results are not re-

ported for sake of space). This means that the best
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Fig. 6 T6 elements: normalized mean error (eq. 18) as function of the number of nodes on the considered line. Top: stress
estimation (Left: path B of fig. 3, Right path A of fig. 3). Bottom: stress gradient estimation (Left: path B of fig. 3, Right path
A of fig. 3).

performing techniques are able to exploit the accuracy

of the underlying finite element solution.

In table 2 the rates of convergence of the reconstruc-

tion techniques are reported. These rates have been

computed by linearly interpolating the error trends re-

ported in Fig. 5, 6, 7 and 8 in the ranges where the

bound value of the error is not reached. As expected,

ZZPR and PPR show superconvergent rates of conver-

gence in the stress reconstruction on the internal nodes

of the domain for any considered element type. Slightly

worse rates of convergence are shown on the border of

the domain, but always greater than the rate of con-

vergence of the underlying elements. WANS shows su-

perconvergency only for T3 and Q4 in the stress recon-

struction on the internal nodes of the domain. This can

be explained by considering that in this particular case

this extrapolation technique is a weighted mean of the

stress at the unique gauss point of elements connected

at the considered node. Referring to stress gradient re-

covery, DZZPR and DPPR show higher rates of con-

vergence than the underlying elements both inside the

domain and on the border. SFBR and SFGA show ac-

ceptable rates inside the domain, while very slow rates

have been fond on the border. RBF shows convergent

rates similar, and sometimes higher, than the best per-

formin techniques both for stress and stress gradient

reconstructions.

Fig. 9 shows the reconstructed values of the norm

of the vector of the stress components and of the norm

of the derivative of the vector of the stress components

with respect to y for a T6 mesh of 0.5 mm (128 nodes

on the circumference of the hole) on the hole boundary.

Given the symmetries of the solution, only 90o have

been plotted. The reconstruction has been performed

by using the ZZ patch recovery for stress and the dou-

ble ZZ patch recovery for stress gradient. The values of
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Fig. 7 Q4 elements: normalized mean error (eq. 18) as function of the number of nodes on the considered line. Top: stress
estimation (Left: path B of fig. 3, Right path A of fig. 3). Bottom: stress gradient estimation (Left: path B of fig. 3, Right path
A of fig. 3).

Table 2 Convergence rates for the considered reconstruction techniques for the infinite plate with hole example. Paths A and
B definition in Fig. 3

Internal nodes (path B)

Stress reconstruction Stress gradient reconstruction

T3
T6

Q4
Q8

WANS ZZPR PPR RBF

1.71 1.82 2.01 1.56
1.83 2.86 3.36 3.13
2.05 2.07 2.03 1.88
2.18 3.48 3.36 N.A.

SFBR DZZPR DPPR SFGA RBF

1.17 1.30 1.85 1.09 1.52
1.61 2.70 2.97 1.71 2.80
1.96 2.06 1.83 1.97 3.06
1.79 2.48 2.67 1.87 3.50

Border nodes (path A)

Stress reconstruction Stress gradient reconstruction

T3
T6

Q4

Q8

WANS ZZPR PPR RBF

0.93 1.65 1.95 1.88
1.73 2.31 2.56 2.44
0.91 2.04 2.04 1.89
1.78 2.51 2.48 3.09

SFBR DZZPR DPPR SFGA RBF

0.16 0.79 1.02 0.15 1.26
0.84 1.60 1.59 0.92 2.19
0.16 1.08 1.04 0.16 3.05
0.79 1.57 1.69 0.93 1.93
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Fig. 8 Q8 elements: normalized mean error (eq. 18) as function of the number of nodes on the considered line. Top: stress
estimation (Left: path B of fig. 3, Right path A of fig. 3). Bottom: stress gradient estimation (Left: path B of fig. 3, Right path
A of fig. 3).
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Fig. 9 T6 elements: reconstructed values of stress (left) and stress gradient with respect to y (right) for a mesh size of 0.50
mm on the boundary of the hole (path A of fig. 3) by using a double ZZ patch recovery.
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the error indices of eq. 18 is 0.010 for the stress and

0.065 for the stress gradient. From the figure, it can

be observed that the stress reconstruction is very accu-

rate (error of less than 0.5 MPa at the locatin of the

maximum stress of 300 MPa) and the stress gradient

is well reconstructed on the location of its maximum

(less than 2.5 Mpa/mm of difference with a value of 150

MPa/mm) and a maximum error of about 10 MPa/mm.

The meshes required to have a fairly reconstruction

of the stress gradient, such as the one used to realized

Fig. 9, are impractical for most applications where com-

plex component are usually to be studied with more

than one critical region. In practice, well structured

meshes are very rare and biased meshes of triangular

elements are usually employed. Fig. 10 shows the error

as function of the number of nodes on the circumference

of the hole for the boundary region when a mesh of T6

elements with a growing factor of 5 times in 10 mm is

used. The computed errors are very close to the errors

of Fig. 6, showing a good robustness of the considered

methods to reasonable non uniform meshes.

5.2 3D example: rotating thick tube

This example is a rotating thick tube of infinite length.

The problem can be solved analytically under the hy-

pothesis of plane strain. The problem is described in

Fig. 11. The analytical solution can be derived in the

cylindrical reference frame r − θ − z with z coincident

with the tube axis. The resulting stress is three dimen-

sional with τrθ = τrz = τθz = 0 and reads

σr =
(3− 2ν)ρω2r2o

8(1− ν)

(
1 +

1

r2i
− r2i
r2
− r2

r2o

)
σθ =

(3− 2ν)ρω2r2o
8(1− ν)

(
1 +

1

r2i
+
r2i
r2
− r2(1 + 2ν)

(3− 2ν)r2o

)
σz =

ρω2r2e
4(1− ν)

(
1 +

1

r2i
− 2

r2

r2o

)
(21)

where ri and ro are the inner and outer radius of

the tube respectively, ω is the angular velocity around

the axis of the tube and ν is the Poisson coefficient of

the material. The stress tensor in the cylindrical ref-

erence system can be rotated in order to obtain the

components of the tensor in the x−y− z reference sys-

tem by applying a rotation similar to eq. 20. As in the

previous example, the stress tensor in the x− y− z ref-

erence system can be derived by a symbolic solver and

the analytical expressions of the stress gradient can be

obtained (not reported for sake of space).

The FE model of the tube is solved by using ABAQUS

Standard ver. 6.14 with full precision nodal output.

Proper displacement constraints have been considered

at the top and bottom surface of the tube to impose

a plain deformation of both ends and simulate a infi-

nite length. The mesh patterns used for the analysis

are reported in Fig. 12 and are the three dimensional

versions of the patterns shown in Fig. 4. The patterns

are constants along the axis of the cylinder. The tetra-

hedral mesh pattern has been obtained by dividing the

brick elements as to keep a right angle for each tetrahe-

dron, i.e. four tetrahedrons have been created from each

brick. In this way, the number of nodes (i.e. degrees of

freedom) in the zone of interest is the same for the two

kinds of meshes for linear elements. For quadratic ele-

ments, quadratic tetrahedrons have four more nodes for

each brick cell than the twenty nodes bricks. The exam-

ple is solved considering 32, 64, 128, 320 and 640 nodes

on the hole boundary at the mid-plane of the cylinder

model, corresponding to an indicative mesh size of 1,

0.5, 0.25, 0.1 and 0.05 mm for linear elements and 2, 1,

0.5, 0.2 and 0.1 mm for quadratic elements. The meshes

are refined maintaining the same kind of patterns.

The radial basis function network used for this ex-

ample has been constructed considering as training points

the nodes comprised in a distance of 10 or 5 element

lengths (respectively for linear and quadratic meshes)

from the circles of nodes of lines A and B of Fig. 11.

As for the previous example, the number of centres has

been chosen equal to the minimum between the 60%

of the training point and 1000. The centres have been

evenly distributed in the region defined by the training

points accordingly to a quasi-uniform Sobol sequence

[27]. The activation functions are Gaussians to recon-

struct quantities inside the domain and multiquadric

for the reconstruction on the boundary. As in the pre-

vious example (Sect. 5.1), the shape paramter has been

optimized, for each case, to minimize the SSD error on

the training points.

In Fig. 13, 14, 15 and 16 the results of the analysis

are reported in bi-logarithmic scale for the four con-

sidered meshes. For stress gradients, for sake of space,

only errors on the reconstruction of ∂σ\∂y are reported.

Given the symmetry of the problem, errors on the re-

construction of ∂σ\∂x have the same values. Errors on

the reconstruction of ∂σ\∂z have slightly different be-

haviours but are always smaller than the errors on the

reconstruction of ∂σ\∂y.

All the considered reconstruction techniques show

large errors in gradient reconstruction when linear tetra-

hedron are used (Fig. 13) both inside and on the bor-

der of the domain. Particularly poor performances are

shown by shape function based, stress field analysis
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Fig. 10 T6 elements with biased mesh: normalized mean error (eq. 18) as function of the number of nodes on path A of fig.
3. Left: stress estimation. Right: stress gradient estimation.

Fig. 11 Rotating thick tube of infinite length. Data: ri =
5mm, ro = 25mm, ω = 1s−1, ν = 0.3. A: circumference on
the inner surface of the cylinder. B: circumference at 2 mm
from inner surface of the cylinder.

X

Y

Z

X

Y

Z

Fig. 12 Detail of the mesh patterns around the hole used
for the solution of the rotating thick tube of infinite length.
The figure reports the meshes with element size of 0.5 mm.
On the top and bottom surfaces of the cylinder, a symmetry
constraint is enforced to simulate the infinite length of the
tube.

techniques and radial basis function network. With lin-

ear brick, better performances are shown by all the tech-
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niques inside the domain. On the border, only double

zz patch recovery, radial basis function network and, at

least partially, double polynomial preserving techniques

show convergence.

Better stress gradient reconstruction is obtained with

quadratic elements for all the considered techniques,

with the best performances obtained by the double ZZ

patch recovery and the radial basis function network.

For this example, no lower bound of the error is reached

with mesh refinement, meaning that the FE model is

actually describing the analytical problem.

In table 3 the convergence rates of the considered re-

construction techniques are reported. Among the local

reconstruction techniques, both in stress and in stress

gradient reconstruction, the DZZPR technique shows

the higher rates of convergence, which are always greater

than the underlying elements. Similar convergence rates

are obtained by RBF, which, in some cases, reaches sen-

sibly higher convergences rates.

6 Discussion and conclusion

In this paper the reconstruction of the first and sec-

ond derivatives of the finite element solution has been

addressed with particular focus on mechanical prob-

lems. For these problems, the solution of finite element

problems is the displacement field and the most rele-

vant derivatives of this field are the stress field (related

to the first derivative) and the stress gradient field (re-

lated to the second derivative).

Three local reconstruction techniques have been con-

sidered for stress field reconstruction and four for the
stress gradient. These techniques have been evaluated

by two examples of practical interest (one two dimen-

sional and one three dimensional). For these examples

the analytical solution are available and the reconstruc-

tion error can be evaluated. The reconstruction error

has been evaluated in a region inside the model domain

and in a region on the border of the domain for four dif-

ferent kinds of elements (two linear and two quadratic

both in 2D and in 3D).

The two examples have shown the different per-

formances of the considered reconstructing techniques

when non polynomial stress and stress gradient fields

are considered both inside the computational domain

and on its border.

Among the usual reconstruction techniques, the ZZ

patch recovery for stress and the modified version of

the double ZZ patch recovery for stress gradients have

shown the best global performances. From a compu-

tational point of view, these techniques are the most

demanding in terms of algorithm complexity and have

an high computational time. In particular, the patch

search can be complicated, especially for three dimen-

sional quadratic tetrahedron. A series of special cases

has to be considered and different search algorithms

have to be employed. The computational time is related

to the inversion of the coefficient matrix.

The polynomial preserving and the double polyno-

mial preserving reconstructions have shown similar per-

formances of the corresponding ZZ techniques in almost

all of the considered cases. From a computational point

of view, the search algorithm is simpler, not requiring to

distinguish between different cases. The computational

time is generally higher as the order of the considered

polynomials is higher, thus requiring more coefficients

to be computed. The applicability of this method seems

restricted only to elastic material models.

The nodal average technique for stress reconstruc-

tion is the simplest to implement and the faster in com-

putation not requiring any matrix inversion. The per-

formances of this technique are similar to the other two

for internal nodes. For nodes on the boundary, a lower

level of accuracy has been found.

Shape function based and stress field gradient anal-

ysis techniques for stress gradient reconstruction are

both based on the nodal stress field reconstructed by

the nodal average. For this reason, both technique show

poor performances in the reconstruction of the stress

gradient on the border of the domain. In some cases, for

linear elements these technique do not converge. From a

computational point of view, the shape function based

technique is the simplest to implement and quite fast in

computation not requiring any matrix inversion. More-

over, this technique uses the information of only one

element at the time, thus not requiring any search al-

gorithm. The stress field gradient analysis is based on

just one layer of neighbour nodes and the matrix to

be inverted is usually small. The search algorithm is

simpler than the other two cases and also the compu-

tational time is lower.

The radial basis function network approach has shown

potentialities to well reconstruct both stress and stress

gradient fields with performances comparable or bet-

ter, with respect to the most accurate reconstruction

techniques in most of the considered cases. The imple-

mentation of the method is relative simple being the

radial basis function network a well known technique

and many algorithms are readily available for its im-

plementation. The memory request of this approach is

very high because in the training phase of the neural

network a dense matrix containing the displacements

of all nodes has to be inverted. In most cases, if the

whole model is fed to the neural network, the memory

requested is larger than the memory needed to solve the
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Fig. 13 T4 elements: normalized mean error (eq. 18) as function of the number of nodes on the considered line. Top: stress
estimation (Left: path B of fig. 11, Right path A of fig. 11). Bottom: stress gradient estimation (Left: path B of fig. 11, Right
path A of fig. 11).

Table 3 Convergence rates for the considered reconstruction techniques for the rotating thick cylinder example. Paths A and
B definition in Fig. 11

Internal nodes (path B)

Stress reconstruction Stress gradient reconstruction

T4
T10

B8

B20

WANS ZZPR PPR RBF

1.01 1.30 1.38 1.64
1.77 2.17 1.47 2.26
1.82 1.82 1.96 2.40
1.83 3.51 ∼ 2 4.11

SFBR DZZPR DPPR SFGA RBF

- - - - -
1.04 1.44 0.76 1.08 1.64
1.81 1.81 1.30 1.81 2.37
1.78 2.51 ∼ 2 0.96 4.40

Border nodes (path A)

Stress reconstruction Stress gradient reconstruction

T4
T10

B8

B20

WANS ZZPR PPR RBF

0.92 1.18 1.54 1.23
1.66 2.08 1.97 2.09
0.88 1.88 1.49 3.23
1.69 2.37 1.70 2.53

SFBR DZZPR DPPR SFGA RBF

- - - - -
0.81 1.32 1.17 0.85 1.74
0.10 1.11 0.62 0.10 2.31
0.78 1.26 0.72 0.96 1.87



18 Giorgio Previati et al.

32 64 128 320 640

Number of nodes [-]

1e-05

3.2e-05

0.0001

0.000316

0.001

0.003162

0.01

0.031623

0.1

0.316228

1

N
o

rm
al

iz
ed

 e
rr

o
r 

[-
]

T10: stress approximation (internal)

WANS
ZZPR
PPR
RBF

32 64 128 320 640

Number of nodes [-]

1e-05

3.2e-05

0.0001

0.000316

0.001

0.003162

0.01

0.031623

0.1

0.316228

1

N
o

rm
al

iz
ed

 e
rr

o
r 

[-
]

T10: stress approximation (boundary)

WANS
ZZPR
PPR
RBF

32 64 128 320 640

Number of nodes [-]

1e-05

3.2e-05

0.0001

0.000316

0.001

0.003162

0.01

0.031623

0.1

0.316228

1

N
o

rm
al

iz
ed

 e
rr

o
r 

[-
]

T10: stress gradient appr. (internal)

SFBR
DZZPR
DPPR
SFGA
RBF

32 64 128 320 640

Number of nodes [-]

1e-05

3.2e-05

0.0001

0.000316

0.001

0.003162

0.01

0.031623

0.1

0.316228

1
N

o
rm

al
iz

ed
 e

rr
o

r 
[-

]
T10: stress gradient appr. (boundary)

SFBR
DZZPR
DPPR
SFGA
RBF

Fig. 14 T10 elements: normalized mean error (eq. 18) as function of the number of nodes on the considered line. Top: stress
estimation (Left: path B of fig. 11, Right path A of fig. 11). Bottom: stress gradient estimation (Left: path B of fig. 11, Right
path A of fig. 11).

FE model itself. To circumvent memory limitations, the

model can be divided into few relatively large regions

to be fed to the neural network one at the time. The

computational time is function of the actual number of

nodes fed to the neural network, but for reasonable di-

mensions of the considered regions is comparable with

the other reconstruction techniques. In case the shape

paramter is not chosen a priory, but an optimization

process is required, the computational time can incre-

ment considerably.
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A Expressions of the monomials for the ZZ

patch recovery

In this Annex the expression of the monomials functions used
for the ZZ patch recovery of Sect. 2.2 are reported. The mono-
mial functions have the same expression of the shape func-
tions of the elements for all elements but the bilinear quadri-
lateral (Q4). For this element, the patches are respectively
of 4 elements with just one sampling point for element. The
number o sampling points corresponds exactly to the number
of unknowns of a bilinear function in 2D. To avoid numerical
problems of ill-conditioned coefficient matrices and numerical
instabilities, for this element, a function with less terms than
the shape functions is used.

Table 4 reports the monomial expressions for the consid-
ered elements.

B Expressions of the monomials for the

meshless gradient recovery

In this Annex the expression of the monomials functions used
for the polynomial preserving recovery of Sect. 2.3 are re-
ported. Table 5 reports the monomial expressions for the con-
sidered elements along with the minimum number of consid-
ered nodes. The minimum number of nodes is chosen as to
guarantee at least two levels of surrounding elements.
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Table 4 Monomials functions for ZZ patch recovery (Sect. 2.2)

Element
type

Dimension Order Monomials function

T3 2D linear ζ1 =
[
1 x y

]
Q4 2D linear ζ1 =

[
1 x y

]
T6 2D quad. ζ2 =

[
1 x y x2 y2 xy

]
Q8 2D quad.

ζ2 =[1 x y x2 y2 xy ...

. . . x2y xy2]

T4 3D linear ζ1 =
[
1 x y z

]
B8 3D linear ζ1 =

[
1 x y z xy xz yz

]
T10 3D quad.

ζ1 =[1 x y z x2 y2 . . .

... z2 xy xz yz]

B20 3D quad.

ζ2 = [1 x y z x2 y2 . . .

. . . z2 xy xz yz xyz . . .

. . . x2y x2z xy2 y2z xz2 . . .

. . . yz2 x2yz xy2z xyz2]

Table 5 Monomials functions for polynomial preserving patch recovery (Sect. 2.3)

Element
typev

Dimension
Min. node

number
Monomials function

T3, Q4 2D 15 ζ2 =
[
1 x y x2 y2 xy x2y xy2

]
T6, Q8 2D 25

ζ3 = [1 x y x2 y2 . . .

. . . x3 y3 xy x2y . . .

. . . xy2 x2y2 x3y xy3 . . .

. . . x3y2 x2y3]

T4, B8 3D 30

ζ2 = [1 x y z x2 . . .

. . . y2 z2 xy xz . . .

. . . yz x2y x2z xy2 . . .

. . . y2z xz2 yz2]

T10, B20 3D 75

ζ3 = [1 x y z x2 . . .

. . . y2 z2 x3 y3 . . .

. . . z3 xy xz yz . . .

. . . x2y x2z xy2 y2z . . .

. . . xz2 yz2 x2y2 x2z2 . . .

. . . y2z2 x2y2z2 x3y x3z . . .

. . . xy3 y3z xz3 yz3]


