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Abstract—Recently, artificial intelligence reached impressive
milestones in many machine learning tasks such as the recogni-
tion of faces, objects, and speech. These achievements have been
mostly demonstrated in software running on high-performance
computers, such as the graphics processing unit (GPU) or
the tensor processing unit (TPU). Novel hardware with in-
memory processing is however more promising in view of the
reduced latency and the improved energy efficiency. In this
scenario, emerging memory technologies such as phase change
memory (PCM) and resistive switching memory (RRAM), have
been proposed for hardware accelerators of both learning and
inference tasks. In this work, a multilevel 4kbit RRAM array
is used to implement a 2-layer feedforward neural network
trained with the MNIST dataset. The performance of the network
in the inference mode is compared with recently proposed
implementations using the same image dataset demonstrating
the higher energy efficiency of our hardware, thanks to low
current operation and an innovative multilevel programming
scheme. These results support RRAM technology for in-memory
hardware accelerators of machine learning.

Keywords: resistive switching memory (RRAM); artificial intelli-
gence; machine learning; in-memory computing; neural network;
backpropagation; energy efficiency.

I. INTRODUCTION

Machine learning has made extensive progress in the last
ten years, thanks to the availability of large training datasets
and the maturity of high-performance computers such as the
graphics processing unit (GPU) [1] and the tensor processing
unit (TPU) [2]. Deep learning networks [3] operated with
this specialized hardware have been shown to outperform the
human performance in image/face recognition [4]. Operating
these networks, however, generally requires a large power
consumption and computational time because of the von Neu-
mann bottleneck affecting all conventional processors [5]. New
computing architectures capable of combining high energy

This work has received funding from the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation programme
(grant agreement No. 648635) and from the Università degli Studi di Ferrara
under the Bando per il finanziamento della ricerca scientifica "Fondo per
l’Incentivazione alla Ricerca" (FIR) - 2018. This work was also supported
by German Research Foundation (DFG) in the frame of the research group
FOR2093.

Fig. 1. Schematic of 4kbit RRAM array architecture where each cell consists
of a 1T1R structure based on serial connection of a NMOS transistor and an
Al:HfO2 RRAM device.

efficiency, high performance and high density of synaptic
weights are thus receiving strong research efforts.

In this scenario, novel memory technologies such as phase
change memory (PCM) and resistive switching memory
(RRAM) might enable improved energy efficiency and scal-
ing, thanks to in-memory analogue matrix-vector multiplica-
tion (MVM) for both training and inference [6]. Hardware
machine-learning accelerators using PCM devices as synaptic
weights have been demonstrated for image classification of
the MNIST dataset of handwritten digits [7], reaching an
inference accuracy of 83% [8]. A higher inference accuracy
of about 92% with MNIST classification was shown with
Ta/HfO2/Pt RRAM synaptic devices [9]. However, a hardware
implementation combining high accuracy and low energy
operation has not been demonstrated yet.

In this work, we demonstrate a hardware neural network
implemented in a 4kbit array of Al:HfO2 RRAM devices
with one-transistor/one-resistor (1T1R) structure [10]. Synap-
tic weights are stored by using an efficient multilevel program-
ming scheme with 5 conductance states. The 1T1R array is



Fig. 2. (a) TEM cross-sectional image of 1T1R cell structure with a detailed
description of Al:HfO2 RRAM stack. (b) I-V characteristics of a single 1T1R
cell displaying forming, set and reset processes.

Fig. 3. (a) Schematic representation of multilevel program and verify
algorithm (M-ISPVA) used to achieve 5 current levels to program synaptic
weights into the array [11]. (b) Median relative variability of resistance as a
function of median resistance of 5 target levels for Vread = 0.5 V evidencing
a good agreement with LRS measurements on HfO2 RRAM cells presented
in [12].

then programmed to store the weights of a 2-layer feedforward
neural network, and the experimental accuracy of MNIST
classification is characterized by simulations. We characterize
the classification accuracy before and after annealing at ele-
vated temperature. The array performance is finally compared
with recently presented networks, supporting the good energy
efficiency of multilevel RRAM in inference mode.

II. RRAM ARRAY STRUCTURE AND OPERATION

Fig. 1 shows the architecture of the 4kbit RRAM array used
in this work, which includes 1T1R memory cells consisting
of a NMOS transistor manufactured with the IHP’s 0.24 µm
CMOS technology that is contacted on its drain terminal by
a metal-insulator-metal (MIM) element [10]. The 1T1R cells
are arranged into a 64x64 matrix and they can be accessed
through the wordline (WL) and bitline (BL) decoders. The
voltages applied to the WL, BL, and the sourceline (SL) for
forming, set, and reset operations are provided by an external
test equipment and routed on the array through the voltage
selectors and decoders. Also, a Direct Memory Access (DMA)
interface connects with the BL decoder to provide the readout
current of a selected cell. Fig. 2(a) provides a detailed view of
1T1R cell evidencing the TiN/Ti/Al:HfO2/TiN RRAM stack
and the thickness of each layer, while Fig. 2(b) shows the

current-voltage (I − V ) characteristics of a single 1T1R cell
before the array integration. After forming process, the reset
transition from low resistance state (LRS) to high resistance
state (HRS) is triggered by application of a reset voltage of
-1 V, whereas the set transition from HRS to LRS occurs at
set voltage of about 1 V and it is limited by a compliance
current IC = 20 µA. Tuning resistance in 1T1R cells relies
on the multilevel capability of the RRAM technology tightly
coupled with a good control of its intrinsic variability [11].
Here, we consider 5 target levels, namely one HRS level
(L1) and four different LRS levels (L2-L5). HRS is achieved
through the application of the ISPVA approach [11] using
the following device parameters: gate voltage VG = 2.7 V,
source voltage VS from 0 to 3 V and a target readout current
IL1 = 5 µA. On the other hand, to achieve LRS levels we
adopted the multilevel variation of ISPVA algorithm called
M-ISPVA algorithm (Fig. 3(a)), where different IC values are
obtained changing VG from 1 V to 1.6 V and VD from 0
to 3 V with readout current targets fixed to IL2 = 15 µA,
IL3 = 30 µA, IL4 = 45 µA, and IL5 = 60 µA, respectively. Also,
to maximize the level separation we formed all the cells in the

Fig. 4. (a) Sketch of 2-layer feedforward neural network implemented in the
4kbit array where any synaptic weight is achieved by the differential readout
of currents activated within 2 1T1R cells (b).



array applying the M-ISPVA scheme tuned for a readout target
IL5. This enabled to program 5 resistance levels whose relative
variability, which is shown in Fig. 3(b) as a function of median
resistance R at Vread = 0.5 V, displays a behavior consistent
with LRS variability of HfO2 RRAM cells investigated in [12].

III. NEURAL NETWORK IMPLEMENTATION

Using our 4kbit RRAM array, we designed a feedforward
neural network as the one depicted in Fig. 4(a). It consists of
an input layer with 197 neurons fully connected with a hidden
layer comprising 20 neurons which feed in turn each of 10
output neurons. Note that both input layer and hidden layer
include a bias neuron which is always on. This network was
trained via software according to the backpropagation algo-
rithm [7] submitting a binary version of the 60,000 handwritten
digit images of MNIST training dataset downscaled from
28x28 pixels to 14x14 pixels to the input layer. Since weights
calculated during training phase can have both negative and
positive values, we mapped effective synaptic weights of the
neural network into the difference between the conductance
W+ of a synaptic 1T1R device and the conductance W− of the
corresponding 1T1R cell within the reference line associated to
input or hidden layer. As shown in Fig. 4(b), the sum of current
signals given by dot product between inputs and synaptic
weights is collected at the input of any j-th neuron of following
layer (in this case the hidden layer) and it is converted through
a sigmoidal activation function into a voltage Vj , which in
turn becomes the input for weights between hidden and output
layer.

After achieving a classification accuracy of about 92% on
the 10,000 images of MNIST test dataset using the weight
matrix calculated with 64-bit floating point precision, we ap-
plied a rounding scheme in software to lower weight precision
to 5 levels and programmed the array cells based on new
weight matrix with 5-level precision. Fig. 5(a) shows the
PDF curves of 5 readout current levels (L1-L5) indicating
synaptic weights of both network layers in the array, which
exhibit some overlap, especially between L1 and L2. Note that
PDF distributions of 5 levels are shown for Vread = 0.5 V
because it is the read voltage for which we obtained the lowest
experimental variability. In addition, Fig. 5(b) also shows the

Fig. 5. PDF distributions of 5 experimental readout current levels at
Vread = 0.5 V (a) before and (b) after an annealing experiment for 1 hour
at 125◦C.

Fig. 6. Evolution of experimental classification accuracy ηtest as a function
of Vread for variable activation function slope (gray curves) before and after a
high-temperature annealing experiment. These results are also compared with
software accuracy values achieved with 64bit floating point precision and 5
ideal levels.

Fig. 7. Color maps evidencing network ability to correctly associate an
input MNIST test image with the corresponding class (a) before and (b) after
annealing experiment at high temperature.

PDF distributions of the 5 current levels at the same Vread

measured after 1h-long annealing experiment performed at
temperature T = 125◦C, displaying a significant worsening
in terms of level separation as a result of higher variability.

IV. CLASSIFICATION PERFORMANCE OF THE NETWORK

After programming synaptic devices by 5 current levels,
we tested network inference ability by presentation of all the
MNIST test images in simulation. Fig. 6 shows the evolution
of classification accuracy ηtest as a function of Vread for
increasing slope of sigmoidal function of the neurons from
104 V/A to 105 V/A. Compared to floating point accuracy
(92%) and accuracy with 5 software levels with no variability
(86.5%), we achieved a maximum experimental classification
performance ηtest = 82.82% at Vread = 0.5 V using an
activation function slope of 2·104 V/A. This result can be
attributed to the experimental variability of current levels
preventing to capture uniform level separation considered in
software simulations, the weight approximation due to the low
number of levels, and the presentation of some corrupted digit
images because of image downscaling.



TABLE I
SUMMARY AND COMPARISON OF ARRAY-LEVEL HARDWARE NEURAL

NETWORKS WITH 1T1R SYNAPTIC DEVICES.

Work Device # synapses Input size Gmax ηtest
[8] PCM 165 k 22x24 22 µS 82.9 %
[9] RRAM 8 k 8x8 400 µS 91.7 %

This work RRAM 4 k 14x14 200 µS 82.82 %

Fig. 8. Projection of network inference performance using 5 levels with
lower variability (red dots) and 9 current levels (blue dots) for array sizes of
4 kbit, 8 kbit, and 16 kbit, respectively.

In parallel to this classification study, we investigated net-
work inference capability after annealing at high temperature,
achieving a maximum classification accuracy of about 72%,
which supports the detrimental impact of increased device
variability on classification accuracy. Fig. 7 provides a more
detailed description of classification performance of our neural
network by confusion matrices showing the probability that
each submitted image is correctly classified during inference
phase. Note that at network level it means that the output neu-
ron corresponding to submitted input has to generate a voltage
higher than all the other output neurons. In particular, Fig. 7(a)
shows that the lowest number of correct classifications was
obtained for class ’5’ whereas Fig. 7(b) confirms the decrease
of classification capability for many digit classes.

This network implementation was also compared with other
recent array-level hardware demonstrations on MNIST dataset.
As reported in Table I, [8] achieves a test accuracy very close
to performance of our network but using a very large neural
network with 2-PCM synapses trained with 22x24 images. On
the other hand, [9] reaches a classification accuracy higher than
our implementation but using gray-scale 8x8 MNIST images
and RRAM devices exhibiting a very linear conductance
response and mainly a high maximum conductance value,
which suggests a lower energy efficiency than our network.

Finally, Fig. 8 supports that inference capability of our
neural network with 5 levels can be improved using larger
arrays by reduction of variability of 5 levels or increasing
the number of levels from 5 to 9, which leads to achieve
a maximum classification accuracy of 91.76% by a 16kbit
array. To further improve network performance, combination
of high-density arrays and synaptic devices capable of a better

multilevel operation is required.

V. CONCLUSIONS

In this work, the implementation of a 2-layer feedforward
neural network capable of image classification on MNIST
dataset by multilevel programming of a 4kbit 1T1R RRAM
array is proposed. Based on results obtained by software sim-
ulations of neural network, we mapped a weight matrix with
5-level precision into the array and tested its inference ability
achieving a classification accuracy of about 83%. Although
other array-level implementations achieved better classification
performance, our network enables to combine low energy
operation and high inference accuracy. These results are thus
seminal for new mixed hardware/software investigations aim-
ing at building compact and low-power hardware accelerators
for machine learning tasks.
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