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Abstract—The Kalman filter is one of the most important and
common optimal recursive data processing algorithm in many
applications characterized by linear dynamical behavior and
affected by random zero-mean white Gaussian noise. However,
when measurement processes are considered, inaccuracy is not
only due to noise, but also to several contributions to uncertainty
that can be due to both random and uncompensated systematic
effects. Therefore, when the Kalman filter is used on experimental
data, all uncertainty contributions should be considered.

While several proposals are available in the literature to
modify the Kalman filter in order to consider different prob-
ability distributions and systematic effects, represented both in
probability and possibility domains, they are not fully compliant
with the uncertainty concept adopted in metrology. The aim of
this paper is hence to reformulate the Kalman filter theory within
the possibility domain in compliance with the measurement
uncertainty concept, in order to be able to consider both the
random and systematic contributions to uncertainty (regardless
of their distribution) that may affect the measurement process.

An experimental set-up is considered and the results obtained
under different assumptions are reported.

Index Terms—Measurement Uncertainty; Possibility distribu-
tions; Random-Fuzzy Variables; Random contributions; System-
atic contributions.

I. INTRODUCTION

The Kalman filter (KF) [1] is a widely-employed algorithm
in system state identification that improves the accuracy in
state identification by combining the available information
about the uncertainties associated to the system model and
those associated to the measured values.

According to the classical Kalman filter theory, uncertainties
affecting the system and the measured values are represented
by random contributions with normal, zero-mean probability
distribution (PDF). Modeling uncertainty as noise with normal,
zero-mean PDF has represented a limitation of the classical
Kalman filter, when employed in measurement applications,
under several points of view.

The main point is that noise is only one of the several un-
certainty contributions affecting a measurement procedure and
several contributions exist that cannot be correctly represented
with a normal, zero-mean PDF. For instance, one of the most
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important uncertainty contributions, in digital instruments,
is the quantization error, which is generally modeled as a
quantization noise with uniform PDF inside the quantization
band. In order to consider different PDFs than the normal one,
the unscented Kalman filter (UKF) has been proposed [2] and
efficiently applied in measurement applications [3].

Moreover, random effects are not the only contributions to
uncertainty. Despite the Guide to the expression of Uncer-
tainty in Measurement (GUM) [4] recommends to identify all
possible systematic effects and apply suitable compensations
for, situations may occur where a complete identification is
not possible and compensation is either unpractical or too
expensive. Therefore, systematic effects must be taken into
account too. Modifications of the classical Kalman filter have
been proposed [5]–[8] to consider also systematic effects.

Recent studies have challenged the effectiveness of prob-
ability in representing, evaluating and combining the uncer-
tainty contributions due to systematic effects, especially when
only limited information is available about those contributions,
as largely proved, on the basis of several practical examples, by
[9]–[11]. The recent mathematical theory of possibility [12],
[13] has been proposed as a more efficient mathematical tool
to handle uncertainty under such conditions in a GUM [4]
compliant way [14]–[18].

Given the importance of the Kalman filter in several mea-
surement applications, it is interesting to investigate how it can
be extended from the probabilistic to the possibilistic domain.
Several methods and applications have been already proposed
[19], [20] and proved that possibility distributions (PDs) can
be effectively employed, instead of PDFs, to model the noise
terms of the classical Kalman filter.

At the Authors’ knowledge, the available possibilistic tech-
niques applied in Kalman filters model uncertainty in a kind
of semantic way, as typical of the fuzzy applications. On the
other hand, when measurement applications are considered,
uncertainty is a very specific concept with a definite meaning,
as recommended by the GUM [4] in accordance with the
definition given by the International Vocabulary of Metrology
(VIM) [21]. It is therefore important that, whenever measure-
ment uncertainty is considered, it is modeled and represented
in such a way that compliance with those official documents
is assured, at least in the concepts.

Compliance with the GUM-defined measurement uncer-
tainty concept is granted by the recent proposal to represent a
measurement result, together with the appertaining uncertainty,
with a Random-Fuzzy variable (RFV) within the possibility
theory [17], [18], [22], which was succesfully applied in sev-
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eral different fields [23]–[26]. This approach leads to represent
and propagate the effects (on the considered measurement
result) of both the random and systematic uncertainty con-
tributions. This generalization appears then to be particularly
suitable to ensure GUM compliance also to Kalman filter
applications in the instrumentation and measurement domain,
when all kinds of possible contributions to uncertainty are
considered and represented with RFVs. It is hence worth,
as initially shown in [27], to reformulate the Kalman filter
theory in terms of RFVs, so that different kinds of random
and systematic contributions to uncertainty can be considered
in a GUM compliant way [18].

This paper starts from the theoretical formulation given in
[27] (and here extensively recalled for the sake of clarity),
reviews it and shows a practical experimental example. The
results obtained under different metrological assumptions are
shown.

The paper is organized as follows: Section II briefly recalls
the classical Kalman filter. Section III recalls some basic
definitions of the Random-Fuzzy variables and exploits them
to implement a possibilistic Kalman filter as a direct extension
of the classical one. Section IV proposes and discusses a
practical application example.

II. THE CLASSICAL KALMAN FILTER

As already stated in [27], the Kalman filter is a widely
known estimation algorithm, used to estimate the system state
of a dynamical system [1], [28].

In this paper, a dynamical system is represented in the
discrete-time form, since it is the most useful representation
when dealing with digital signal processing and control:

xk = Ak−1xk−1 + Bk−1uk−1 (1)

where xk is the system state vector, containing the terms of
interest of the system at the discrete time k; uk is the vector
containing any control input; A is the state-transition matrix,
which applies the effect of each system state parameter at
time k−1 on the system state at time k; and B is the control-
input matrix, which applies the effect of each control input
parameter in the vector uk on the state vector [1], [28].

In many applications, the system state xk is not directly ac-
cessible, but an output quantity yk related to xk is measurable.
Let us suppose the following relationship between xk and yk:

yk = Hkxk (2)

where Hk is the transformation matrix, that maps the state
vector parameters into the measurement domain [1], [28].

It can be readily checked that, if the model were per-
fectly defined and the input and the initial conditions were
known without uncertainty, the state evolution could be exactly
determined. However, in the real world, both measurements
and models are affected by uncertainty, and the estimation
algorithm is therefore required to deal with uncertainties. The
Kalman filter is the best-known algorithm that can be applied,
under the assumption that both measurements and models are
affected by random uncertainties that, if not correlated, may
not have a Gaussian distribution as required by the original

formulation of the Kalman filter. Thus, (1) and (2) can be
rewritten as:

xk = Ak−1xk−1 + Bk−1uk−1 + wk−1 (3)

yk = Hkxk + vk (4)

where wk is the vector containing the process noise terms
for each parameter in the state vector. The process noise is
assumed to be drawn from a zero mean Gaussian probability
distribution (PDF) with covariance matrix Qk [1], [28]. vk
is the vector containing the measurement noise terms for
each observation in the measurement vector. Similarly to the
process noise, the measurement noise is assumed to be zero
mean Gaussian white noise with covariance matrix Rk [1],
[28].

As recalled in [27], the aim of the Kalman filter is to
estimate, at each time instant k, the state vector xk, from the
observed measured vector yk, with the constraint that the state
evolution must obey the dynamical system represented by (3)
and (4).

The estimation process is composed by two steps, as sum-
marized in Fig. 1: a prediction step, in which the a priori
estimate of xk is calculated starting from the previously-
calculated estimate of xk−1, and an assimilation (or correction)
step, in which the a priori estimate is combined with the
observation of the output yk in order to obtain the a posteriori
best estimate. The filter is recursive and the two steps alternate.

In Fig. 1, the superscript f refers to the forecasts, that is,
to the a priori estimates, while the superscript a refers to the
a posteriori estimates. Further details about the theory of the
Kalman filters can be found in the literature, for instance in
[1], [29]. Let us only consider here the role played by the
matrix gain Kk, which depends on the covariance matrices
Qk and Rk, that is, on the uncertainties associated to model
and measurements.

Fig. 1. Steps of the classical Kalman filter.
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Kk represents the weight given to the correction of the a pri-
ori estimate because of the disagreement between the predicted
and the actual outputs. Therefore, the values taken by the gain
matrix depend on the reliability of the measurement result
compared to that of the a priori estimate. If the measurement
uncertainty (represented by matrix Rk) is very high, Kk is very
low. This reflects the fact that the measurement can’t be trusted
and, therefore, the a posteriori estimate will be very similar
to the a priori estimate. On the contrary, if the measurement
uncertainty is very low (i. e. Rk tends to zero), Kk becomes
almost equal to H−1

k and the a posteriori states will be very
similar to the measurements.

It is therefore evident that an imprecise evaluation of the
uncertainty of either the measurement result or the model,
due to assumptions that do not represent the measurement
uncertainty correctly, can lead to an incorrect assimilation step.
This is the reason why, in the Author’s opinion, the assumption
of Gaussian white random noise might become too restrictive
in most measurement applications and should be relaxed. The
next section presents a possible way to extend the Kalman
filter to the more general case where the noise contributions
are not the only or the most relevant random contributions
to uncertainty, not all random contributions can be correctly
represented by normal probability distributions, and also non-
random contributions to uncertainty, as the systematic ones,
are present.

It is worth mentioning also the extended Kalman filter
(EKF), which considers a non-linear relationship among the
state variables and the measurements [30]. This paper consid-
ers the classical Kalman filter for the sake of simplicity, since
the same approach as the one proposed here can be applied to
the EKF.

III. THE KALMAN FILTER IN THE POSSIBILITY DOMAIN

Before reformulating the classical Kalman filter into the
possibility domain in terms of RFVs, it is necessary to briefly
recall some definitions. The readers are addressed to the
referenced documents for all mathematical proofs and details.

A. Possibility distributions and Random-Fuzzy variables

It has been shown [16]–[18] that a measurement result,
together with the uncertainty contributions due to both random
and non-random effects, including the systematic ones, affect-
ing the measurement process, can be effectively represented
by a Random-Fuzzy variable (RFV).

An RFV is composed by two different possibility distribu-
tions (PDs) (as shown in the lower plot of Fig. 2), where a
PD is a convex function rX(x), such that r : X → [0, 1] and
supx∈XrX(x) = 1 [12].

The “internal PD” rint (blue line, also shown in the upper
plot of Fig. 2), represents the effects, on the measurement
result, of the non-random contributions to uncertainty, while
the “external PD” rext (pink line, lower plot) represents
the effects, on the measurement result, of all uncertainty
contributions.

The external PD is obtained by combining rint with a “ran-
dom PD” rran (central plot), which represents the effects of the

random contributions to uncertainty only. This combination is
mathematically obtained according to:

rext
X (x) = sup

x′
Tmin

[
rran
X (x− x′ + x∗), rint

X (x′)
]

(5)

where x∗ is the mode of rran
X and Tmin is a fuzzy operator,

called min t-norm and defined as Tmin[a, b] = min(a, b) [31].
Tmin belongs to the class of t-norms defined in the litera-

ture, that is, fuzzy operators obeying to specific mathematical
rules [18], that can be used to combine PDs [32], [33]. Other
t-norms that are useful for the combination of RFVs are the
Frank and Dombi t-norm.

Hence, all uncertainty contributions, random and non-
random, are represented together in a unique RFV, and their
single effects are also represented, thus allowing to process
the different contributions in a different way [11], [32], [34],
according to their nature and the way they combine in the
measurement procedure.

An RFV is built according to the available metrological in-
formation about the measured quantity X [11], [22], [34], [35].
rint
X is generally obtained directly from the available informa-

tion [34]; rran
X is generally obtained through a probability-

possibility transformation [35], [36], according to the fact
that the available information about random contributions is
generally represented by a PDF. Finally, starting from rint

X

and rran
X , the “external PD” rext is obtained according to (5),

as shown in [37].
When the combination of two RFVs, according to a rela-

tionship f , i. e. C = f(C1, C2), is required, the following
procedure is applied [11], [32]–[34], [37]:
• the joint random PD rran

C1,C2
associated to the random

PDs of C1 and C2, is evaluated by applying a Frank or
a Dombi t-norm [38], [39];

• the joint internal PD rint
C1,C2

, associated to the internal
PDs of C1 and C2, is evaluated by applying the t-
norm that better represents the way the two contributions
combine [38]. In particular, it has been proved that, when
two contributions combine in a random way, the most
suitable t-norm is a t-norm from the Frank [11] or Dombi
families [38]; on the other hand, when two contributions
combine in a non-random way, the most suitable t-norm
is the min t-norm [11];

• the joint external PD rext
C1,C2

is then obtained (starting
from rint

C1,C2
and rran

C1,C2
) by extending (5) to the joint

PDs [37];
• the Zadeh extension principle (ZEP) is applied twice: to
rint
C1,C2

and rext
C1,C2

, thus obtaining the internal and exter-
nal PDs respectively, associated to RFV C = f(C1, C2).

As preliminary shown in [27], the described procedure can
be simplified, thus reducing the computational burden, when
function f is linear, for instance when two RFVs are added.
Under this assumption, it is not necessary to build the joint
external PD rext

C1,C2
and the ZEP can be applied directly to

rint
C1,C2

and rran
C1,C2

, thus obtaining respectively the internal and
random PDs associated to C. Then, the direct application of
(5) allows one to evaluate the external PD and thus obtain the
final RFV C.
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Fig. 2. Internal PD rintX (upper plot), random PD rranX (central plot), final
RFV (lower plot).

A PD can be also defined in terms of its α-cuts Xα =
{x ∈ X|rX(x) ≥ α}. By definition, the α-cuts of a PD are
closed intervals Xα = [xα1 , x

α
2 ]. When an RFV is considered,

the α-cuts are confidence intervals of type 2 [18]. It can be
proved that the α-cuts generalize the probabilistic concept of
confidence interval [16], [18] and that the level of confidence
associated to the α-cut at level α is γ = 1−α. Therefore, the
support of an RFV (α-cut at α = 0) represents the confidence
interval at confidence level 1.

B. Variance and covariance of possibility distributions

In order to apply the above concepts to the Kalman filter
theory described in Sec. II, it is necessary to define the
mean value, the variance and covariance of a fuzzy variable.
Definitions of crisp possibilistic mean value, crisp possibilistic
variance and crisp possibilistic covariance of continuous PDs
which are consistent with the ZEP can be found in [40].

Let us consider a fuzzy variable X , with associated possi-
bility distribution rX(x), and let us denote its generic α-cut
Xα = [xα1 , x

α
2 ]. Then, the crisp possibilistic mean value and

variance of X are defined, respectively, as [40]:

M(X) =

∫ 1

0

α (xα1 + xα2 ) dα (6)

V ar(X) =
1

2
·
∫ 1

0

α (xα2 − xα1 )
2
dα (7)

It is interesting to note that the crisp possibilistic mean value
and variance of a linear combination of fuzzy numbers can be
computed in a similar way as in the probability theory. In fact,
if X and Y are two fuzzy numbers and a and b are two real
numbers:

M(aX + bY ) = a ·M(X) + b ·M(Y )

V ar(aX+bY ) = a2·V ar(X)+b2·V ar(Y )+2·|ab|Cov(X,Y )

where Cov(X,Y ) is the crisp possibilistic covariance between
X and Y and is defined as [40]:

Cov(X,Y ) =
1

2
·
∫ 1

0

α (xα2 − xα1 ) (yα2 − yα1 ) dα (8)

The above equations are valid for continuous PDs. From the
practical point of view, however, discrete PDs are employed,
that is PDs defined on a finite number of α-cuts. Therefore,
(6)-(8) have to be modified, according to the considered
discretization. If N equally-spaced α levels are considered,
(6)-(8) can be evaluated as:

M(X) =
1

N

N∑
i=1

αi (xαi
1 + xαi

2 ) (9)

V ar(X) =
1

2 ·N
·
N∑
i=1

αi (xαi
2 − x

αi
1 )

2 (10)

Cov(X,Y ) =
1

2 ·N
·
N∑
i=1

αi (xαi
2 − x

αi
1 ) (yαi

2 − y
αi
1 ) (11)

where αi = 1
N−1 · (i − 1). In the example shown in next

Section IV, N = 101 is considered.

C. Kalman filter with RFVs

The definitions of RFVs given in Sec. III-A and the def-
initions of possibilistic variance and possibilistic covariance
of PDs given in Sec. III-B allow us to extend, in a very
straightforward way, the classical theory of Kalman filters in
a possibilistic framework [27]. This allows us to apply the
Kalman filter also when the possibilistic framework is used
for expressing measurement uncertainty in a GUM-compliant
way.

Since this means that the state variables, the input and
the measured quantities are expressed by RFVs, without any
restriction on their shape, we also have the advantage that
no assumptions are needed on the distribution of the random
contributions to uncertainty, and both systematic and random
contributions to uncertainty can be considered.

Let us consider again Fig. 1, which shows the recursive
prediction and assimilation steps of the classical, probabilistic
Kalman filter. In the prediction step, the a priori state is
evaluated according to the system model, starting from the
previous a posteriori state; while the a priori output is ob-
tained from the a priori state, according to the transformation
matrix Hk. In the assimilation step, the a posteriori state is
evaluated according to the a priori state, the a priori output
and the actual measured value of the output. In these equa-
tions, we refer to crisp values. Their associated uncertainty,
which depends on the model and measurement uncertainties
(represented respectively by the covariance matices Qk and
Rk), are evaluated separately (see the equations in Fig. 1).

When the possibility domain is considered, there is no
need to consider different variables and equations to represent
and propagate a variable and its uncertainty since RFVs
consider all uncertainty contributions and t-norms consider
the combination of RFVs. This means that different kinds of
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uncertainty contributions, with whichever distribution, can be
considered and propagated [18].

Thanks to the use of RFVs, model uncertainty can be
included directly in the prediction of the system state. In
fact, it is possible to suppose that the state-transition matrix
(matrix Ak) is not simply a matrix of crisp values, but a
matrix of RFVs which also include model uncertainty on the
evaluation of the state-transition matrix. Let us call this matrix
A*k. Similarly, it is possible to suppose that the control-input
matrix (matrix Bk) is not simply a matrix of crisp values, but
a matrix of RFVs which also include model uncertainty on the
evaluation of the control-input matrix. Let us call this matrix
B*k.

Under this assumption, the prediction of the system state
can be written, in the possibility domain, as:

Xfk = A*k−1Xak−1 + B*k−1Uk−1 (12)

where the vector of the control input can be a vector of
crisp values (uk) or a vector of RFVs (Uk) if uncertainty
contributions are also associated to the control inputs. In (12),
symbol Uk is used, to consider the more general case.

According to (12), by applying the mathematics of RFVs
[18], because of the presence of RFVs in A*k and B*k, Xfk
is surely a vector of RFVs, associated to the a priori system
state. This means that RFVs in vector Xfk are already affected
by the model uncertainty. So, (12) includes both steps (1) and
(2) in the prediction step of Fig. 1.

Since Xfk is a vector of RFVs, the a priori output vector Yfk
is a vector of RFVs as well:

Yfk = HkXfk (13)

where Hk is the same transformation matrix defined in (2).
Again, (13) includes both phase (3) of the prediction step and
phase (1) of the assimilation step in Fig. 1.

Measurement uncertainty is also considered directly on the
output measured values yk, so that a vector of RFVs Yk is
obtained. This allows us to evaluate the a posteriori system
state according to:

Xak = Xfk + KPOS
k

(
Yk − Yfk

)
(14)

where KPOS
k is again a gain matrix, with the same meaning

as the one given in Sec. II, but evaluated in a different
way, according to the possibilistic definitions of variance
and covariance given in Sec. III-B. Let us call KPOS

k the
possibilistic gain matrix.

In order to define KPOS
k , let us first of all consider again

the definition of the gain matrix in the probability domain:

Kk = PfkHT
k

(
HkPfkHT

k + Rk
)−1

(15)

where
Pfk = Ak−1Pak−1ATk−1 + Qk−1 (16)

is the covariance matrix associated to Xfk . Hence, in the prob-
ability domain, Kk is built considering the model (matrices
Ak and Hk) and the noise (matrices Qk and Rk) and requires,
at each step k, the evaluation of (16).

On the other hand, in the possibility domain, it is possible
to evaluate the covariance matrix associated to Xfk , by simply
applying the definition of variance and covariance given in
Sec. III-B.

Not to confuse the meaning of the symbols, let us denote
this matrix with a different symbol than Pfk ; let us name it:
CXf

k
. If Xfk is a vector of dimension n

Xfk =
[
Xf

1 , X
f
2 , ..., X

f
n

]
,

then it is:

CXf
k

=


V ar(Xf

1 ) Cov(Xf
1 , X

f
2 ) ... Cov(Xf

1 , X
f
n)

Cov(Xf
2 , X

f
1 ) V ar(Xf

2 ) ... Cov(Xf
1 , X

f
n)

... ... ... ...

Cov(Xf
n , X

f
1 ) Cov(Xf

n , X
f
2 ) ... V ar(Xf

n)


(17)

where subscript k has been omitted for the sake of simplicity.
It is worth noting that CXf

k
is again a matrix of crisp values,

but obtained in a different way than Pfk .
Similarly, it is possible to evaluate the covariance matrix

associated to Yk. Let us denote this matrix CYk
. Hence, the

possibilistic gain matrix can be evaluated as:

KPOS
k = CXf

k
HT
k

(
HkCXf

k
HT
k + CYk

)−1

(18)

A further short discussion is necessary about KPOS
k . In fact,

as recalled in Sec. III-A, RFVs are defined by three different
PDs: the internal, the random and the external one. It follows
that the definition of variance and covariance can be applied
to all these PDs, thus leading to different values and, hence, to
different possible values for KPOS

k . In particular, when Eqs.
(10) and (11) are applied to the internal PDs of the a priori
RFVs, a value Kint

k is obtained. Similarly, when the random
PDs are considered, a value Kran

k is obtained, and when the
external PDs are considered, a value Kext

k is obtained. Since
these values are generally different and may provide different
results for Xak, the correct selection of the value to be used in
(14) is a critical step. This can be done by recalling the role
of the gain matrix, as discussed in Sec. II. According to that
discussion, it is reasonable to consider, for the evaluation of
the possibilistic gain matrix, the overall uncertainty, which is
taken into account by the external PDs of the RFVs. Therefore,
KPOS
k = Kext

k is considered in (14).

IV. AN APPLICATION EXAMPLE

A. The experimental set-up

To give an experimental validation to the proposed possi-
bilistic Kalman filter, the dynamical model already employed
in [41] is considered: a rotating DC, shunt connected motor,
of which we want to estimate the angular position ϑ. The
angular position is also the output of the system, which, of
course, depends on the motor speed. An encoder (Wachendorff
WDG 58B) is mechanically coupled to the motor shaft, and
provides 4096 PPR, that is, 4096 pulses for every revolution of
the motor shaft. The motor and the experimental setup already
employed in [41] are shown, respectively, in Figs. 3 and 4.
According to the measurements and the discussion in [41], a
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Fig. 3. The employed motor

Fig. 4. The experimental setup

linear relationship has been found between the applied voltage
and the rotation speed :

ω = c1 · v + c2 (19)

In the considered example, a constant voltage is applied to
the motor. Therefore, at steady state, the motor rotation speed
ω is constant.

Eq. (19) allows us to write the following motor model:

∆ϑ = ω ·∆t = (c1 · v + c2) ·∆t (20)

where ∆ϑ is the variation of the angular position in the time
period ∆t.

B. Estimation of the uncertainty contributions

Different experiments have been considered and two groups
of data have been acquired.

1) Coefficients uncertainty estimation: In the first experi-
ment, different voltage values have been applied to the motor
and, for each of these values, both the voltage and the
corresponding rotation speed have been acquired with an ADC
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Fig. 5. RFVs C1 and C2.

board (NI-USB-6356). This first group of data has allowed us
to obtain coefficients c1 and c2 in Eq. (19) for the considered
motor, as detailed in [41]. Furthermore, the evaluation of
the uncertainties associated to c1 and c2, according to the
experimental data, has also allowed us to built RFVs C1 and
C2 associated to these coefficients [41], as shown in Fig. 5.

Therefore, Eqs. (19) and (20) can be rewritten in terms of
RFVs, as:

Ω = C1 · V + C2 (21)

∆Θ = Ω ·∆t = (C1 · V + C2) ·∆t (22)

2) Voltage and angular position uncertainty estimation:
In the second experiment, a constant voltage value has been
applied to the motor and the ADC board is used to acquire
both the supply voltage and the pulses of the encoder. In
particular, 8192 encoder pulses have been acquired by the
digital channel of the ADC board and the pulse periods Tpp,
that is the time interval between one pulse of the encoder and
the successive one, has been evaluated by a dedicated VI. This
number (8192) has been chosen because it corresponds exactly
to two motor revolutions, since, as already stated, the encoder
provides 4096 pulses per revolution. On the other side, from
the analog channel of the ADC board, 100000 voltage samples
have been acquired at a sampling frequency fs = 1 MHz.

Fig. 6 shows a screen-shot of the dedicated VI, when the
applied voltage is 150 V. The graph of the acquired voltage is
displayed, together with its mean value and standard deviation,
and the graph of 256 measured values Tppi of the pulse period
is also displayed. The figure shows how the vibration of the
encoder, caused by the intrinsic vibrations of the motor and
the possible residual inaccuracy in the link alignment, leads to
a variability of the measured pulse period Tpp, which hence
is not constant.

2a) Voltage uncertainty estimation: The voltage samples
allow us to determine the voltage applied to the motor. In
particular, because of the inertia of the motor, the motor rotates
according to the mean value of the applied voltage and is not



SUBMITTED FOR PUBLICATION TO: IEEE TRANS. ON INSTRUM. AND MEAS. 7

Fig. 6. Dedicated VI. The upper graph shows the measured pulse period over 256 pulses, which correspond to 1
16

of turn. The lower graph shows the
acquired voltage.

influenced by the voltage ripple. Therefore, the voltage mean
value over two revolutions of the motor is considered.

The time period for two revolutions of the motor is given
by:

∆tTOT =
8192∑
i=1

Tppi = 52.27 ms

and, since the sampling frequency is 1MHz, 52270 voltage
samples are acquired over period ∆tTOT . According to the
acquired voltage samples, the mean value of the first 52270
samples provides a voltage mean value Vm = 150.39 V.

Furthermore, two different assumptions are considered.
• According to the acquired samples, the measurement

uncertainty associated to the mean value is negligible with
respect to the uncertainty contributions associated to c1
and c2. Therefore, the considered supply voltage Vm is
supposed to be a crisp value, without uncertainty.

• In order to study how the uncertainty contributions on
the supply voltage may influence the estimation of the
system state, both random and systematic contributions
are assumed, so that the supply voltage is no more
expressed by a crisp value without uncertainty, as in the
previous case, but by an RFV centered on Vm.
Different values of the uncertainty contributions have
been considered, in order to see their impact on the final

results. In particular, the internal PD of the voltage has
been considered rectangular, with a width ranging from
±1% to ±10% of Vm; while the random PD has been
considered the PD obtained from a normal PDF, having
a standard deviation ranging from 1 V to 10 V.

2b) Angular position uncertainty estimation: The measured
pulse periods are used to build the RFVs associated to the
measured angular position. First of all, the 8192 measured
values Tppi are divided into 32 groups of 256 measurements
each. This assumption allows us to obtain 32 possible steps for
the Kalman filter, at well-separated expected angular positions.
Let us then consider, for every time instant tk, the relationship
between the measured pulse period Tpp and the measured
angular position ϑk in radians:

ϑk =
2π

4096 · Tpp
· tk (23)

From this equation, it is possible to obtain the expected,
theoretical values of the angular position by considering that,
due to the inertia of the motor, when the supply voltage shows
a constant mean value, the motor rotation speed is constant
(at steady state), the pulse period T expectedpp is constant and
the angular position uniformly increases as the time increases.
Under this assumption, it is possible to consider, in (23), Tpp =
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T expectedpp and tk = 256 · k · T expectedpp ; thus leading to:

ϑexpectedk =
2π · 256 · k · T expectedpp

4096 · T expectedpp

=
π

8
· k (24)

as reported in the second column of Table I.
The increment of the angular position in two successive

steps is constant and is given by: ∆ϑexpected = π
8 = 0.3927.

On the other hand, because of the different measured values
Tppi , the measured angular positions differ from the expected
ones: ϑk 6= ϑexpectedk . In order to evaluate the measured ϑk
(as reported in the third column of Table I), (23) is applied
under the following assumptions:
• since 8192 measured values of the pulse period are taken:

Tpp = T̄pp =
1

8192

8192∑
i=1

Tppi = 6.38µs

• since the 8192 measured values are divided into 32 groups
of 256 measurements each:

tk =

256·k∑
i=1

Tppi

Furthermore, the variability of the 8192 measured values
Tppi allows us also to associate a measurement uncertainty
to the measured angular positions ϑk, thus obtaining the
corresponding RFVs Θk. First of all, the statistical analysis
of the measured Tppi values has confirmed that they are not
affected by any bias but only by random contributions. There-
fore, RFVs Θk obtained by the experimental measurements
have nil internal PDs and only show random PDs. Moreover,
their variability over the 8192 values does not differ from
their variability over the considered 32 steps. Therefore, it is
reasonable to assume that the uncertainty associated to each
measured value remains constant.

In particular, the distribution of the measured values is
approximately normal, with standard deviation σTpp

= 0.12µs,
hence, from Eq. (23):

σθk = σθ =
2π

4096 · T̄pp
· 256 · σTpp

= 0.0072 (25)

From this value, and applying the probability-possibility trans-
formation [18], RFVs Θk can be built. Since σθ is independent
from k, it follows that all RFVs have the same shape and
width, and only their mean values change, according to the
measured values reported in the third column of Table I.

However, in order to study the effect on the estimation of
some systematic contributions to uncertainty on the measured
values, a further case study is also considered, by assuming
that the measured values are also affected by systematic con-
tributions to uncertainty. In particular, an internal, rectangular
PD of width ±0.1% of the measured value is added to RFVs
Θk. This will be shown in Sec. IV-D.

C. Application of the possibilistic Kalman filter

According to the theoretical considerations in Sec. III-C,
the equations can be simplified for a time-invariant system,
with only one state variable, one input variable and one output

TABLE I
ANGULAR POSITIONS AT THE FIRST THIRTY-TWO ITERATIONS [rad].

time step Expected θ Measured θ
1 0.3927 0.392
2 0.7854 0.778
3 1.1781 1.174
4 1.5708 1.575
5 1.9635 1.958
6 2.3562 2.355
7 2.7489 2.746
8 3.1416 3.134
9 3.5343 3.526

10 3.9270 3.925
11 4.3197 4.315
12 4.7124 4.707
13 5.1051 5.099
14 5.4978 5.491
15 5.8905 5.896
16 6.2832 6.289
17 6.6759 6.681
18 7.0686 7.069
19 7.4613 7.461
20 7.8540 7.852
21 8.2467 8.247
22 8.6394 8.633
23 9.0321 9.024
24 9.4248 9.414
25 9.8175 9.806
26 10.2102 10.20
27 10.6029 10.60
28 10.9956 10.99
29 11.3883 11.38
30 11.7810 11.77
31 12.1737 12.17
32 12.5664 12.57

variable, as:

Xf
k = A∗ Xa

k−1 +B∗ Uk−1 (26)

Y fk = hXf
k (27)

Xa
k = Xf

k + kPOSk

(
Yk − Y fk

)
(28)

kPOSk =
cXf

k
· h

h2 · cXf
k

+ cYk

(29)

If we now consider that the system state is the angular
position, the input of the system is the voltage supply and
the output of the system is again the angular position, we get
the following equations:

Θf
k = Θa

k−1 + (C1 · Vk + C2) ∆tk (30)

Y fk = Θf
k (31)

Θa
k = Θf

k + kPOSk

(
Θk −Θf

k

)
= Θf

k

(
1− kPOSk

)
+ kPOSk Θk

(32)

kPOSk =
cΘf

k

cΘf
k

+ cΘk

(33)

where Θf
k and Θa

k are the a priori and a posteriori estimated
RFVs associated to the angular position; Θk is the measured
value; Vk is the RFV associated to the voltage supply, C1

and C2 are the RFVs associated to the motor model; ∆tk is
the time interval between two consecutive steps; and kPOSk

is the possibilistic gain, where, according to (17), cΘf
k

is
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the possibilistic variance of Θf
k and cΘk

is the possibilistic
variance of Θk.

By comparing (30)-(31) with (26)-(27), and according to
the definition of tk given in the previous section, it follows
that:
• A∗ = 1;
• B∗ = C1 ·Vk+C2, where C1 and C2 are the RFVs shown

in Fig. 5;
• h = 1;
• Uk−1 = ∆tk = tk − tk−1 =

∑256·k
i=1+256·(k−1) Tppi

To start the possibilistic KF recursive procedure, it is
therefore necessary to set the initial condition, that is to build
RFV Θa

0 , associated to the initial angular position, and to build
RFVs Vk and Θk.

As for the initial angular position, it is convenient to assume
that Θa

0 = 0, since the initial position of the motor can be
considered as the zero position, with no uncertainty. This does
not affect the general validity of the proposed method, since
any other RFV could be assigned to the initial value.

On the other hand, as far as Vk and Θk are concerned,
according to the considerations about the uncertainty contribu-
tions and the discussion reported in previous Sec. IV-B, three
different case studies are considered.

1) CASE A. The voltage supply is a constant value, equal
to Vm. The measured values of the angular positions are
affected by only the random contributions, as obtained
by the experimental measurements, as shown in previous
Sec. IV-B. A normal PDF with standard deviation σϑ,
given by (25), has been considered. Therefore, in this
case, RFV Θk is centered on the measured value θk
(third column in Table I), has nil internal PD and a
random PD obtained from the assumed normal PDF (by
applying the probability possibility transformation [18],
[36], [42]).

2) CASE B. The measured values of the angular posi-
tions are affected by only the random contributions, as
obtained by the experimental measurements, as shown
in previous Sec. IV-B. Therefore, RFV Θk is built
according to the same considerations as for CASE A. On
the other hand, uncertainty contributions are added to the
voltage supply. In particular, both random and systematic
contributions are assumed. A rectangular internal PD is
considered, whose width is a percentage p of Vm; a
from-gaussian random PD is considered, with standard
deviation σ. Hence, in (30), Vk is an RFV, constant
with k, centered on Vm. Different values of p and σ
are considered, to verify how the different uncertainty
contributions on the voltage supply influence the results
of the Kalman filter. The results are shown in next Sec.
IV-D.

3) CASE C. The voltage supply is an RFV, as explained in
previous CASE B. On the other hand, systematic con-
tributions are added to the angular positions measured
values. Therefore, in this case, RFV Θk is a complete
RFV, centered on the measured value θk, with internal
rectangular PD with width ±0.1% of the measured
value, and with a random PD obtained from the assumed
normal PDF, as explained for CASE A.

D. Results and comparison
In this section, the results obtained in the three different

case studies are shown and discussed.
In particular, Fig. 7 shows some of the steps of the Kalman

filter estimation for CASE A. For each of the reported steps,
the green lines represent the obtained a priori RFVs (Θf

k), the
cyan lines represent the RFVs associated to the measurements
(Θk) and the red lines represents the obtained a posteriori
RFVs (Θa

k). Fig. 8 shows the width of the α-cut at level of
confidence 0.95% of the a posteriori RFVs in all 32 steps,
and the effects (on these RFVs) of the systematic and random
contributions to uncertainty. In particular, for each step k,
the difference between the obtained a posteriori RFV and
the expected angular position (Θa

k - θexpectedk ) is evaluated
and then the α-cut at level of confidence 0.95% is reported.
This difference has been evaluated because, otherwise, the
uncertainties could not be appreciated in the graph. In this
figure, for each step k, the whole interval (delimited by the
external stars) is the whole α-cut, while the smaller interval,
delimited by the two internal stars, shows the effect of the
systematic contributions only.

In this CASE A, the only systematic contributions are the
ones associated to coefficients C1 and C2, that is to model
uncertainty. Therefore, it can be stated that these contributions
do not affect too much the a posteriori RFVs Θa

k, while the
random contributions, which are present both in the model and
measurement uncertainty prevail.

It can be also noted that the implemented Kalman filter does
efficiently improve the estimates. Indeed, the relative width,
with respect to the mean value, of the α-cut at α = 0.05
(which corresponds to a 95% level of confidence) of RFV θa

reduces, from the initial value of 6.6% of step 1, to 0.4% of
step 16 and 0.2% of step 32.

Fig. 9 shows some of the steps of the Kalman filter
estimation for CASE B. In particular, to obtain this figure,
σ = 3V and p = ±2% of the voltage value have been
considered. The meaning of the red-green-cyan lines is the
same as in Fig. 7. Fig. 10 shows the width of the α-cut at
level of confidence 0.95% of the a posteriori RFVs in all the
32 steps in the case of Fig. 9. As in Fig. 8, the difference Θa

k

- θexpectedk is reported, for the same reasons.
By comparing this figure with Fig. 8, it can be noted that

the two figures show very similar results. This means that
the uncertainty contributions that have been added on the
voltage supply have little effect on the results. In order to study
more in depth this phenomenon, further simulations have been
performed, with different uncertainty values. In particular, Fig.
11 shows the results obtained with σ = 10V and p = ±10%
of the measured value.

It can be noted that Figs. 11 and 10 are very similar,
thus confirming that the effect on the obtained results of the
uncertainty values on the voltage supply are negligible with
respect to the effect of the other uncertainty contributions.

This is also confirmed by the relative widths of the α-cuts
at a 95% level of confidence, that decrease from 7.0% of step
1 to 0.4% of step 16 and 0.2% of step 32.

Fig. 12 shows some of the steps of the Kalman filter for
CASE C. As far as the voltage supply is concerned, it is
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again: σ = 3V and p = ±2%. As far as the measured
angular position is concerned, a standard deviation σθ and
a systematic contribution ±0.1% of the measured value have
been considered. The meaning of the red-green-cyan lines is
the same as in Fig. 7. Fig. 13 shows the width of the α-cut at
level of confidence 0.95% of the a posteriori RFVs in all the
32 steps in the case of Fig. 12. As in Fig. 8, the difference
Θa
k − θexpectedk is reported, for the same reasons.
It can be noted how a systematic contribution on the

measured values Θm affects the obtained results. Even if
a quite small value has been considered in this simulation
(±0.1%), it causes the width of the obtained RFVs to increase
as k increases.

As expected, the systematic effect becomes the dominant
contribution to uncertainty after a few iterations of the filter,
since a systematic deviation on the position propagates and
amplifies in time.

This confirms the importance of considering all contribu-
tions to uncertainty, since this example proves that neglecting
even a small systematic contribution may lead to a dramatic
underestimation of uncertainty.

V. CONCLUSION

This paper has shown how the classical Kalman filter can
be re-defined by modeling the uncertainty contributions in
the possibility domain in a GUM-compliant way, in terms of
RFVs.

The main advantage of the proposed re-definition in the
possibility framework is that different contributions to uncer-
tainty – random with different PDFs and systematic – can
be considered, represented and combined in a suitable, GUM-
compliant way when the Kalman filter is used in measurement
applications.

The paper has derived, according to the available mathemat-
ics of the RFVs, the equations that implement the proposed
Kalman filter in the possibility domain and has proposed
and experimental validation with a simple, though significant
application, proving that different contributions to measure-
ment uncertainty can be effectively considered and processed.
The obtained results prove that the proposed method does
efficiently take into account measurement uncertainty within
the framework considered by the standard reference documents
in metrology. It can be then considered as a suitable alternative
to other implementations of the Kalman filter, where, as in all
metrological applications, the “best” approach can be defined
only in terms of the relevant available information, as proved
in [11].

As already stated, this approach has the merit of being
compliant with the uncertainty concept considered by the
GUM [4], although it evaluates uncertainty under a different
mathematical framework [16], [18].
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[19] F. Matı̀a, A. Jiménez, B. M. Al-Hadithi, D. Rodrı̀guez-Losada, and
R. Galán. The fuzzy kalman filter: State estimation using possibilistic
techniques. Fuzzy Sets and Systems, 157(16):2145 – 2170, 2006.

[20] M. Oussalah and J. De Schutter. Possibilistic kalman filtering for radar
2d tracking. Information Sciences, 130(1):85 – 107, 2000.

[21] JCGM 200:2012. International Vocabulary of Metrology – Basic
and General Concepts and Associated Terms (VIM 2008 with minor
corrections). Joint Committee for Guides in Metrology, 2012.

[22] A. Ferrero and S. Salicone. The construction of random-fuzzy variables
from the available relevant metrological information. IEEE Trans.
Instrum. Meas., 58(2):1149–1157, 2009.

[23] Q. Zhu, Z. Jiang, Z. Zhao, and H. Wang. Uncertainty estimation
in measurement of micromechanical properties using random-fuzzy
variables. Review of Scientific Instruments, 77(035107), 2006.

[24] M. Pertile and M. De Cecco. Uncertainty evaluation for complex prop-
agation models by means of the theory of evidence. MEASUREMENT
SCIENCE AND TECHNOLOGY, 19:1–10, 2008.

[25] Chin Wang Lou and Ming Chui Dong. A novel random fuzzy neural
networks for tackling uncertainties of electric load forecasting. Electrical
Power and Energy Systems, 73:34–44, 2015.

[26] Yan Tu, Xiaoyang Zhou, Jun Gang, Merrill Liechty, Jiuping Xu, and
Benjamin Lev. Administrative and market-based allocation mechanism

0.36 0.37 0.38 0.39 0.4 0.41 0.42
angular position [rad]

0

0.5

1

 le
ve

l

Step 1

6.24 6.26 6.28 6.3 6.32 6.34 6.36
angular position [rad]

0

0.5

1

 le
ve

l

Step 16

8.58 8.6 8.62 8.64 8.66 8.68 8.7
angular position [rad]

0

0.5

1

 le
ve

l

Step 22

12.52 12.54 12.56 12.58 12.6 12.62 12.64
angular position [rad]

0

0.5

1

 le
ve

l

Step 32

Fig. 9. Four step of the Kalman filters when random and systematic
contributions are added to the voltage supply and the measured angular
positions are affected by random uncertainty contributions only (CASE B).
The green lines represent the obtained a priori RFVs (Θf

k ), the cyan lines
represent the RFVs associated to the measurements (Θk) and the red lines
represents the obtained a posteriori RFVs (Θa

k). The pink circles represent
the expected angular position.

for regional water resources planning. Resources, Conservation and
Recycling, 95:156?73, 2015.

[27] W. Jiang, A. Ferrero, S. Salicone, and Q. Zhang. An extension of kalman
filter within the possibility theory. In I2MTC 2017, Turin, Italy, May
22-25, 2017.

[28] R. Faragher. A new approach to linear filtering and prediction problems.
IEEE Signal Processing Magazine, pages 128–132, September 2012.

[29] R. Todling. Estimation theory and atmospheric data assimilation. In
Inverse Methods in Global Biogeochemical Cycles, Geophysical Mono-
graph Series. American Geophysical Union, Washington, D. C.:Wiley,
2000.

[30] Charles K. Chui and Guanrong Chen. Kalman Filtering - with Real-
Time Applications. Springer Series in Information Sciences. Springer,
iii edition, 2009.



SUBMITTED FOR PUBLICATION TO: IEEE TRANS. ON INSTRUM. AND MEAS. 12

0 5 10 15 20 25 30 35
-0.04

-0.02

0

0.02

     

Fig. 10. Evolution of the α-cut widths at confidence level 0.95 for all 32
steps in the case shown in Fig. 9.

0 5 10 15 20 25 30 35
-0.04

-0.02

0

0.02

   

Fig. 11. Evolution of the α-cut widths at confidence level 0.95 for all
32 steps when the uncertainty contributions affecting the voltage supply are
increased.

[31] Erich Peter Klement, Radko Mesiar, and Endre Pap. Triangular norms.
position paper I: basic analytical and algebraic properties. Fuzzy Sets
and Systems, 143(1):5 – 26, 2004.

[32] A. Ferrero, M. Prioli, and S. Salicone. The construction of joint
possibility distributions of random contributions to uncertainty. IEEE
Trans. Instrum. Meas., pages 1–9, 2013.

[33] A. Ferrero, M. Prioli, S. Salicone, and W. Jiang. Combination of
measurement uncertainty contributions via the generalized dombi op-
erator. In Proceedings of the 2015 Conference of the International
Fuzzy Systems Association and the European Society for Fuzzy Logic
and Technology, AISR, pages 1507–1513. Atlantis Press, 2015.

[34] A. Ferrero, M. Prioli, and S. Salicone. Processing dependent systematic
contributions to measurement uncertainty. IEEE Trans. Instrum. Meas.,
4(62):1–12, 2013.

[35] D. Dubois, L. Foulloy, G. Mauris, and H. Prade. Probability-possibility
transformations, triangular fuzzy sets, and probabilistic inequalities.
Reliable Computing. Kluwer Academic Publishers, 10:273–297, 2004.

[36] A. Ferrero, M. Prioli, S. Salicone, and B. Vantaggi. 2D probability-
possibility transformations. In Synergies of Soft Computing and Statistics
for Intelligent Data Analysis, volume 190 of Advances in Intelligent
Systems and Computing, pages 63–72. Springer Berlin Heidelberg, 2013.

[37] A. Ferrero, M. Prioli, and S. Salicone. Joint random-fuzzy variables:
A tool for propagating uncertainty through nonlinear measurement
functions. IEEE Trans. Instrum. Meas., 65(5):1015–1021, May 2016.

[38] G. J. Klir and B. Yuan. Fuzzy sets and fuzzy logic. Theory and
applications. Prentice Hall PTR, Englewood Cliffs, NJ, USA, 1995.

[39] A. Ferrero, M. Prioli, S. Salicone, and W. Jiang. Combination of mea-
surement uncertainty contributions via the generalized dombi operator.
In 16th World Congress of IFSA and 9th Conference of EUSFLAT, pages
1507–1513, Gijón, Spain, June 30th ?July 3rd, 2015.

[40] C. Carlsson and R. Fullér. On possibilistic mean value and variance
of fuzzy numbers. Fuzzy sets and systems, 122(2):315–326, September
2001.

[41] W. Jiang, A. Ferrero, S. Salicone, and Zhang Q. A possible way to
perform recursive bayesian estimate in the possibility domain. IEEE
Trans. Instrum. Meas., 66(12):3218–3227, December 2017.

0.36 0.37 0.38 0.39 0.4 0.41 0.42
angular position [rad]

0

0.5

1

 le
ve

l

Step 1

6.22 6.24 6.26 6.28 6.3 6.32 6.34 6.36
angular position [rad]

0

0.5

1

 le
ve

l

Step 16

8.56 8.58 8.6 8.62 8.64 8.66 8.68 8.7
angular position [rad]

0

0.5

1

 le
ve

l

Step 22

12.5 12.52 12.54 12.56 12.58 12.6 12.62 12.64
angular position [rad]

0

0.5

1

 le
ve

l

Step 32

Fig. 12. Four step of the Kalman filters when random and systematic
contributions are added to the voltage supply and the measured angular
positions are affected by both random and systematic uncertainty contributions
(CASE C). The green lines represent the obtained a priori RFVs (Θf

k ), the
cyan lines represent the RFVs associated to the measurements (Θk) and the
red lines represents the obtained a posteriori RFVs (Θa

k). The pink circles
represent the expected angular position.

[42] A. Ferrero, M. Prioli, S. Salicone, and B. Vantaggi. A 2-D metrology-
sound probability-possibility transformation. IEEE Trans. Instrum.
Meas., pages 1–9, 2013.



SUBMITTED FOR PUBLICATION TO: IEEE TRANS. ON INSTRUM. AND MEAS. 13

0 5 10 15 20 25 30 35
-0.04

-0.02

0

0.02

     

Fig. 13. Evolution of the α-cut widths at confidence level 0.95 for all 32
steps in the case shown in Fig. 12.


