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Abstract. The paper analyses lane occupation in some three lane motorway sections 
preceding a toll-gate station. Using data collected on a Northern Italian motorway over a 
period of about nine months and by treating them appropriately the distribution of flow over 
the three lanes for four sections is studied.  
This distribution depends on the three fundamental variables, speed, flow and density, but 
also on composition of flow (percentage of heavy vehicles), environmental variables  
(brightness and visibility) and on which section is considered (near or far a toll-gate). 
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1. INTRODUCTION 
 
It appears very important to investigate driver lane 
distribution both for control purposes and for 
planning. Up to now, how and how much these 
choices are conditioned by the presence of traffic 
disturbances, in particular those produced by a toll-
gate, is not yet investigate in-depth.  
 
A lot of models were developed  to describe lane 
occupation of vehicles (Gipps, 1986; Alvarez et al., 
1990; Fisk, 1990; Schmidt et al., 1991; Wemple et 
al., 1991). They are based on hypotheses related to 
driver behaviour and on the used flow model such as, 
for example, the hydrodynamic or the car-following 
model. Real flow data are used only to fit model 
parameters but not to reveal particular driver 
behaviour. 
 
The aim of this paper is to carry out a model of lane 
occupation without making any a priori assumption 
about driver behaviour and influence on driving due 
to flow composition and environmental conditions. In 
authors’ previous works (Mussone, 1995; Florio and 
Mussone, 1995b) flow models for different sections 
and meteorological conditions are proposed by means 
of using neural networks and these models have 

shown the influence of meteorological data and flow 
composition to determine the capacity value for a 
single section. In the previous works the authors used 
neural network technique with the only assumption 
that a function (linear or not linear) relating variables 
exists and can describe that process. In the same way 
the relationships among flow distribution over lanes 
and flow, environmental data can be treated. Neural 
network approach guarantees approximability of any 
continuous function and therefore are well suited for 
the above-mentioned objective. 
 
 

2. DATA COLLECTION AND EXTRACTION 
 
The data used in the present study, were collected in 
the "Easy Driver" environment  (FIAT, 1992), a 
traffic control system which was employed in Italy on 
the Padua-Mestre (Venice) motorway, a rectilinear 
section from the tollgate of Dolo to the end-motorway 
tollgate of Mestre, over a distance of about 11 km. 
 
Data collection has already been described in 
previous papers (Florio and Mussone, 1995a, 1996) 
and here only some synthetic information are 
reported. 
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Along the “Easy Driver” section detection stations 
are set up: 20 detection points (from 1.1 to 10.2) for 
the detection of flow characteristics (one every 0.5 
km) by using electromagnetic inductive loops, five 
stations for detecting visibility, 2 for weather 
conditions, two for the presence of ice, 10 portals 
with variable message signs for driver information. 
The portals are set up along the whole section. 
 
Over a nine-month period, from December 1992 to 
August 1993, flow values relative to the following 
parameters were collected: average spatial speed, 
density, traffic flow for each lane, percentage of 
heavy good vehicles, brightness, weather conditions, 
visibility. Brightness evaluates the presence of light 
according to a scale from 1 (night) to 6 (vivid light). 
 
Data were grouped according to the results of each 
single detection station and identified by the 
microprocessor which controls their loops. The 
formal difference among these "files" essentially 
consists of the different sampling period, which 
ranges from 20 to 120 seconds for the flow data 
(density, average space speed and vehicular count), 
from 60 to 120 seconds for weather condition, 2 
minutes for brightness, 10 minutes from messages 
and 15 minutes for the flow characteristics per 
vehicular category. The subdivision of the flow into 
light vehicles and heavy goods vehicles was 
performed on the basis of ANAS Italian code, thus 
vehicles belonging to the first three categories (up to 
5.5 meter long) were considered as light, whereas 
those belonging to the last three categories (longer 
than 5.5 meters) were considered as heavy. 
Information on weather conditions was not monitored 
on all the sections and the sampling period adopted 
within file data was different. Therefore a method to 
group together data is necessary considering both 
time and space.  
 
The spatial association concerns the files of data 
relative to brightness and meteorological conditions. 
The files relative to vehicle categories and diagnostic 
of detection loops, are instead available for each 
section. In this case the criteria is that of linking to 
each section information of the nearest 
meteorological or brightness station. 
 
For time resolution, the file of reference was the flow 
detection file (present  for each station) which turned 
out to have the major sampling frequency (40s 
average). A procedure which, starting from the flow 
data file associates all consistent compatible data to 
that file, thus generating a single "file" whose records 
include all useful information. For each station the 
records available are almost 360,000. 
 
Another topic is related to data distribution over the 
considered variables. In fact, the various flow 
conditions detected on a motorway are usually fairly 
different in their frequency. The samples of unstable 

flow or near to capacity, for example, are far less 
numerous that those relating to stable flow. Since the 
aim is to represent all the features of the flow, the 
extraction of the sample for the learning process 
should be preceded by a data classification, grouping 
data into categories. 
 
For this purpose, a further variable was created, 
related to a first associating criterion which is based 
on the detection of the following information: 
presence of rain, snow/ice, percentage of heavy goods 
vehicles (the mean value among the three lanes), 
visibility and brightness. Considering these values as 
a part (one or two bits) of complex information 
(byte), the category which the datum belongs to, is 
then represented by a binary word, which is to be 
built up for this purpose. In the present case, 8 bits 
are enough to identify the various cases. 
 
A second classification was performed according to 
density. A numeric variable represents a density 
category. Since all the characteristics of the process 
should be represented, the extraction of data is 
performed by class of data including a maximum 
number of elements, consistent with the mean 
frequency of classes. 
 
For the present study four sections are considered, 
2.1,5.2, 7.1, 10.1, and the same methodology was 
applied to them. The number of extractions from each 
class were found to consist of 5 or 6 according to the 
section considered and the extracted data are quite 
homogenous around 900. It can be observed that the 
low frequency in each class is fairly well 
compensated by the iterative learning procedure of 
neural networks, which usually considers the same 
learning set several times. 
 
With regard to the learning process and to the cross-
validation technique of the neural network, two sets 
of data, one for learning and one for validation, were 
created, as explained in the following paragraphs, by 
means of an extraction from all the data. Data are 
then normalised according to their highest values; 
results are therefore normalised to those values. For 
the traffic flow, the maximum value of 6,000 veh./h 
for the three lanes was assumed; for speed the 
maximum value was 200 km/h and for density 150 
veh./km per lane. 
 
 

3. THE NEURAL NETWORK MODELS 
 
The model is worked out by means of using 
feedforward neural networks, whose capabilities in 
the field of non-linear dynamic systems modelling are 
well known (Mussone, 1995), (Dougherty, 1995).  
 
These networks are well described in technical papers 
and a lot of theorems state that multi-layered 
feedforward neural networks (with at least one hidden 
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layer), by using neuron transfer functions of a 
sigmoidal type and linear input combinations, can 
approximate any function which belongs to L² space 
with a small margin of error (Cybenko, 1989; Hornik 
et al., 1990; Hornik, 1991; Girosi et al, 1991; Leshno 
et al, 1993). These models are referred to without 
inferring anything from their physical characteristics, 
using the so called "black-box" approach. It should 
be said that the attempt to deduce anything from the 
values of the connections appears a long and difficult 
operation which gives few useful results.  The 
number of hidden neurons, and the number of layers 
needed to obtain the desired approximation is still 
being studied. 
The paradigm used in learning networks was 
backpropagation (BP) (Rumelhart et al., 1986): it is a 
heuristic solution to the training problem. Many 
authors, such as (Weiss et al., 1991; Sjöberg et al., 
1994; Masters, 1993) underline the difficulties of 
training, and in particular the problems of overfitting 
or overtraining which adversely affect the 
performance of a neural network.  
 

The building of a feedforward neural network model, 
with backpropagation learning, requires the 
determination of the proper number of hidden 
neurons and layers in an attempt to minimise the error 
on both learning and test data. The proper number of 
neurons refers to the minimisation of the output error 
i.e. to the best performance of the  network.  
 
There are many techniques to an optimum 
exploitation of data: cross-validation, Jacknife and 
Bootstrap (Efron, 1982), (Weiss et al., 1991). Cross-
validation is the most known technique and it 
essentially consists in dividing data into two disjoint 
sets, one for training and the other for validation. 
Different topological networks are evaluated on the 
basis of these two sets. The Jacknife technique 
(Efron, 1982) divides data into N disjoint sets; each 
of these sets contains one element for validation and 
N-1 for training. Then N+1 identical neural networks 
are created; only one network, called master, is 
trained on the basis of  all data; the other networks, 
called slaves, are trained and tested on the basis of 

the N disjoint sets. Test error evaluated on slaves 
networks is an estimation of  generalization capability 
of the master network. In Bootstrap technique 
extraction of the two sets is randomly and repeated  
more times. Then, for validation cross-validation or 
Jacknife technique can be used. 
 
The optimum configurations of the network (in the 
sense of performance) are necessarily related to the 
phenomenon of overfitting. Recent studies suggest 
that overfitting occurs  essentially because of two 
main reasons: firstly, the network is not properly 
sized compared to the available data; secondly, data 
are not sufficiently representative of the function to 
be implemented, thus the two sets of data, the test and 
train sets, are remarkably different from each other. 
 
To work out the models the authors used the cross-
validation technique which appears to fit better to the 
dimension of  data set. To overcome the above-
mentioned learning problems, a lot of network 
configurations with one or two hidden layers, with a 
different number of hidden neurons  and different 
transfer function (sigmoid, tangent hyperbolic and 
sine function) were built up. The first layer, the input 
one, has always neurons with linear transfer function. 
 
After several trials the optimal models are carried 
out. The number of learning  iterations varies 
according to the model. In Tab. 1 these features and 
other performance (on the test set) of the optimal 
models are reported. The first column refers to the 
motorway section considered, the following three 
refers to the characteristic of the hidden layers 
(number of hidden layers and neurons, and neuron 
transfer function);  the number of iterations is the 
number of learning iterations for the model; 
correlation is the correlation between desired and real 
data calculated over the three lanes;  the coefficient 
of linear regression is reported to see if there is any 
bias in data; Sxy is  the standard error calculated 
according to (1): 
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where y is the real data, x the desired data, n is the 
dimension of the test set and the summations are from 
1 to n; RMSE is the root mean square error calculated 
according to (2): 
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where y,x, n and summation are the same as for Sxy. 
 
It must be noted  that the sum of the three percentages 
is almost always correct and quite close to 1 with a 
maximum error of 2-3% in few cases.  
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Fig.1:  The neural network model scheme 
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This result is particularly interesting  because in the 
learning data this information was not explicit. 
Nothing it is possible to say about the use of tangent 

hyperbolic or sigmoid transfer function in the hidden 
layer: probably it depends on data distribution but 
until now it cannot be demonstrated. 

 
Tab. 1: Features and test errors of the four optimal models. 

 
Models Hidden 

Layers 
Hidden 
neuron

s 

Transf. 
function 

Iterations 
No. 

Correlation Lin. Reg. 
Coeff. 

Sxy RMSE 

Section 2.1 1 4 tanh 10.000 0.718 0.521 0.1017 0.1389 
Section 5.2 1 7 tanh 3.000 0.782 0.701 0.1149 0.1168 
Section 7.1 1 8 sigmoid 10.000 0.755 0.577 0.0930 0.1215 
Section 10.1 1 6 tanh 10.000 0.739 0.527 0.1275 0.1269 

 
 

4. RESULTS  
 

The models reflect the neural network black-box 
approach so that a large number of input cases are 
prepared to ask the network and to know its 
characteristics and the following figures are only a 
small number of those obtainable by the model.  
 
Flow, speed, and density values, necessary to ask the 
models, are obtained from previous models 
(Mussone, 1995; Florio and Mussone, 1995b) of 
density-flow and speed relationships (Fig 2) which 
relate these variables to the environmental variables 
(visibility, meteorological conditions,  brightness) 
and the percentage of heavy vehicles, one for each 
section considered. 
 

flow

speed

density

meteorological
conditions

visibility

%heavy veh.

one or two hidden layers
(tanh or sigmoid)

linear

brightness

sigmoid

 
 

Fig. 2: The flow-speed-density model used to 
calculate their combined values 

 
The cases consider different values of density from 1 
to 90 veh./km (higher values are not meaningful 
because represent strong congestion situations), 
daytime and night-time conditions, visibility and 
brightness; the percentage of heavy vehicles is varied 
from 0% to 20% and 40%. 
 
In Fig.s 3 to 5 the results concerning section 10.1 
which is rather near the toll-gate are reported; in Fig.s 
6 to 8 those concerning section 5.2 which is five 
kilometres far from the toll-gate are reported. 
 
It is possible to assert that each section exhibits a 
different shape only partially due also to model error 

but that some similarities are rather evident; the more 
meaningful of these are: 
 
• the middle lane is the most used lane in all 

conditions except when the percentage of heavy 
vehicles becomes greater than 20%; 

• increasing the heavy vehicle percentage, the flow 
distribution over lane changes drastically and the 
slow lane has the highest percentage reaching also 
the 70% (it must be remembered that in the Italian 
motorways heavy vehicles must run on the slow 
lane and they can use the middle lane only to 
overtake); 

• decreasing visibility the middle lane (and less the 
fast lane) occupation increases; 

• rain does not affect significantly the shape of the 
curves; 

• lane occupation is not a linear relationship with 
density: when density increases the fast lane 
occupation increases a lot (in some cases over the 
70%);  

• because flow is also not a linear relationship with 
density it must be expected that flow distribution 
on lanes will have rather different paths; 

• the difference of percentage among lanes may be 
rather high (50%) when flow is far from 
congestions (a peak is observed near capacity for 
middle and fast lanes);  

• approaching the pay-toll station (section 10.1) the 
slow lane may have the greatest percentage; the 
same effect is seen at the beginning of the 
detected motorway (section 2.1) where there is a 
merging point for an input-output station; 

• in sections far from disturbance (sections 5.2 and 
7.1) the middle lane has always the greatest 
percentage except when heavy vehicles 
percentage overtakes the 40%; 

• approaching the toll-gate lane or leaving a 
merging point occupation becomes more sensitive 
to all parameters; the 10.1 and 2.1 sections show 
this phenomenon rather well; 

• brightness (that is, daytime or night-time) affects 
the shape of the curves; the middle lane and, in a 
smaller extent, the slow lane occupation increases 
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significantly. 
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Fig. 3: The percentage of flow per lane in a section  

(10.1) near the toll-gate when visibility is 
good and changing the percentage of heavy 
vehicles. 
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Fig. 4: The percentage of flow per lane in a section  

(10.1) near the toll-gate when visibility is 
limited to 65 metres and changing the 
percentage of heavy vehicles. 
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Fig. 5: The percentage of flow per lane in a section  

(10.1) near the toll-gate when visibility is 
good in night-time and changing the 
percentage of heavy vehicle. 
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Fig. 6: The percentage of flow per lane in a section  

(5.2) far from the toll-gate when visibility is 
good and changing the percentage of heavy 
vehicles. 
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Fig. 7: The percentage of flow per lane in a section  

(5.2) far from the toll-gate when visibility is 
limited to 65 metres and changing the 
percentage of heavy vehicles. 
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Fig. 8: The percentage of flow per lane in a section  

(5.2) far from the toll-gate when visibility is 
good in night-time and changing the 
percentage of heavy vehicles. 

 
 
 

5. FINAL REMARKS 
 
Results highlight the influence on lane occupation of 
the proposed input parameters. Density, brightness 
and percentage of heavy vehicles lead to considerable 
modifications in the curves, and the consequent 
effects are clearly distinguishable.  
 
Rain does not affect considerably the curves. This 
surprising result may be explained by the fact that 

this parameter reduces capacity and decreases speed 
but probably does not affect the driver choice of the 
lane. 
 
There are some important differences among 
sections. It is not possible to say if these differences 
arise because drivers know the presence of the down-
stream toll-gate station or flow characteristic which 
induce them to behave in a different way.   
 
Approaching the toll-gate, lane occupation becomes 
more sensitive to all parameters. The 10.1 section 
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shows this phenomenon rather well. 
 
A first conclusion may be that driver behaviour in 
each section is quite different and each of them needs 
a dedicated study to know the prevalent driver 
behaviour style. Besides this, further studies need to 
better knowledge about spatial effect on lane 
occupation particularly when a motorway has 
different planimetric developments other than 
rectilinear. 
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