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Abstract— In this paper, a similarity-based data-driven 

prognostic algorithm for the estimation of the Remaining Useful 

Life of a product is proposed. It is based on the exploitation of 

run-to-failure data of products, which are supposed to be 

characterized by similar operational conditions. The core of the 

contribution is the application of a possibilistic framework, 

namely a Random-Fuzzy Variable approach, for the 

representation and propagation of the measurement uncertainty, 

which is a crucial source of uncertainty in Prognostics and Health 

Management. The results obtained for a real application case as 

Medium and High Voltage Circuit Breakers, have shown a high 

prognostic power of the algorithm, which therefore represents a 

potential tool for an effective Predictive Maintenance strategy. 

Keywords— Data-driven, Measurement Uncertainty, Prognostics, 

Random Fuzzy Variable, Remaining Useful Life, Similarity 

I.  INTRODUCTION  

The Remaining Useful Life (RUL) of a system is defined as 
the remaining time interval in which it is expected to meet its 
operating requirements. RUL estimation represents the core of 
the Prognostics and Health Management (PHM) programs 
which aim to a reduction of maintenance and life-cycle 
management costs, an increase of the systems availability and 
the adoption of predictive maintenance strategies [1,2]. Since 
prognostics deals with predicting the future behavior of 
engineering systems and it is almost practically impossible to 
precisely predict future events, it is necessary to account for the 
different sources of uncertainty that affect prognostics, and 
develop a framework for uncertainty quantification and 
management in this context [3]. 

In this paper, a novel prognostic model capable to deal with 
different sources of uncertainty is proposed. In particular, it 
represents an improvement of a similarity-based prognostic 
model already present in the literature. The main difference and 
enhancement is due to the application of a different 
mathematical framework for the representation and 
propagation of measurement uncertainty, which represents one 
of the crucial sources of uncertainty in PHM. 

II. SOURCES OF UNCERTAINTY IN PHM 

Prognostic predictions must deal with multiple sources of 

error like modeling inconsistencies, system noise and 

degraded sensor fidelity. The most prominent sources of 

uncertainty in PHM are [3-6]: 

1) Measurement uncertainty: data collected through sensors 

are affected by a measurement uncertainty due to sensors 

inaccuracy. In particular, two kinds of uncertainty sources 

can be considered, typically referred to as systematic and 

random. 

2) Present uncertainty: very often, a preliminary step in PHM 

is the current state estimation of the system for which RUL 

prediction is required. The state estimation is typically 

performed applying filtering approaches (Kalman filtering, 

particle filtering, etc.) to the data collected through 

sensors. The measurement uncertainty of the data and the 

stochastic nature of the filtering approaches are 

unavoidably reflected in uncertainty in the definition of the 

system state, which describes the lack of knowledge 

regarding the “true” state of the system. 

3) Future uncertainty is probably the most influential source 

of uncertainty in PHM as future operational conditions 

(loading, environmental, usage conditions) cannot be 

precisely known in advance, but only assumptions about 

them can be made.  

4) Model uncertainty: it is practically impossible develop 

models that predict the underlying reality accurately. 

Model uncertainty includes model parameters 

stochasticity, process noise, as well as a contribution due 

to under-modeling issues, determined by different factors 

such as the ignorance of certain failure modes in the 

analysis or, in case of application of data-driven 

approaches, the lack of data describing possible failure 

scenarios.  

5) Prediction method uncertainty: once quantified, the above 

sources of uncertainty have to be accurately propagated on 

the final RUL forecast. Especially when dealing with 

different probability distribution families and/or non-

parametric distributions, uncertainty propagation methods 

introduce some approximations, which lead to additional 

uncertainty. A typical example is represented by sampling-

based approaches, such as Monte Carlo (MC) simulations, 

which are widely used for RUL prediction; in this case, the 

use of limited number of samples introduces uncertainty 

about the probability distribution of the RUL. 



III. SIMILARITY-BASED PROGNOSTIC MODELS 

Many methods for uncertainty processing in PHM are 
present in the literature. A widely spread alternative present in 
the literature is represented by similarity-based prognostic 
models. The hypothesis for the application of such models is 
that a set of run-to-failure degradation patterns are collected in 
a reference library. An evaluation of similarity between the test 
degradation pattern (monitored degradation pattern for the item 
for which the RUL has to be predicted) and the reference 
trajectory patterns in the database is then performed in order to 
estimate the RUL of the test item. An example can be found in 
[7] where the similarity is assessed based on the computation 
of a distance value (1): 
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which corresponds to the Root Mean Square Error (RMSE) 
between the test product (in the followings, also referred to as 
target product) and i-th library specimen patterns. In particular, 
yk (yik) corresponds to the observed degradation for the test 
product (library specimen i) at cycle (or generally time stamp) 
k and K is the total number of observed cycles for the test 
pattern. A small di means that the two profiles are similar or, 
equivalently, similar degradation processes characterize the 
two products, whereas large distance values are related to 
products that are subject to different degradation mechanisms 
and that should be excluded in the estimation of the RUL of the 
target product since are representative of different working 
conditions. This has allowed, in [7], to select a subset of 
reference items (in the following referred to as sub-fleet), 
showing the lowest values of distances (computed as in (1)). 
The knowledge of the run-to-failure degradation patterns of 
such items is then extracted in terms of statistical distribution 
of degradation rate (i.e. degradation increment between two 
consecutive cycles) and processed through MC simulations in 
order to forecast the future degradation pattern of the test 
product and obtain the related RUL estimation [7,8]. 

A similar approach is used in [9] where the sub-fleet is 
extracted applying a Kolmogorov-Smirnov test for the 
detection of the subset of reference products showing higher 
statistical similarity in terms of statistical distribution of 
degradation rate. 

Finally, another common approach is to compute the target 
product RUL as function of the RUL of the reference items and 
their degree of similarity with respect to the test product. In 
[10], for instance, the relationship between the RUL of the test 
product and fleet products is determined through the 
application of an Artificial Neural Network. 

A very simple and effective methodology is based on the 
computation of the test RUL as weighted sum of the fleet 
products RUL: 
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where index i refers to the i-th reference product and N is 
the number of products composing the library. It is trivial to 

understand that computing the target RUL as weighted sum of 
the RUL of a set of products which are supposed to be 
characterized by similar operational conditions allows one to 
implicitly introduce some knowledge about the future loading 
and operational conditions that the test product will face in the 
rest of its life. In particular, weight wi assigned to the i-th 
training reference pattern is computed in such a way to take 
into account how much similarity its degradation pattern has 
exhibited with respect to that of the target product during the 
observation window (i.e. the time interval for which the target 
product degradation pattern has been monitored). 

Typically [11,12], the weighting coefficients wi are 
computed though a bell shaped function: 
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where the similarity coefficient sci, similarly to the distance 
di computed in (1), is function of the sum square error between 
the degradation patterns of test product and library specimen i. 
As for parameter β, it is an arbitrary parameter that can be set 
by the analyst in order to introduce the desired degree of 
selectivity (i.e. if β is small, few specimens are influential). 

A. Proposed Model 

In this paper, a novel similarity-based prognostic approach 
is proposed. In particular, the test product RUL is computed 
through (2), where the weighting coefficients are obtained 
mapping the distance value di (which gives information about 
patterns similarity) into weighting coefficients through a 
function g(·): 
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Function g(·) represents a Gaussian probability density 
function (PDF), characterized by mean value equal to dmin (the 
minimum value among all di values, i = 1, …, N) and standard 
deviation σg, such that higher weights are assigned to reference 
products at lower distance di. It is assumed, indeed, that the 
future operational conditions of the test product will be more 
similar to those of the products exhibiting higher similarity in 
correspondence of the observation window. This assumption 
allows managing and mitigating the influence of uncertainty 
about the future loading, operating, environmental, and usage 
conditions. 

A further step introduced in this paper is also to consider 
the measurement uncertainty affecting the observed 
degradation patterns. In particular, the measurement 
uncertainty will be handled in a possibilistic framework, 
namely through a Random-Fuzzy Variable (RFV) approach, 
which has been shown to be an effective methodology to take 
into account, within the same mathematical framework, both 
the random and systematic contributions to measurement 
uncertainty, as will be shown in the next Section IV. 

A key factor in the application of the algorithm is the value 
assigned to σg, that, similarly to parameter β in (3), introduces 



the desired degree of selectivity. In Section VI, a strategy for a 
suitable choice of this parameter will be shown. 

IV. MEASUREMENT UNCERTAINTY: THE RFV APPROACH 

The RFV approach has been defined in the last years, as an 
alternative, more general solution than the probabilistic one, for 
the representation of the measurement results [13]. Without 
entering the mathematical details, this approach is based on the 
mathematical Theory of Evidence, which, defined by Shafer in 
the seventies, represents a quite new and promising 
mathematical theory. 

When this approach is used to handle measurement 
uncertainty, the measurement results are expressed in terms of 
some particular variables, the Random-Fuzzy Variables 
[13,15]. As shown in Fig. 1, an RFV is composed by two 
functions, called possibility distribution functions: rint(x) and 
rext(x). The presence of two PDs allow to consider separately, 
but in a unique mathematical object, the effects of all possible 
contributions to uncertainty on the measured value. In 
particular: PD rext(x), called external PD, represents the effects 
of all contributions to uncertainty on the considered measured 
value. Hence, this PD provides the global effect on the final 
measurement result of all contributions to uncertainty affecting 
the measurement procedure. On the other hand, PD rint(x), 
called internal PD, represents the effects, on the considered 
measured value, of all systematic contributions to uncertainty. 

 

If an RFV is given, by decomposing its PDs rint(x) and 
rext(x), it is possible to obtain also the random PD rran(x), so 
that it is possible to know which are the effects, on the final 
measured value, of the different contributions to uncertainty: 
the random ones, given by rran(x), and the systematic ones, 
given by rint(x). 

An important advantage of these variables is that each RFV 
provides all confidence intervals at all levels of confidence of 
the measurement result. In particular, because of the 
possibilistic normalization condition, the PDs (internal, random 
and external PDs) of an RFV are always defined in interval [0, 
1]. If a cut of the RFV is taken at level α ∈  [0, 1], then a closed 
interval is obtained, called α-cut, and this α-cut is the coverage 
interval, associated to the measured value, corresponding to the 
coverage probability 1-α [16,17]. Another great advantage of 
these variables is that, when two RFVs must be combined 
through a measurement model, appropriate operators, called t-
norms, can be applied to combine PDs rran(x) with each other 
and PDs rint(x) with each other, in closed form formula [16-19]. 
This allows one to obtain in a quite straightforward way how 
the contributions combine through the measurement procedure. 

However, as in depth discussed in [16,17], the specific t-
norm to be applied for the PD combination is not univocally 
defined, since, in any application, there is the possibility to 
choice the more suitable operator, according to all the available 
metrological information, which is related to both the nature of 
the uncertainty contributions and the way they affect the 
measurement procedure. In the next section, it is shown how 
the RFV approach can be applied to the application considered 
in this paper and how the metrological information is exploited. 

V. APPLICATION OF THE RFV APPROACH TO THE PROPOSED 

PROGNOSTIC MODEL 

For each measured value yk, random and systematic 
contributions to uncertainty are considered. In particular, it is 
supposed that the random contributions affecting each 
measured value distribute according to a Gaussian PDF, having 
a standard deviation σ. On the other hand, it is supposed that 
the systematic contributions affecting each measured value 
distribute over an interval, and no PDF is known in this case. 
The interval is centered on the measured value yk  and its width 
is not constant but it is related to the measured value itself. In 
particular, if a relative error e is considered, the interval will 
have a semi-width yk·e. In our examples, σ=0.1 and e = 0.1 are 
assumed, being typical values for the considered application 
case. 

Under the above assumptions, it is possible to build, for 
each measured value, an RFV, which shows all contributions to 
uncertainty and all coverage intervals in a unique variable. In 
particular, according to the available information: 

• the random PD rran(x) represents the random contributions 
to uncertainty and therefore is built from the given 
Gaussian PDF, by applying a suitable transformation, 
called probability-possibility transformation [17,20]. This 
transformation allows to transform a PDF into an 
equivalent PD which preserve all the coverage intervals and 
corresponding coverage probabilities, thus maintaining all 
the relevant metrological information included by the initial 
PDF; 

• the internal PD rint(x) represents the systematic 
contributions to uncertainty and therefore is built according 
to the given interval. In particular, in Shafer’s theory of 
evidence, the situation when an interval of variation is 
given and no PDF is known is called total ignorance, and is 
represented by a rectangular PD over the given interval. 
Without entering the details here, let us only say that the 
meaning of a rectangular PD is very different from the 
meaning of a rectangular PDF [17]. 

It follows that the RFV shape of the RFV associated to each 
measured value is like the one shown in Fig. 1 in cyan and blue 
lines. Of course, the mean value and width of the RFV change 
with the measured value. 

The evaluation of (1) in terms of RFV brings to an RFV of 
the distance for each considered i-th curve, at each 
measurement instant k = 1,…, K. However, this procedure, 
which is correct from the mathematical point of view, does not 
consider all available metrological information. If all available 
metrological information is employed, it is possible to find, for 

 
Fig. 1 Example of RFV 



each i-th curve, the RFV of the distance in a more immediate 
and accurate way, as shown in the following. 

First of all, let us consider that (1) represents a mean square 
error. When the random contributions to uncertainty are 
considered, since, by assumption, the standard deviation of the 
given PDF is the same for each measured value, it is known 

that the standard deviation 
idσ  of the mean square error is: 

 
id

K

σ
σ =   (5) 

Therefore this result allows us to directly build the random 

PD rran to be associated to the RFV of the distance di from the 

i-th curve, by simply applying the probability-possibility 

transformation to a Gaussian PDF having standard deviation 

equal to 
idσ . This solution is indeed straightforward and 

avoids to combine all different random PDs associated to the 

K measured values. 

Similar considerations can be done when the systematic 

contributions to uncertainty are taken into account, thus also 

avoiding to combine all different internal PDs associated to 

the K measured values. In fact, it is also possible to directly 

associate a systematic contribution to uncertainty to the 

distance di, by considering that, given a generic function z = 

f(a1, a2,…, an) , the relative error associated to di is a linear 

combination of the relative errors associated to a1, a2,…, an: 
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Hence, by considering, as function f, the distance di given 

by (1), and considering that 
kye e=  for every value k and: 
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it follows that the relative error 
ide  associated to distance di, 

due to the systematic contributions to uncertainty, is given by: 
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Therefore, the internal PD associated to the RFV of the 

distance from the i-th curve is directly built, by considering a 

rectangular PD around di, with semi-width equal to 
id ie d⋅ . 

Hence, by simply combining the obtained internal and 

random PDs [16, 17], the distance di is evaluated in terms of 

RFV (denoted Di). Once RFVs Di are built for all curves i = 

1,…, N, it is possible to evaluate the weights wi in terms of 

RFVs as well (denoted Wi). This is possible by converting, 

first of all, the mapping PDF g(·) into an equivalent mapping 

PD G(·), as shown, as an example, by the red PD in Fig. 2 

below. Then, by considering the intersection of Di with the 

mapping PD, RFV Wi is readily obtained. As an example, in 

Fig. 2, a generic α-cut Di
α of RFV Di is considered (green 

line), along with the corresponding obtained interval (magenta 

line). This interval represents the α-cut Wi
α, at the same level 

α, of RFV Wi. Hence, by considering all α-cuts of Di, RFV Wi 

is built. 

 
Finally, from the weights Wi, it is possible to evaluate the 

RUL at time instant k, according to (2), in terms of RFV. In 

particular, according to the available metrological information 

about the nature of the contribution and the measurement 

procedure, it is necessary to choose the more suitable t-norms 

to be applied. It is possible to state that the weights Wi are all 

uncorrelated with each other, because they are related to the i-

th curve and all N curves are independent from each other. 

Furthermore, as far as the systematic contributions to 

uncertainty affecting the weights Wi are concerned, there is no 

reason to suppose a probabilistic compensation between each 

other in Eq. (2) and hence we can assume that they combine in 

a non-random way. Therefore, the min t-norm is chosen and a 

zero correlation factor applied when combining PDs rint, while 

the Frank t-norm with the parametric value γ = 0.1 is chosen 

and a zero correlation factor applied when combining PDs rran 

[16-19]. The obtained results are shown in the following 

Section VI. 

VI. ALGORITHM VALIDATION 

The application case for the presented approach are 

Medium Voltage (MV) and High Voltage (HV) Circuit 

Breakers (CBs). Since the data used in the contribution are 

confidential information (ABB property), the exact numerical 

values are not reported.  

In particular, a fleet of 90 products coming from different 

customers, operating regions and applications is considered. 

The degradation pattern y for such products is shown in Fig. 3. 

 
A degradation level y = 0% refers to a product in a perfect 

healthy state, whereas y = 100% means that it has reached its 

End of Life (EoL), that is the time instant at which the product 
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Fig. 3 Degradation pattern for a fleet of products 
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Fig. 2 Mapping PD and construction of the weight Wi 



is not anymore able to perform its intended function and a 

maintenance activity, refurbishment, replacement or the 

disposal of the product is required. The degradation indicator 

can be obtained directly or indirectly from the measurement of 

one or more signals of interest that may provide information 

about the health state of the system under analysis. For the 

case of MV and HV circuit breakers, examples of such signals 

can be the measurement of the contact ablation, SF6 gas 

density for gas insulated circuit breakers, and temperature of 

the interrupting chamber. 

A. Validation Procedure 

In order to evaluate the average prognostic performance of 

the algorithm in correspondence of a given level δ of 

degradation, the applied methodology has been run: 

1) Select a test product among the fleet and use the 

remaining 89 items as reference library, according to the 

leave-one-out cross validation technique. 

2) Determine an optimal value for the standard deviation σg 

for the mapping function g(·) (as described in the next 

Subsection B). 

3) Run the algorithm described in Section V. From the 

obtained RFV, select a α-cut and obtain a confidence 

interval (CI) for the RUL, whose lower and upper bounds 

are denoted by RULmin and RULmax (Fig. 4). 
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Fig. 4 RFV RUL (in black) for a given product and corresponding RUL CI (in 

cyan) obtained choosing α =0. Note that the actual RUL value (in red) is 

included in the CI provided by the algorithm. 

4) Compute an indicator γ for the correctness of the 

prediction as in (9): 

 
[ ]min max1   if RUL ,

0  otherwise

act RUL RUL
γ

 ∈
= 
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  (9) 

where RULact corresponds to the actual RUL value. In 

other words, γ is equal to 1 when the RUL prediction is 

correct, 0 otherwise. 

5) Repeat steps 2-4 setting cyclically as test product a 

different product of the reference fleet. 

6) Finally, the average algorithm performance in predicting 

the RUL of a product at the given level δ of degradation 

is obtained as: 

 
1

100
( )

N

i

i

Perf
N

δ γ
=

=    (10) 

so that Perf(δ) is equal to 1 (or 0) if all the RUL forecasts 

for the degradation level δ are correct (or wrong). 

B. Tuning the σg parameter 

The parameter σg is optimized determining for which value 

the algorithm provides the best prognostic performances. In 

particular, given a reference library for a test product the 

following steps are performed. 

First, the M products at lower distance di (Equation (1)) 

with respect to the target product are identified. 

Then, the prognostic algorithm is run for different values 

of σg, setting cyclically, for the same value of σg, one of the M 

reference products as test sample (its degradation pattern is 

considered known up to the value δ) and the remaining of the 

reference library as new training patterns (i.e. the remaining 

88 products).  

Finally, the optimal value of σg is determined among the 

subset of values for which performances (computed similarly 

to (10) averaging over the M products) are higher than a given 

threshold P*, selecting the value providing the lowest mean 

confidence interval width. 

In case for any value of σg performances higher than P* are 

achieved, the value of σg providing the highest performance is 

selected. 

The reason for which such strategy has been implemented 

as optimization procedure is to guarantee at the same time 

high prognostic accuracy and narrow confidence intervals, in 

order to provide valuable results from the predictive 

maintenance point of view. 

In the following subsection the results obtained with the 

optimization parameter M = 18 (20% of the fleet population), 

P* = 95% are shown. 

C. Results 

Fig. 5 reports the RUL prediction results obtained for one 

of the CBs under test. In particular, the CI for the RUL have 

been obtained considering the α-cut at level α = 0 of the RFV 

RUL.  
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Fig. 5 RUL forecasts for a specific product. The CI have been obtained 

extracting α-cut at level α=0 from the RFVs provided by the algorithm. 

The choice of the α-cut represents a trade-off between the 

width of the provided CI (amount of uncertainty about the 

RUL forecast) and accuracy of the prognostic result (the 

provided CI includes the actual RUL value). Higher levels of 

α-cut correspond to narrower CIs but also higher risk of 

incorrect forecast. In this example, the level α = 0 has been 



chosen, which corresponds to a pessimistic approach. It is 

interesting to observe how the CIs provided by the algorithm 

at different levels of degradation include the actual RUL 

value. Furthermore, the width of such CIs decreases as the 

observed degradation increases, so that the prognostic 

information becomes more valuable from the maintenance 

operations optimization point of view. 

An overall scenario of the prognostic efficiency of the 

proposed algorithm is given by Fig. 6 where the average 

performance at different levels of degradation are illustrated.  
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Fig. 6 Average algorithm prognostic performances at different values of 

observed degradation 

Also in this case the results refer to CIs obtained 

considering the level α= 0 of the RFV RUL. The percentage of 

correct RUL forecasts increases with the observed 

degradation, reaching a performance of almost 96% when the 

degradation is equal to 95%. This result demonstrates a high 

efficiency of the proposed model and in particular, the high 

prognostic power achieved at high levels of degradation (i.e. 

in proximity of failure) is of fundamental importance for an 

effective scheduling of the maintenance interventions. 

VII. CONCLUSIONS 

In this paper, a similarity-based data-driven prognostic 

algorithm for the estimation of the RUL of a product is 

proposed. It is based on the exploitation of run-to-failure data 

of products, which are supposed to be characterized by similar 

operational conditions, referred to as reference library. This 

allows one to implicitly introduce some knowledge about the 

future loading and operational conditions that the test product 

will face in the rest of its life, mitigating the effect of the 

future uncertainty on the final prediction. 

The core of the contribution is the application of a 

possibilistic framework, namely the RFV approach, for the 

representation and propagation of the measurement 

uncertainty, which is a crucial source of uncertainty in PHM. 

Applying the mathematics of RFV, it is possible to evaluate 

the product RUL in terms of RFV and extract the desired 

confidence interval. The results obtained for the application 

case of MV and HV CBs have shown high prognostic 

performances of the proposed algorithm. In particular, a 

fundamental result is the high level of performances achieved 

in proximity of failure (almost 96% of correct predictions 

when the degradation is equal to 95%), highlighting the ability 

of the algorithm to provide valuable results from the predictive 

maintenance point of view. 
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