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Abstract 

The paper presents a new bi-phasic approach to model delamination and transverse cracking in the 

matrix of composite laminates by using a single constitutive law, based on a decomposition of the 

composite stiffness properties into idealized fibre and matrix phases. The decomposition is used in finite 

element models where membrane elements representing the fibre phase are embedded in a three-

dimensional mesh that models the matrix phase. A single constitutive law is applied to the matrix phase 

by combining a Cohesive Zone Model, which models delamination between plies, with an intralaminar 

damage law, aimed at modelling a transverse matrix cracking within the plies. All the theoretical aspects 

of decomposition and constitutive law are described. Then, the numerical experimental correlations are 

presented considering delamination tests and the evolution of the transverse matrix cracking in cross-

ply specimens, with a statistical distribution of strength properties, also in the presence of interactions 

between matrix cracking and delamination. The approach provides the possibility to efficiently simulate 

both individual delaminations and transverse cracks with a model using a single layer of elements per 

ply, without introducing interface elements. Moreover, it also provides new possibilities to control the 

interaction between intralaminar and interlaminar damage phenomena.  

 

Keywords: Composite Damage; Delamination; Transverse Matrix Cracking; FE models; Bi-phasic 
models; Damage Modes Interaction   
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1. Introduction  

The application of long fibre reinforced composites in primary structures of aerospace and high 

performance vehicles has been motivated by their structural efficiency and technological advantages. 

However, it is necessary to face several critical issues related to the occurrence of multiple types of 

damage, which affect the structural integrity at various degrees [1].  

An important distinction can be introduced between the damage evolving in the matrix and fibre 

breakages. Indeed, fibre breakage represents a more immediate threat to the integrity of the composite 

part and cannot be tolerated. On the contrary, damages in the matrix of composite plies is typically 

characterized by a progressive accumulation, which starts at load levels significantly lower than the 

maximum ones carried by laminates [2–5]. Delamination is also a damage in the matrix of composite, 

which is initially originated as a consequence of specific events such as impacts or defects developed 

during the manufacturing process [6]. After the onset, also delamination evolves in a progressive way 

under the action of operational loads and is tolerated within certain limits in modern design approaches, 

although it leads to a reduction of the laminate strength. In general, the evolution of matrix damage 

affects stiffness properties, stress distributions, strength and the residual strength of laminates. 

Therefore, the modelling of such damage is fundamental to predict the mechanical response of 

composites and to numerically support the application of the damage tolerance design philosophy [7,8]. 

The aim of this paper is to present an innovative modelling technique based on a bi-phasic 

decomposition of the composite material into idealized fibre and matrix phases, allowing to describe 

different types of matrix damage with a unique constitutive law and to develop computationally efficient 

models.  

A large number of approaches have been proposed in literature to model different types of matrix 

damage, at different scales of observation. With regard to intralaminar damage, thermodynamically 

consistent approaches based on Continuum Damage Mechanics (CDM) have been suggested by many 

authors to model stiffness degradation due to matrix cracking, at the level of the homogenized sub-
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laminate, ply or sub-ply level [9]. The orthotropy of composite plies has been exploited by introducing 

several scalar damage variables, which separately affect the engineering constants that characterize 

matrix- and fibre- dominated properties [10–16]. More refined models based on a physical consideration 

or linked to micromechanical approaches are also available [17–20].  

There is also a special class of bi-phasic approaches that decompose the composite materials into fibre 

and matrix phases, to emphasize the differences and the effects of damages in matrix-dominated and in 

the fibre-dominated response of composite materials.  Examples are represented by bi-phasic models 

proposed in [21–24] , for polymer matrix composites, which were applied to model intralaminar damage 

for crashworthiness applications.  Actually, the phases defined in these models should be properly 

defined as idealized phases, since they occupy the same volume and do not represent the physical 

constituent materials, occupying separated volumes and subjected to different strain states. The idealized 

phases have constitutive laws that provide separate stress contributions but depend on the average strain 

state in the composite at the homogenized ply level.  

The advantages claimed by the bi-phasic point of view are related to the possibility to model matrix 

degradation with a separate constitutive law, including, for instance, the modelling of matrix damage 

due to stress components acting in reinforcement direction, which can be experimentally measured [25]. 

The results reported in [24] show that non-linear response and the evolution of Poisson’s ratio can be 

captured in angle ply carbon and glass reinforced laminates [+/-+]s with unidirectional and fabric 

reinforcement for many values of , by using a single damage variable.  Other examples of 

decomposition of composite properties into superimposed phases are represented by the binary models 

developed in [26–28] for ceramic matrix composites, where matrix-dominated non linearity is modelled 

with a constitutive law written for an effective continuum medium that embeds a reinforcement phase. 

However, it should be observed that a fundamental issue for the application of bi-phasic or binary models 

is the development of adequate procedures for decomposition. In particular, decomposition procedures 

that can lead to non-physically admissible matrix phases should be avoided, as highlighted in [24].  

Although the approach presented in this paper exploits the bi-phasic decomposition in a different way 



 Alessandro Airoldi, Chiara Mirani, Lucia Principito 

 
 
 
 

4 
 
 
 
 
 

than the approaches presented in the previous works, the issues related to decomposition procedure have 

to be solved.  

Delamination is another type of matrix damage that has been intensively studied in the last decades. 

In recent years, delamination has been often modelled by representing the individual cracks, even in 

relatively coarse meso-scale models, by using zero-thickness cohesive elements set at interfaces between 

the plies, modelled by three-dimensional solid elements [29]. Cohesive elements are based on Cohesive 

Zone Models (CZM) that allow to represent both the strength and the toughness of interlaminar layers 

[30,31]. Before crack onset, cohesive elements are required to model a perfect adhesion between the 

adjacent layers, so that they have to be characterized by a very high penalty stiffness, which is known 

to cause numerical problems [32–34]. An alternative modelling technique to overcome such problems 

was discussed and validated in [35,36], where a CZM was included into finite thickness elements, as 

done in [37–40] to model interlaminar resin reach layers and adhesive films. In the approach proposed 

in [35,36], a CZM for delamination was embedded into three-dimensional elements with finite 

thickness, which carried only out-of-plane stress states. Such elements were used to connect layers 

representing the plies, modelled by shell or membrane elements, that is by elements with a two-

dimensional geometry. Owing to the different elements adopted in the mesh, the technique was called 

hybrid modelling technique. The embedment of CZM into finite thickness elements was found to be 

particularly suited for the application in quasi-static explicit analyses of delamination phenomena, which 

are useful to easily model complex damage scenarios  (see for instance [35,36,41–44]). Indeed, explicit 

analyses are severely penalized by a reduction of stable time integration steps due to the presence of 

very stiff elements [36,45]. Therefore, the adoption of traditional zero-thickness cohesive elements can 

lead to very large computational times and other numerical issues. On the contrary, the  modelling 

approach based on finite thickness elements can be used to develop reliable and computationally 

efficient models, [30, 31,36–39]. 
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The above mentioned studies present some of the approaches used to model damage in the matrix of 

composite laminates. However, it should be observed that, in all the considered works, intralaminar and 

interlaminar damage were modelled by using separate constitutive laws, which can be used in the 

elements representing the ply and in the cohesive elements introduced to model delamination, as 

in[46,47]. Nevertheless, both types of damage are different forms of matrix damage and they are 

characterized by significant interactions, since intralaminar cracks are known to be an important cause 

for the development of delamination [47–50]. These interactions can be modelled by developing finite 

element models refined at the sub-ply level, with more than ten elements through the thickness of the 

layers where intralaminar cracks develop, such as in [3,15]. Alternatively, meso-scale models can be 

linked to micro-mechanical approaches [19,51]. In general, the studies presented in literature indicate 

that the intra-interlaminar interaction can be captured by representing in detail the stress state in the 

vicinity of individual intralaminar matrix cracks. However, this cannot be easily carried out in meso-

scale models, where each ply is represented by a single layer of solid elements, since meshes are too 

coarse to represent the through-the-thickness stress gradients and the interlaminar shear stress 

distribution close to transverse cracks. Moreover, the complete opening of a transverse crack in a layer 

is opposed by the confinement effect of adjacent layers with different fibre orientations, as discussed in 

[52]. Despite such difficulties, interactions have been represented in meso-scale models with the 

application of extended finite element methods [53,54] or the interposition of cohesive elements in the 

mesh of the plies to represent pre-defined locations for individual intralaminar matrix cracks [52,55,56]. 

Other approaches have eliminated the need to model individual intralaminar cracks, as in [16] where a 

non-local finite element procedure was used, and the parameters of the cohesive zone model in the 

interlaminar layer were influenced by the intralaminar damage state in the adjacent plies. A similar 

approach was adopted in models of laminates based on high order shell elements, which are capable to 

capture the complete three-dimensional stress states at each single through-the-thickness integration 

point [57]. 
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This work developed a bi-phasic meso-scale model for composite laminates by combining the 

modelling technique approach for delamination, presented  in [35,36], and a bi-phasic decomposition of 

composite properties ([23,24]). All types of matrix damage are represented within a single constitutive 

law attributed to a matrix idealized phase modelled by three-dimensional elements that connect layers 

of two-dimensional elements representing the fibre phase. Such approach retains the computational 

advantages related to the elimination of penalty stiffness in the analyses of delamination, shown in 

[35,36,41–44]. Moreover, it allows to model intralaminar damage at different levels of detail, even 

including the possibility to describe individual matrix cracks. Indeed, this study shows that the modelling 

technique inherently reduces the problems related to the confinement effects of the adjacent plies on the 

opening of transverse matrix cracking. Finally, it allows to adopt different strategies to control the 

interactions between intralaminar damage and delamination.  

The following Section of this paper presents the basic ingredients of the numerical bi-phasic model 

proposed. Moreover, it introduces a new and robust bi-phasic decomposition algorithm for three-

dimensional stress states aimed at overcoming the shortages outlined in [24]. Section 3 develops the 

structure of the constitutive law attributed to the matrix phase. Section 4 and Section 5 are dedicated to 

the application and validation of the model. Specifically, Section 4 describes the correlation between 

mode I and mode II delamination tests, and includes an estimation of computational advantages with 

respect to more conventional approaches. Section 5, instead, shows how individual transverse matrix 

cracks within the plies can be represented thanks to the specific aspects of the technique, and assesses 

the possibility to represent the evolution of transverse crack densities by using a statistical distribution 

of matrix strength properties. The cases considered include situations where the interaction between 

intralaminar and interlaminar damage significantly affects the results. Finally, Section 6 provides 

concluding remarks summarizing the main findings of the activity presented in this paper.  
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2. Fundamental aspects of the modelling approach  

2.1 Original hybrid technique to model delamination by using finite thickness connection 
elements 

 

The approach developed in this paper moves from the modelling technique developed and applied in 

[35,36,41–44] for delamination, which is described and compared with a more conventional approach 

in Fig. 1. This original modelling technique was referred to as a hybrid technique in the published papers 

due to the adoption of different types of elements to mesh composite laminates at the ply level. The 

laminate was seen as an assembly of plies represented separately by a mesh of membrane elements, with 

two-dimensional geometry, with nodes set at the mid-planes of the plies. Such layers of two-dimensional 

elements carried the in-plane stress components acting in the plies. The membrane elements modelled 

the in-plane stress response of the plies, and were characterized by the total thickness of the ply the 

modelled. They were mutually connected by three-dimensional elements, which modelled only the 

response of the laminate to the average out-of-plane strain state,  in the volume between the mid-planes 

of the two adjacent plies [35]. The two types of elements occupied the same volume and provided 

different stress contributions.  

 Trilinear hexahedral elements with a reduced integration scheme were used as three-dimensional 

elements, for the out-of-plane response. They were characterized with a null in-plane response and with 

the physical out-of-plane stiffness parameters of the material. Compatibility between displacements at 

the mid-plane of plies was assured by the use of linear interpolation schemes for both types of elements. 

The validation of this unconventional modelling technique was presented in [30, 31] with comparison 

with reference models with different lay-ups.  

The interlaminar fracture process was described in the three-dimensional elements as a function of a 

vector of relative displacements between the mid-planes of two adjacent plies, UL and UU. This vector 

was linked to the average out-of-plane strain state, evaluated at the single integration point of the 

hexahedral elements, zz yz xz, under the assumption of infinitesimal strains. Thanks to such link, a 
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CZM was expressed in terms of strain-strain relation and embedded into the finite thickness three 

dimensional elements, as described in [35,36] and represented in Fig. 1. The prediction of internal strain 

states given by using this approach to model stable fracture propagation in mode I and mode II were 

validated by means of embedded sensors carried by optical fibres in [31]. The advantages of the 

approach, which was used to reliably model complex delamination scenarios in composite laminates, 

are summarized in the following points:  

(i) elimination of duplicated degrees of freedom at the interfaces; 

(ii) elimination of the need to calibrate penalty stiffness, since out-of-plane physical stiffness 

properties of the material are used; 

(iii) significant increment of minimum stable time steps in explicit analyses, due to the absence 

of zero or infinitesimal thickness elements; 

(iv)  suitability to easily model the friction between interlaminar layers after crack development, 

which can represent an additional force opposing to crack development. 

 
 

 
Fig. 1 – Conventional technique and hybrid modelling technique for meso-scale models  
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Fig. 2 – Scheme of the bi-phasic model 

2.2 Basic aspects of bi-phasic approaches 
 

In this paper, the hybrid technique represented in Fig. 1 is adopted and modified to represent a bi-

phasic model of the composite laminate, where the response of the composite is obtained by summing 

the stress contribution of two idealized phases, modelling fibre-dominated and matrix-dominated 

responses, respectively.  

In the bi-phasic model, which is not a micromechanical approach, the total stress state in the 

composite material is represented by vector C, which is the sum of two superimposed phases sharing 

the same volume. Such phases are the idealized phases of the fibre and matrix, and their stress 

contributions are represented by stress vectors f and  m.  The responses of the idealized phases are 

characterized by a constitutive response defined on the basis of the strain in the composite ply, averaged 

at the homogenized material level, as shown in Eq. 1. 
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 𝝈௖ ൌ 𝝈௙ ൅ 𝝈௠ ൌ 𝑫௖𝜺 ൌ ൫𝑫௙ ൅ 𝑫௠൯𝜺 Eq.1 

where Df and Dm are the stiffness matrices that characterize the constitutive response of the fibre and 

matrix phases, respectively, and Dc is the stiffness matrix of the composite. The decomposition is 

performed considering the local reference frame for the orthotropic material, with axes 1 and 2 in the 

plane of the laminate material. 

The decomposition is actually functional to describe different types of damage at the homogenized 

ply level, so it is possible to define the idealized phases in several ways, without affecting the response 

of the homogenized composite model to the average strain in elastic range. There is no need of 

simplifying assumptions about the local strain states experienced by the phases, since the only strain 

considered in the average strain in the composite at the homogenized ply level.  The simplest way to 

apply this decomposition in order to separate the description of non-linearity in fibre- and matrix-

dominated response is to define an idealized fibre phase that carries only normal stress in the 

reinforcement directions and represent the effect of fibre continuity. The fibre stiffness matrix in a bi-

phasic model may be evaluated by defining an effective fibre modulus, Ef-eff, and the fibre volumetric 

fraction, Vf  [21–24].. The stiffness terms of the matrix phase provide all the remaining contributions to 

the overall stress state. Therefore, the response in the elastic range is expressed as in Eq. 2, which is 

referred to a ply with unidirectional reinforcement: 
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 Eq. 2 

If the effective fibre modulus and the fibre volumetric fractions are known, the stiffness terms of the 

idealized matrix phase can be obtained by subtracting the fibre contribution from the composite stiffness 

matrix, which is assumed known from experimental characterization: 

 𝑫௠ ൌ 𝑫௖ െ 𝑫௙ Eq. 3  

The strategy adopted to develop the binary models described in [26-28] is very similar and it is 

motivated by the need of a computationally efficient method to model matrix dominated non linearity. 

It should be remarked that the idealized fibre phase should be considered more representative of fibre 

continuity, rather than of the physical material constituting the reinforcement. Indeed, the response of 

matrix phase includes the properties of the fibres in direction different from the orientation one. 

Accordingly, matrix can be considered an effective continuum medium [26-28], with properties related 

to the physical matrix, but which actually represents composite properties without fibre continuity. An 

algorithm to perform the decomposition, consistent with the aforementioned considerations, is 

introduced in section 2.4. 

 

2.3 Bi-phasic model for a composite laminate subjected to three-dimensional stress states  
 

In this work, the bi-phasic decomposition is incorporated in the hybrid technique shown in Fig. 1, to 

make possible the representation of all matrix-dominated inelastic responses, related to intralaminar and 

interlaminar damage by using a single constitutive law.  Indeed, in the bi-phasic model presented in this 
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paper, the two-dimensional elements are characterized with the properties of the idealized fibre phase, 

whereas the three-dimensional elements are characterized by a constitutive law that represented the 

whole contribution of the idealized matrix phase.  

The resulting model, presented in Fig. 2, can be described as a fibre phase mesh, represented by two-

dimensional elements, which will be referred to as 2D elements, with nodes at the mid-planes of the 

plies, embedded into a solid mesh modelling the matrix phase, constituted by three-dimensional 

elements connecting the mid-planes of the plies, which will be referred to as 3D elements. The binary 

models developed and applied in [26–28] for textile composites also adopt different types of elements, 

since the properties of reinforcement are attributed to 1D elements embedded in a solid mesh 

representing an effective continuum medium.  

In the model presented in this paper, each 3D element actually represents the matrix phase of two 

adjacent plies, as highlighted in Fig. 2, with the exception of the elements at the laminate surface. 

Following the original approach shown in Fig. 1, the out-of-plane strain state in the 3D elements can be 

related to the separation of the plies and a CZM is introduced to model delamination, as shown in Section 

3. Moreover, the same constitutive law used in the 3D elements is also suited to model a matrix-

dominated in-plane response, including intralaminar damage, by using a CDM approach. This allows to 

model these two types of matrix damage within a single constitutive model.  The expected advantages 

of the approach are summarized in the following points:  

(i) all the advantages of the original hybrid technique in modelling delamination are retained; 

(ii) the approach offers a particular and appealing point of view to model both interlaminar and 

intralaminar matrix damage in the same constitutive law, and to better control their 

interactions;  

(iii) individual matrix cracking with a mesh at the meso-scale level can be represented, as shown 

in Section 5, since the modelling technique attenuates significantly the confinement effect 

of adjacent plies with different fibre orientations, discussed in [52]; 
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(iv) the potential advantages offered by bi-phasic approach can be exploited to write constitutive 

law specialized to represent matrix-dominated non-linearity, as done in  [21–24] and [26-

28].  

The point (i) retains a central role, because it explains the need of 2D elements representing the fibre 

phase with nodes at mid-plane of the plies. This make possible to measure, by using the strain in the 3D 

elements, the separation of these mid-plane and to apply a CZM to model the toughness related to 

interlaminar fracture process without using zero-thickness finite elements, as explained in section3.2.  

  

2.4 Effective algorithm for a bi-phasic decomposition 

 
The development of a robust algorithm to identify the stiffness contributions attributed to the 

idealized fibre and matrix phases is one of the basic ingredients of the approach. The simplest way to 

perform this decomposition is based on the use of the bare fibre modulus Ef-bare to evaluate the effective 

fibre modulus, Ef-eff, in Eq. 2. However, the subtraction prescribed in Eq. 3 of the fibre stiffness 

contribution based on Ef-bare often leads to negative terms in the idealized matrix phase or to a non-

physically admissible stiffness matrix, as shown in [24]. Indeed, the effective contribution of fibre to the 

overall stiffness in reinforcement direction is lower than the one that can be found by using a rule of 

mixture, but it is much higher than the matrix one. Therefore, a relative small overestimation of fibre 

contribution has noticeable with undesired effects on the properties of the idealized matrix phase 

obtained by subtraction.  

Moreover, this strategy is not consistent with the definition of the fibre phase, given in Eq. 1 and 

discussed in section 2.2. Due to the fact that fibre phase represents the continuity of fibres and matrix 

phase the remaining properties of the whole composite, a more appropriate strategy is developed 

focusing on the properties of the matrix, which is an effective continuum medium with properties similar 

to those of the composite in the transversal direction of fibres, where they are not continuous. Hence, it 
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can be proposed that the Poisson’s ratio of the matrix alone should be close 12
C, which characterize the 

contraction in direction 2 (transversal to fibres) for a load applied in fibre direction. Indeed, in 

unidirectional long fibre reinforced composites, Poisson ratios 21
C and 12

C are completely different, 

due the effect of fibre continuity in 1-direction: 21
C is much lower than 12

C, which is typically in the 

range 0 = 0.25-0.35 [58].  

Following these observations, a new and effective strategy is devised based on the control of 

Poisson’s ratio of matrix phase, with two main objectives: 

- define a fibre phase representative of fibre continuity, with a modulus not excessively lower than 

Ef-bare; 

- define a matrix phase positively definite with properties close to the one of the composite in the 

direction transversal to fibre, with a Poisson’s ratio imposed to a value in the typical range of  

12
C for unidirectional composites. 

A decomposition algorithm based on the definition of matrix phase Poisson’s ratio was first applied in 

[24] both to unidirectional and fabric plies, considering in-plane stress states, and was shown to be 

effective for many types of composite materials, including fabrics. It is now formulated for general 

three-dimensional stress states, for unidirectional plies.  

To develop the algorithm, the individual terms of the stiffness matrix Dm are expressed as a function of 

the engineering constants of the material equivalent to the idealized matrix phase. For a three-

dimensional stress state, the expressions can be found in [59]. By applying the definition of fibre and 

matrix phase given in Eq. 2 and the subtraction prescribed in Eq. 3, the following form is obtained:  
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௠ ൅ 𝜈ଵଶ

௠ 𝜈ଶଷ
௠ ሻ𝑌

𝐷ସସ
௠ ൌ 𝐷ସସ

௖ ൌ 𝐺ଵଶ
௠

𝐷ହହ
௠ ൌ 𝐷ହହ

௖ ൌ 𝐺ଶଷ
௠

𝐷଺଺
௠ ൌ 𝐷଺଺

௖ ൌ 𝐺ଵଷ
௠

𝑌 ൌ
ଵ

ଵିఔభమ
೘ ఔమభ

೘ ିఔమయ
೘ ఔయమ

೘ ିఔభయ
೘ ఔయభ

೘ ିଶఔమభ
೘ ఔయమ

೘ ఔభయ
೘

 Eq. 4 

For a UD ply, the hypothesis of transverse isotropy can be conveniently introduced, so that the 

properties of the laminate, and consequently the properties of the matrix, are the same in the 2- and 3- 

directions. Therefore, some selected relations of Eq. 4 can be re-written as reported in Eq. 5: 

 

⎩
⎪
⎨

⎪
⎧𝐷ଵଵ

௖ െ 𝑉ଵ
௙𝐸ଵ

௙ି௘௙௙ ൌ 𝐸ଵଵ
௠ሺ1 െ ሺ𝜈ଷଶ

௠ ሻଶሻ𝑌

𝐷ଶଶ
௖ ൌ 𝐸ଶଶ

௠ ቀ1 െ ሺ𝜈ଶଵ
௠ ሻଶ ாభభ

೘

ாమమ
೘ቁ 𝑌

𝐷ଵଶ
௖ ൌ 𝐸ଵଵ

௠ሺ𝜈ଶଵ
௠ ൅ 𝜈ଶଷ

௠ 𝜈ଶଵ
௠ ሻ𝑌

𝐷ଶଷ
௖ ൌ 𝐸ଶଶ

௠ ቀ𝜈ଶଷ
௠ ൅ ሺ𝜈ଶଵ

௠ ሻଶ ாభభ
೘

ாమమ
೘ቁ 𝑌

 Eq. 5 

Considering the relations between Poisson ratios derived from the matrix stiffness symmetry, Eq. 5 

defines a decomposition problem where E11
m, E22

m, 23
m, 21

m, and E1
f-eff are the unknown variables. The 

application of a decomposition strategy based on the effects of fibre continuity on the Poisson ratio leads 

to solve such problem by imposing 21
m= 0. The resulting non-linear system is solved by using the 

simplex method based on the Nelder-Mead algorithm [60], implemented in the Matlab® toolbox.  

Different types of UD plies are considered, and the three-dimensional decomposition problems have 

been solved for different values of 0, in the range 0 = 0.10 ÷ 0.40. Table 1 reports the results obtained 

by using 0 = 0.3 for three types of materials. The chosen value of 0 leads to obtain a physically 

admissible idealized matrix phase with equal E11
m and E22

m.  

Table 1 – Application of the decomposition algorithm with ν0 = 0.3 
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Material 
T300-934 

[39] 

Hexcel 
Graphite 
913C [37] 

UD glass-
fiber/epoxy 

[39] 

V1
f, V2

f (-) 0.6, 0.0 0.555, 0.0 0.5, 0.0 

E11
c (MPa) 148000 131000 41700 

E22
c (MPa) 9650 8900 13000 

E33
c (MPa) 9650 8900 13000 

ν12
c (-) 0.3 0.3 0.3 

ν13
c (-) 0.3 0.3 0.3 

ν23
c (-) 0.3 0.3 0.3 

G12
c (MPa) 4550 5370 3400 

G13
c (MPa) 4550 5370 3400 

G23
c (MPa) 3712 3423 3400 

Ef-eff (MPa) 231944 221354 72400 

Ef-eff/Ef-bare (-) 1.01 0.98 0.82 

E11
m (MPa) 8833 8149 12172 

E22
m (MPa) 8833 8149 12172 

E33
m (MPa) 8833 8149 12172 

 

As evident, the obtained value of Ef-eff results equal to 80% of the corresponding bare fibre modulus 

for the glass reinforced material and more than 95% for the carbon-reinforced materials. The idealized 

matrix phase is always a physically admissible material. The results obtained with the new 

decomposition strategy fulfil the objectives of the decomposition and confirm the ones obtained in [24] 

for the plane stress states.    

3. Structure of the constitutive law for the idealized matrix phase 

The sketch reported in Fig. 3 is representative of the 3D elements used in the bi-phasic model to 

represent the matrix phase. Matrix 3D elements connect the layers of 2D elements, which model the 
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idealized fibre phases of two adjacent plies, and occupy the volume between their mid-planes. Each 

matrix element has to be considered ideally divided into two parts, which represent half of the matrix 

phases referred to the upper ply and to the lower ply, respectively. Therefore, the response of the 3D 

element has to be a combination of the response of these two matrix semi-phases, which will be 

characterized by properties denoted by superscripts U and L. If tU and tL are the total thickness of the 

upper and lower plies, and the t is the thickness of the matrix element, the upper matrix semi-phase is 

characterized by a thickness ratio equal to U= tU/2t and an orientation angle of U, the angle depends 

on the material axis orientation in the upper ply. Likewise, the lower phase has a thickness ratio of L= 

tL/2t and an orientation of L.  

  

 

Fig. 3 – Structure and reference systems related to a 3D element for the idealized matrix phase 

 

The constitutive law for the matrix element is formulated in a reference frame attributed to the matrix 

element, characterized by axes x, y, z, where the z axis is along the normal of the laminate. However, the 

law is actually a combination of the responses of the two semi-phases, which are described in the 

material axes of the adjacent plies, with indices 1, 2, 3. The material axis 3 and the element axis z are 



 Alessandro Airoldi, Chiara Mirani, Lucia Principito 

 
 
 
 

18 
 
 
 
 
 

coincident. The next sub-sections describe the main aspects of the constitutive law attributed to the 

idealized matrix phase. 

3.1 Equivalent properties in the out-of-plane direction 

The out-of-plane stress components carried by the matrix phase zz
m, xz

m, and yz
m, are transmitted 

through the interfaces of the plies. According to simple equilibrium considerations, it is reasonable to 

assume that such stress components are identical in the two semi-phases represented in the 3D element. 

Consequently, the distribution of out-of-plane strains in the semi-phases depends on the local material 

properties. The overall normal strain zz
m in the element is written as a weighted sum of the strains in the 

two matrix semi-phases, as expressed in Eq. 6.  

 𝜀௭௭ ൌ 𝛼௎𝜀ଷଷ
௎ ൅ 𝛼௅𝜀ଷଷ

௅  Eq. 6 

The normal out-of-plane strains in each one of the two semi-phases, 33
U,L, are expressed in Eq. 7 

taking into account the coupling between the normal stress-strain components. 

 εଷଷ
௎,௅ ൌ

ଵ

ாయయ
ೆ,ಽ σଷଷ

௎,௅ െ
஝భయ

ೆ,ಽ

ாభభ
ೆ,ಽ σଵଵ

௎,௅ െ
஝మయ

ೆ,ಽ

ாమమ
ೆ,ಽ σଶଶ

௎,௅ Eq. 7

  

The following relation is obtained by combining Eq. 6 and Eq. 7 and by considering zz
m = 33

U = 

33
L: 

 ε௭௭ ൌ ቀ஑ೆ

ாయయ
ೆ ൅

஑ಽ

ாయయ
ಽ ቁ 𝜎௭௭

௠ െ α௎ ቀ஝భయ
ೆ

ாభభ
ೆ σଵଵ

௎ ൅
஝మయ

ೆ

ாమమ
ೆ σଶଶ

௎ ቁ െ α஽ ቀ஝భయ
ಽ

ாభభ
ಽ σଵଵ

஽ ൅
஝మయ

ಽ

ாమమ
ಽ σଶଶ

௅ ቁ Eq. 8 

 

The solution of Eq. 8 for zz
m is provided in Eq. 9. It can be observed that zz

m can be evaluated once 

that an equivalent out-of-plane stiffness modulus is defined, and the in-plane stress components are 

known. The expression of the equivalent modulus is given in Eq. 10. 
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 𝜎௭௭ ൌ ቀ ாయయ
ೆ ாయయ

ಽ

஑ೆாయయ
ಽ ା஑ಽாయయ

ೆ ቁ ቂ𝜀௭௭ ൅ 𝛼௎ ቀ஝భయ
ೆ

ாభభ
ೆ σଵଵ

௎ ൅
஝మయ

ೆ

ாమమ
ೆ σଶଶ

௎ ቁ ൅ 𝛼௅ ቀ஝భయ
ಽ

ாభభ
ಽ σଵଵ

௅ ൅
஝మయ

ಽ

ாమమ
ಽ σଶଶ

௅ ቁቃ Eq. 9

  

 𝐸௭௭
௘௤ ൌ

ாయయ
ೆ ாయయ

ಽ

஑ೆாయయ
ಽ ା஑ಽாయయ

ೆ  Eq. 10

  

For the out-of-plane shear stress components, similar results are obtained. Eventually, two equivalent 

out-of-plane shear stiffness moduli are defined as in Eq. 11. 

 ൞
𝐺௬௭

௘௤ ൌ
ீమయ

ೆ ீమయ
ಽ

஑ೆீమయ
ಽ ା஑ಽீమయ

ೆ

𝐺௫௭
௘௤ ൌ

ீభయ
ೆ ீభయ

ಽ

஑ೆீభయ
ಽ ା஑ಽீభయ

ೆ

 Eq. 11

  

Taking into account the previous results, the out-of-plane stress state in the matrix element is 

evaluated through the relations reported in Eq. 12. 

 

⎩
⎨

⎧𝜎௭௭
௠ ൌ 𝐸௭௭
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ೆ σଵଵ
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஝మయ

ೆ
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ೆ σଶଶ
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ಽ

ாభభ
ಽ σଵଵ
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஝మయ

ಽ

ாమమ
ಽ σଶଶ
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𝜏௫௭
௠ ൌ 𝐺௫௭

௘௤𝛾௫௭

𝜏௬௭
௠ ൌ 𝐺௬௭

௘௤𝛾௬௭

 Eq. 12 

 

3.2 Introduction of an interlaminar cohesive zone model 

The procedure described in [35,36] for the introduction of a CZM in finite thickness elements with a 

single integration point is hereby applied to the matrix elements. The procedure relies on the possibility 

to describe the fracture process through the displacements of the mid-planes of two adjacent laminates, 

as shown in Fig. 1. This vector of relative displacement, , is defined in Eq. 13, where it is linked to the 

average out-of-plane strain state between the mid-planes.   

 ∆ ൌ ൝
Δூ
Δூூ
Δூூூ

ൡ ൌ ቐ
𝑈௭

௎ െ 𝑈௭
௅

𝑈௫
௎ െ 𝑈௫

௅

𝑈௬
௎ െ 𝑈௬

௅
ቑ ൌ ൝

ε௭௭
γ௫௭
γ௬௭

ൡ 𝑡 Eq. 13 
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Thanks to the link expressed in Eq. 13, a stress-strain response with damage can be defined to model 

the separation of the mid-plane of the plies, by including a CZM in the finite thickness elements. In this 

paper, the model presented in [31] is selected as a guideline to develop a constitutive response capable 

of representing mixed-mode delamination. 

In the model implemented, the assumption of equivalent properties for mode II and mode III 

propagation is introduced. The out-of-plane strain components are used to define the equivalent strain 

components, I and II, reported in Eq. 14. Two corresponding equivalent stresses are introduced in Eq. 

14 as well. If solid elements with a reduced integration scheme are adopted, the out-of-plane stress state 

at the single integration point is actually a representation of the average stress between the plies. 

Therefore, delamination is represented by the degradation of the equivalent moduli defined in Eq. 10 

and in Eq. 11, as indicated in Eq. 14.  

 

𝜀ூ ൌ ൜
0         𝑖𝑓     𝜀௭௭ ൑ 0
𝜀௭௭     𝑖𝑓     𝜀௭௭ ൐ 0

𝜀ூூ ൌ ට𝛾௬௭
ଶ ൅ 𝛾௫௭

ଶ

𝜎ூ ൌ 𝐸௭௭
௘௤ሺ1 െ 𝑑௠௢ሻ𝜀ூ

𝜎ூூ ൌ 𝐺௫௭
௘௤ሺ1 െ 𝑑௠௢ሻ𝜀ூூ ൌ 𝐺௬௭

௘௤ሺ1 െ 𝑑௠௢ሻ𝜀ூூ

 Eq. 14 

The scalar variable dmo represents the loss of transmission capability of the out-of-plane stress 

components between the plies in the matrix idealized phase. The introduction of the CZM leads to the 

evaluation of the damage dmo, driven by the equivalent strain components. The damage evolution is 

shaped so as to introduce a bilinear response in the I-I and II-II. The damage threshold is set at the 

strength values I0 and II0 (see Fig. 1). The final strain IF and IIF are identified by imposing that the 

energy required to reach dmo = 1 matches the critical energy release rates GIc and GIIc, according to Eq. 

15:  

 
𝐺ூ௖ ൌ ׬ σூ𝑑∆ூ

∆಺೑

଴ ൌ 𝑡 ׬ σூ𝑑εூ
க಺೑

଴

𝐺ூூ௖ ൌ ׬ σூூ𝑑∆ூூ
∆಺಺೑

଴ ൌ 𝑡 ׬ σூூ𝑑εூூ
க಺಺೑

଴

 Eq. 15 



21 
 
 
 
 
 

Delamination occurring in a mixed mode was modelled by introducing in the damage algorithm a 

quadratic strength criterion and a B-K toughness criterion [61], as shown in Eq. 16, with the η exponent 

set equal to 1.45. 

 
ቀ ఙ಺

ఙ಺బ
ቁ

ଶ
൅ ቀ ఙ಺಺

ఙ಺಺బ
ቁ

ଶ
ൌ 1

𝐺ூ ൅ 𝐺ூூ ൌ 𝐺ூ௖ ൅ ሺ𝐺ூூ௖ െ 𝐺ூ௖ሻ ቀ ீ಺಺

ீ಺ାீ಺಺
ቁ

ఎ Eq. 16

   

It can be observed that, in the developed approach, the interlaminar crack at the interface is smeared 

in the volume of the solid element representing the idealized matrix phase. The approach, based on 

CDM, requires a parameter representing a characteristic length of the element, which must be introduced 

to regularize the damage law, as highlighted in [15,35]. In the presented formulation, regularization was 

achieved by introducing the element of total thickness, t, which is necessary in order to define the stress 

vs. strain response according to Eq. 15.  It can be observed that GIc/t must be equal to area under the 

stress vs. strain response, which, in a bilinear response, is given by 1/2I0IF, so that IF=2GIc/(I0t). The 

condition IF <I0 cannot be accepted, since in this case the energy accumulated in the element in the 

elastic range would exceed the one required to damage the interface. This leads to conditions on the 

admissible values of GIc, I0, and t. Such conditions are typically satisfied for models laminates made of 

carbon- or glass-reinforced polymer matrix UD and fabric plies, as confirmed by the applications 

presented in [30, 31, 36-39]. 

3.3 Modelling of in-plane stress state and transverse cracking  

For the intralaminar stress state, the assumption introduced is that the two matrix semi-phases in the 

element share the same strain state, so that xx = xx
U

 = xx
L, yy = yy

U
 = yy

L, and xy = xy
 U

 = xy
 L. The strain 

components can be rotated in the material reference frame for each semi-phase, considering orientation 

angles U and L, so as to evaluate the in-plane stress, which are different for each semi-phase. Within 

the theoretical frame of a CDM approach the generic in-plane constitutive law reads 
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 ൞

σଵଵ
௎,௅ ൌ D′ଵଵ
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௎,௅𝜀ଶଶ
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௎,௅𝜀ଷଷ
௎,௅ 

σଶଶ
௎,௅ ൌ D′ଶଵ

௎,௅𝜀ଵଵ
௎,௅൅D′ଶଶ

௎,௅𝜀ଶଶ
௎,௅ ൅ D′ଶଷ

௎,௅𝜀ଷଷ
௎,௅

τଵଶ
௎,஽௅ ൌ D′ସସ

௎,௅𝛾ଵଶ
௎,௅

 Eq. 17 

 
where the apices applied at the matrix stiffness terms Dij

U,L indicate that they could be degraded 

according to a generic damage law, as in [62]. The stress evaluated through Eq. 17 is rotated back to the 

element reference frame and the overall in-plane stress contribution components in the matrix element 

are assembled by applying a modified rule of mixtures.  

In the applications presented in this paper, a very simple damage law is implemented for the intralaminar 

matrix damage, with the specific objective to model a transverse matrix cracking in cross-ply laminates. 

In the law adopted, an intralaminar damage variable, driven by the transverse strain 22
U,L is defined 

according to the expression given in Eq. 18.  
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௎,௅ ൑ εଶଶ
௎,௅ ൏  ε௠௖௙

௎,௅

1 𝑖𝑓 εଶଶ
௎,௅ ൒  ε௠௖௙

௎,௅

 Eq. 18 

 

where ε௠௖଴
௎,௅  is the strain at damage threshold, 𝜎௠௖଴

௎,௅ ൌ 𝐸ଶଶ
௎,௅ε௠௖଴

௎,௅  is the strength of the matrix phase in 

transverse direction, and ε௠௖௙
௎,௅  is the strain at unit damage. The damage evolution law is shaped to obtain 

a triangular 22 - 22 response, analogous to the response introduced in CZM for delamination. The 

damage law can be adopted to represent the development of a single transverse matrix crack in the 

element, as shown in Section 5. The material parameter ε௠௖௙
௎,௅  represents the strain corresponding to a 

unit damage, so that the area below the triangular stress vs. strain response is 1/2𝜎௠௖଴
௎,௅ ε௠௖௙

௎,௅ . This area 

should be set equal to the energy per unit volume required to completely open a transverse crack in the 

volume occupied by the matrix element. If the critical energy release rate for the development of a 

transverse crack, 𝐺௠௖௖
௎,௅ , is known, the response is calibrated by setting: 
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 𝜀௠௖௙
௎,௅ ൌ

ଶீ೘೎೎
ೆ,ಽ

ఙ೘೎బ
ೆ,ಽ ௟೐೗

 Eq. 19

  

where lel is the characteristic length of the element, required to regularize the law, since 𝐺௠௖௖
௎,௅  is the 

critical energy release rate per unit surface. Actually, the strength attributed to the matrix has to be 

calibrated considering the in-situ strength of the of the group of plies with a homogeneous orientation 

where the transverse crack can develop. Such strength can be related to  𝐺௠௖௖
௎,௅  through  the theory 

developed in [63] and also applied in [52], which leads to Eq. 20: 

 𝜎௠௖଴
௎,௅ ൌ ට ଼ீ೘೎೎

ೆ,ಽ

஠்ೆ,ಽஃమమஞ
 Eq. 20

  
  

where TU,L is the overall thickness  of the group of plies with a homogeneous orientation. The parameter 

 can be set equal to unit value [52], and Λଶଶ is a function of the properties of composite material, as 

indicated in Eq. 21. 

 Λଶଶ ൌ 2 ቀ ଵ

ாమమ
െ

஝భమ
మ

ாభభ
ቁ Eq. 21 

The damage variable dmc
 U,L degrades the stiffness modulus E22

U,L and also the Poisson ratios v21
U,L and 

v23
U,L. After the evaluation of the damage variable, the engineering constants were degraded and then 

used to build the damaged terms of the stiffness matrix expressed in Eq. 17, for both semi-phases 

represented by the 3D element.  

3.4 Combination of stress states in 3D elements 

The final combination of stress states relating to the semi-phases requires to solve some aspects that 

arise when an interlaminar crack develops. 

 Indeed, in the presence of a delamination, the out-of-plane strain zz and the thickness of the matrix 

element may become very large (see Fig. 4). Nevertheless, the constitutive laws for in-plane stress 
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components, expressed in Eq. 17, are considered applicable, but only in the part of the volume of the 

3D element occupied by the composite material, otherwise stress resultants would be overestimated. 

 

Fig. 4 – Development of mode I interlaminar crack in a matrix element 

This issue can be plainly addressed by scaling down the in-plane stress components by two parameters, 

U and L, which represent the ratios between the original thickness physically occupied by the semi-

phases, and the total current thickness of the deformed element, which is evaluated by knowing the 

component of the deformation gradient, F, expressed in Eq. 22, where w represents the displacement in 

the z direction. 

 𝐹ଷଷ ൌ 1 ൅
డ௪

డ௭
 Eq. 22 

Accordingly, the expression of U and L are: 
   

 ൞
ω௎ ൌ

௧ೆ

ଶ௧ிయయ
ൌ

ఈೆ

ிయయ

ω௅ ൌ
௧ಽ

ଶ௧ிయయ
ൌ

ఈಽ

ிయయ

 Eq. 23 

The rule of mixture provided in Eq. 24 is used to combine the in-plane stress contributions of the 

matrix semi-phases, once they were rotated back to the element reference frame.  
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 Eq. 24

  

The new parameters U and L have to be used instead of the original thickness fractions, also in Eq. 

12, which is modified into Eq. 25, where the interlaminar damage parameter dmo is also included. 
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 Eq. 25 

 

Finally, it must be considered that the application of the model requires the knowledge of the strains 

33
U,L to be used in Eq. 17, where the in-plane stress in the semi-phases are computed. The combination 

of Eq. 7 and Eq. 25 provides the ratio between the out-of-plane strain in the semi-phases and the overall 

strain of the element, which is given in Eq. 26. 
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  Eq. 26 

A simplified form is obtained in Eq. 27.  

 𝜀ଷଷ
௎,௅ ൌ

ா೥೥
೐೜ሺଵିௗ೘೚ሻ

ாయయ
ೆ,ಽ 𝜀௭௭  Eq. 27 

It can be observed that, when interlaminar damage is null, Eq. 27 prescribes that the out-of-plane 

strains are distributed according to the ratios between the equivalent and the local out-of-plane moduli. 

This solution can be considered acceptable and consistent with the assumptions made to combine the 

out-of-plane stress states. Conversely, in the presence of interlaminar damage, the most critical issue is 

to avoid an unacceptable overestimation of the Poisson ratio effects due to the large values of the overall 

zz strain. The application of Eq. 27 leads to reduce the local 33
U,L strains as the interlaminar damage 

grows. However, this approximation maintains the capability of providing a reasonable estimation of 



 Alessandro Airoldi, Chiara Mirani, Lucia Principito 

 
 
 
 

26 
 
 
 
 
 

the in-plane stress states provided by the matrix phase even in case of a fully developed interlaminar 

crack, as proved in the following Section 4.  

 

3.5 Flow chart of the constitutive law  

 

Fig. 5 – Basic structure of the constitutive law of the matrix phase 

The structure of the constitutive law for the matrix can be adapted to different types of CZM and 

CDM to represent the onset and the evolution of matrix damage and its effects on matrix-dominated 

responses. The damage laws presented in the previous sub-sections are implemented in a VUMAT 

subroutine linked to the Abaqus/Explit code. In the subroutine, as a first step, Lagrangian strains are 

evaluated from the deformation gradient provided by the code and are used to calculate the interlaminar 

damage. Thereafter, the strain components in the material reference frame are evaluated for both semi-
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phases, and the 33
U,L are approximated through Eq. 27. Such strain state is used to evaluate through Eq. 

17 the in-plane stress components for both semi-phases, by applying the chosen intralaminar damage 

model. In the final phase, the parameters U,L are calculated to apply Eq. 25, providing the final out-of-

plane stress components. Subsequently, the in-plane stress state of the two semi-phases are rotated in 

the element reference frame and assembled through Eq. 24. A simplified flow chart of the subroutine is 

provided in Fig. 5. 

4. Modelling of delamination phenomena 

4.1 Application of the bi-phasic modelling technique to DCB and ENF tests 

The capability of modelling delamination by using the developed approach is assessed considering 

the stable development of a mode I interlaminar crack obtained in a Double Cantilever Beam (DCB) 

test, and the unstable propagation of a mode II interlaminar crack during an End Notched Flexure (ENF) 

test. Attention is focused on the possibility to accurately represent delamination between plies by using 

the CZM embedded in the 3D elements, still obtaining a reliable estimation of in-plane stress 

components during fracture process. In the models used in this activity, the in-plane response of the 

composite is considered linear elastic, whereas the evaluation of the interlaminar damage variable dmo 

is based on the CZM described in sub-section 3.2, with maximum stress (σூ଴, σூூ଴) and critical energy 

release rates (GIc, GIIc) as material parameters.  

The DCB and ENF tests considered for the verification were performed on 25 mm wide and 250 mm 

long composite specimens with a [0]24 lay-up of Hexcel 913C-HTA graphite/epoxy unidirectional plies, 

with a cured ply thickness of 0.132 mm. The experimental procedure was described in detail in [44], 

where the in-plane properties of the material were also reported. Such properties are completed by 

applying transverse isotropy assumptions in order to apply the decomposition procedure described in 

sub-section 2.4, with results reported in Table 1. The specimens were produced with a pre-introduced 
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crack at the mid-plane of the laminates, obtained by the insertion of a PTFE sheet. The development of 

delamination from such pre-induced cracks is conveniently represented by applying the presented 

modelling technique only in the central region of the laminate, following the approach assessed in [36]. 

Therefore, only the four central plies of the [0]24 lay-up are meshed according to the bi-phasic modelling 

technique, as shown in Fig. 6-A. The upper and lower sub-laminates representing the other plies of the 

lay-up are represented by means of laminated continuum shell elements (SC8R [64]). Hexahedral 

reduced integration elements (C3D8R [64]) are used for the matrix phase, whereas membrane elements 

(M3D4R [64]) are used for fibre phase. The charachteristic length of the element in x-y plane is set at 

0.5 mm. A unit damage level, dmo=1, was imposed at the beginning of the analysis to the matrix elements 

in the central row corresponding to the pre-cracked layer. Such damage does not affect the stiffness of 

the element for compressive normal stress, therefore the contact between the two arms of the specimens 

is represented in the models.  

 

Fig. 6 – Mesh detail of DCB and ENF models: (A) bi-phasic model, (B) conventional model 
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All the analyses are performed by using the Simulia Abaqus/Explicit code. In the DCB model, 

displacements are applied by defining two rigid bodies with the set of nodes highlighted in Fig. 7-A. 

The reference nodes of such rigid bodies are let free to rotate about the y axis and to translate along the 

x axis. The velocities along the z direction are smoothly increased to avoid the excitement of vibrations 

in opposite directions for the upper and lower nodes. 

 

Fig. 7 – Numerical models: (A) DCB test, (B) ENF test 

 

The ENF model is shown in Fig. 7-B, including the three rigid analytical cylindrical surfaces that 

were used to represent the metallic rollers adopted in order to apply the load and to support the specimen. 

A quasi-static analysis is performed by gradually increasing the velocity in the z direction of the rigid 

cylinder at the centre of the specimen, which is set in contact with the upper surface of the laminate. The 

other two lateral rigid cylinders are kept fixed and set in contact with the lower surface of the laminate.  

In both models, the interlaminar properties of strength and toughness are I0 =20 MPa, II0 =50 MPa, 

GIc=0.24, and GIIc=1.05 [44].  

4.2 Numerical results and correlation with experimental data for DCB tests 

The numerical-experimental correlation obtained in the analysis of the DCB test is presented in Fig. 

8, where the numerical load vs. displacement curve is compared with the results obtained in five 

experimental tests. As prescribed by ASTM regulations [65], preliminary pre-opening phases were 
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conducted to achieve a more representative crack tip of a real interlaminar fracture, rather than the blunt 

one obtained by inserting the PTFE sheet in the lamination sequence. The slight discrepancy in the slope 

in the elastic range can be attributed to the difficulty to correctly identify the crack tip position at end of 

the pre-opening phase. The maximum force levels and the response during the crack propagation are 

captured with appreciable accuracy by the hybrid bi-phasic model of the specimen.  For a comparison 

and a clarification of the techniques adopted, the same mesh is also used to apply the hybrid technique 

validated in [30, 31], where membrane 2D elements are characterized by considering the complete in-

plane response of the plies and the hexahedral 3D elements carries only out-of-plane stress components. 

The force vs. displacement curve is close to that obtained by the bi-phasic model and is reported in Fig. 

8. 

 

Fig. 8 – Correlation of experimental and numerical load-displacement responses of DCB for the bi-
phasic model and the original hybrid technique [30, 31] 

The numerical contour shown in Fig. 9-A, refers to the interlaminar damage variable dmo in the crack 

tip zone, during the crack propagation phase. During the crack opening, each DCB arm undergoes a 

significant bending, such that the in-plane stress m
xx in the matrix phase should increase as the elements 

are closer to the crack tip. Such response is correctly represented by the model, as shown in Fig. 9-B, 

which refers to the total m
xx stress assembled from the stress states evaluated in the matrix semi-phases. 
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For the elements in the wake of the crack, the expected gradients both in the longitudinal and in the 

vertical direction are represented. Indeed, the stress m
xx in Fig. 9-B increases along the longitudinal 

direction also for the elements in the central layer, where the interlaminar matrix damage develops. The 

in-plane stress values in such layer are identical for both matrix semi-phases and consistent with the 

stress levels obtained in the adjacent undamaged layers. Hence, the through-the-thickness stress gradient 

is captured without significant jumps. Such result represents an assessment of the approximation 

introduced in section 3.4 to mitigate the effects of the large zz that develops when a mode I interlaminar 

crack propagates. The stress m
xx in the elements representing the idealized matrix phase is noticeably 

lower than the stress f
xx, carried by the idealized fibre phase, shown in Fig. 9-C. The sum of these two 

stress contributions, taken in correspondence of the same displacements, is close to the stress c
xx 

presented in Fig. 9-D, which is the stress carried by the  membrane elements in the analyses performed 

with the hybrid technique, where the 2D elements carries the whole in-plane stress state of the 

composites.   

 

Fig. 9 – Contour in the analysis of the DCB test: (A) interlaminar damage, (B) m
xx stress in the matrix 

phase, (C) f
xx stress the membrane elements of the fibre phase, (D) total c

xx in membrane elements 
with the hybrid original technique  
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4.3 Numerical results and correlation with experimental data for ENF tests 

   

The correlation of load-displacement responses of five ENF tests with the one of the numerical model 

is presented in Fig. 10. It can be observed that the FE analysis correctly model all the quantitative aspects 

of the experimental curves. The load drop corresponds to the unstable propagation of the crack, which 

is expected considering the a0/L of 0.5 value adopted in the test [66]. In the two contours presented in 

Fig. 11, the numerical crack propagation is described by reporting the distribution of interlaminar 

damage dmo at different values of central cylinder displacement. After an initial stable development of a 

numerical process zone, it can be observed that damage suddenly propagates in the central layer, with a 

negligible increment of cylinder displacement.  

 

Fig. 10 – Correlation of experimental and numerical load-displacement responses of ENF 

The contour reported in Fig. 12 is referred to the total in-plane m
xx stress component in the matrix 

elements before the crack propagation. The tensile and compressive in-plane stress originated by the 

bending of the two arms in the matrix phase are correctly represented.  In the central layer, the considered 

stress component was zero, since a pure shear strain is evaluated at the integration point of the 3D 

element. Accordingly, the results for the mode II delamination tests confirmed that both the propagation 
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of interlaminar damage and the in-plane stress evolution in the matrix phase can be correctly modelled 

by using the proposed approach.  

 
Fig. 11 – Numerical interlaminar damage in the analysis of the ENF test at different displacements of 

the loading cylinder: (A) at 2.63 mm, (B) at 2.70 (mm) 

 

Fig. 12 – Contour of normal stress xx in the matrix phase during the analysis of the ENF test at 1 mm 
of displacement 

4.4 Overall considerations and comparison with a traditional cohesive approach 

  The presented results indicate that the CZM embedded in the matrix element is able to represent 

qualitative and quantitative delamination phenomena, which are modelled without using zero-thickness 

cohesive elements. Moreover, the analysis of the in-plane stress state evolution shows that the stress 

carried by the matrix phase can be reasonably predicted at the same integration points where the 

interlaminar damage is evaluated. 
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The embedment of CZM into finite thickness elements eliminates the need to introduce any penalty 

stiffness. Therefore, physical stiffness values are used and the stable integration time step is incremented 

in explicit analyses, with significant computational advantages. A comparison is carried out with a quasi-

static analysis of the DCB test performed by using Simulia/Abaqus explicit code and a conventional 

approach based on zero-thickness cohesive elements. The conventional model is presented in Fig. 6-B: 

the four central plies are represented by 3D elements and a single layer of cohesive elements is 

introduced at the pre-cracked layer (COH3D8, [64]).  

The penalty stiffness attributed to the traction-displacement response of the interface in the 

conventional approach, Kc, must be selected. It can be calibrated by adopting a physical point of view, 

where the cohesive elements are considered to represent a thin resin-rich layer [67]. Alternatively, an 

engineering-based approach can be used by applying Eq. 28, proposed in [34]: 

 𝐾௖ ൌ
ఈா೥೥

௧ೞ
 Eq. 28 

where Ezz is the physical through-thickness stiffness of the material, ts is the physical thickness of the 

sub-laminates that are connected by the cohesive element, also shown in Fig. 6-B, and  is a non-

dimensional parameter. A value  = 50 was suggested in [34], for implicit analyses with a single 

interlaminar layer, to keep the Kc at a minimum value without undesired responses due to an excessively 

compliant interface in the elastic range. The initial stable time steps evaluated by the solver code for 

different models of the DCB tests are presented in Table 2. The stable time step also depends on the 

mass of the element, so that it can be artificially increased to perform quasi-static explicit analyses by 

using a mass scaling technique. However, such technique can be equivalently applied both to the 

conventional and the bi-phasic model, and the mass increment must be carefully calibrated, since it 

raises the kinetic energy in the analyses. For such reason, it is correct to compare both techniques without 

the adoption of mass scaling. It is clearly evident that the initial time step of the conventional model is 

more than one order of magnitude lower than that of the bi-phasic model. The adoption of Eq. 28 and 
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the attribution of additional mass to the cohesive layer, with a total mass increment of almost 14%, raise 

the time step in the conventional model, though it remains 40% lower than in the hybrid model #1. If all 

three layers were modelled, the mass increment required would be more than 50%. Moreover, the value 

=50 in Eq. 28 is not adequate for models with multiple interlaminar layers to avoid large element 

distortions and numerical errors in quasi-static explicit analysis, which cannot be completed. On the 

contrary, bi-phasic models do not exhibit any convergence issue and can always be calibrated to obtain 

computational times significantly lower than in conventional models. These results, obtained with the 

bi-phasic model, are completely aligned with the ones referred to the hybrid technique presented in [36]. 

Table 2 – Stable time steps in explicit analyses with the bi-phasic modelling technique and 
conventional approaches 

Model 
type 

Approach 

Interfaces 
modelled in 
the central 

zone 

Mass of 
cohesive 
element 

Penalty 
stiffness  

Initial 
stable time 

step (s) 

% mass 
increment  

#1  Bi-phasic All N/A N/A 2.110-8 0% 

#2 
Cohesive 
elements 

1 
0.013 mm thick 
resin-rich layer 

0.013 mm thick 
resin-rich layer 4.710-10 0.18% 

#3 Cohesive 
elements 

1 
0.013 mm thick 
resin-rich layer Eq. 29, =50 7.310-10 0.18% 

#4 Cohesive 
elements 

1 
1 mm thick 

resin-rich layer Eq. 29, =50 1.310-8 13.8% 

5. Meso-scale modelling of individual transverse matrix cracks and their density 
evolution  

5.1 Objectives of the analyses   

The constitutive law of the matrix phase is suited to model both interlaminar and intralaminar damage 

within the same matrix element. Different choices are possible to represent the accumulation of 

intralaminar matrix damage and can be implemented within the structure of the matrix constitutive law, 

described in Section 3.  A possible choice is to represent matrix damage as a progressively accumulated 

diffused damage that models the stiffness degradation in the matrix-dominated responses, such as in 

[23,24].  However, the bi-phasic models could be adapted to a different approach, since they can also 
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efficiently model individual intra-laminar cracks in the matrix elements, even by using a model refined 

at the meso-scale level. Indeed, thanks to the specific characteristics of the approach, individual matrix 

cracks can be conveniently represented by using a mesh refinement equivalent to one element per ply in 

the through-the-thickness direction. Moreover, in the technique proposed, the stress transfer mechanisms 

between damaged and undamaged plies can be controlled in different ways, thus allowing a calibration 

of the interaction between matrix cracking and delamination. Such aspects are investigated in the 

activities presented in this section for cracks developing in cross-ply laminates, by applying the 

simplified intralaminar damage law given in Eq. 18. 

5.2 Models of cross ply specimens with a statistical distribution of properties 

The possibility to model individual matrix cracks is assessed by considering the evolution of crack 

density in cross-ply specimens, one of the cases most broadly studied in the literature regarding 

intralaminar matrix cracking. Several data are available in literature, such as the ones presented in 

[2,48,68]. In particular, the numerical analyses considered refer to a [0/903/0] specimen made of carbon 

fibre reinforced UD plies, with a thickness of 0.132 mm, discussed in [48,63] and to a [0/906/0] specimen 

made of glass fibre reinforced UD plies with a thickness of 0.203, presented in [2,48]. The properties 

and the results of the decomposition algorithm for both the materials are reported in Table 1. The bi-

phasic modelling technique is applied by using 3D elements with one integration point (C3D8R [64]) 

for the matrix phase, and membrane elements (M3D4R [64]) for the fibre phase. The carbon fibre 

reinforced laminate is represented considering the structure sketched in Fig. 13-A. For the glass fibre 

reinforced [0/906/0] laminate, the central block of 90° oriented plies is represented by using two 

membrane elements, as shown in Fig. 13-B, due to the higher number of layers.  
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Fig. 13 – Model structure of (A) the carbon fibre reinforced, (B) the glass fibre reinforced cross-ply 
laminates, and (C) expected modelling mechanism of individual transverse cracks 

Simplified models of the specimens are developed, which represented stripes with only one element 

across the width and a length of 100 mm. For the carbon fibre reinforced laminates, the three models 

shown in Fig. 14 are considered, with different lengths in the longitudinal direction: 0.125 mm, 0.2 mm 

and 0.3 mm. For the glass fibre reinforced laminate, the results presented are obtained by using a model 

with a typical element size of 0.2 mm. The element width is kept equal to the element length. Simulia 

Abaqus/Explicit code is used to simulate a quasi-static tension test. The nodes at one end of the strip are 

included in a rigid body, which is moved at a smoothly increasing velocity in the longitudinal direction, 

until an average strain of 0.01 mm/mm is achieved along the strip. A similar rigid body at the opposite 

end is kept fixed. 

 

Fig. 14 – FE models of the strip of the cross-ply laminate 
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A damage variable, dmc, evolves as prescribed in Eq. 18 and affects the Young Modulus E22
m of the 

matrix semi-phase in the direction perpendicular to the fibres. Owing to the localization consequent to 

strain softening, the damage development may simulate the opening of a transverse matrix crack in an 

individual element. In particular, the deformation mechanism sketched in Fig. 13-C is predicted for the 

case of carbon fibre reinforced laminate, when the intralaminar damage variables are contemporarily 

activated in the semi-phases of two adjacent matrix elements. For the glass fibre reinforced laminate, 

the mechanism is similar, though the crack should also be produced in the two central matrix elements, 

shown in Fig. 13-B. The response of the membrane elements representing the 90° oriented fibres, set 

between the semi-phases, provides a null stiffness contribution in the crack opening direction. 

Accordingly, they should not oppose to the aforementioned deformation mechanism. 

In the experimental evidence regarding the development of transverse matrix cracking in off-axis 

plies of cross-ply laminates, cracks appear after a certain threshold, but do not appear simultaneously. 

Indeed, a distinctive aspect of the phenomenon is represented by the evolution of crack density per unit 

length, . To represent the progressive development of matrix cracks, strength properties in the 

transverse direction must be statistically distributed [6,69]. Such aspect was taken into account in the 

analytical and numerical models presented in [48] and in [52], where normal distributions of strength 

were used.  

In the models of the stripes of cross-ply laminates presented in this paper, a Weibull distribution is 

adopted for the strength in the elements, with the form given in Eq. 29. 

 𝜙 ൌ ቀఙ೘೎బ

ఙ೘೎బ
∗ ቁ

௪
 Eq. 29 

where w is the shape parameter and *mc0 is the scale parameter of the distribution. A procedure was 

developed in [69] to obtain the values of strength distribution parameters in the volume of a specimen, 

from the experimental evolution of the density of cracks at increasing load levels. In the present work, 

an initial guess for the distribution parameters of strength is found by applying such procedure to the 



39 
 
 
 
 
 

results reported in [48] for the transverse crack densities in the [0/903/0] and in the [0/906/0] laminates. 

Parameters are eventually adjusted to obtain a best fit with experimental data.  Final values of *mc0 = 

80 MPa and w = 17 are adopted for the carbon reinforced laminate. A distribution with a scale 

parameter, *mc0, of 124 MPa and a shape parameter, w, of 5 is defined for the glass fiber reinforced 

laminate. A Matlab™ script is used to distribute the strength mc0 among the elements of the strip 

models according to the distributions identified. The semi-phases of vertically adjacent matrix 

elements are characterized by the same strength level. Therefore, intralaminar damage is 

contemporarily activated, at a given location along the longitudinal axis, for all the matrix elements in 

the 90° oriented blocks, as requested to activate the mechanism presented in Fig. 13-C.   

5.3 Deformation and stress transfer mechanisms due to a transverse crack in the 
model  

The development of a single crack in the strip modelled by using 0.2 mm long elements in the 

[0/903/0] carbon reinforced laminate is described in Fig. 15-A and Fig. 15-B, which are referred to the 

contour of the longitudinal strain. In Fig. 15-A, it can be seen that the initial activation of the intralaminar 

damage variable in the 90° oriented semi-phases induces a strain localization. Then, the damage evolves 

until it reaches the unit value and leads to the condition presented in Fig. 15-B. In both figures, 

displacements are amplified to clearly show the deformation mechanism as well as the contraction due 

to the effects of the Poisson ratio in the vertical direction. The evolution of the longitudinal stress in the 

upper central element is presented in Fig. 15-C. The response of the element is a combination of the 

response of two matrix semi-phases, as explained in section 3. It can be observed that the stress in the 

matrix semi-phase belonging to the 90°-oriented ply, xx
L, decreases to a null value. Indeed, the load 

path for longitudinal stress is interrupted in the 90°-oriented ply, due to the presence of the crack. On 

the contrary, the matrix semi-phase belonging to the 0°-oriented ply is undamaged. In the presence of a 

crack in the 90°-oriented layer, the constitutive law predicts an increment of the stress value,  xx
U, in 

the upper semi-phase of the element, which represents the matrix-dominated response of the undamaged 
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0°-oriented ply. Hence, the numerical technique is able to represent a mechanism of stress transfer 

between the plies, which is modelled within a single matrix element during the development of a 

transverse crack. The total stress in the element, xx
TOT = xx

U + xx
L, is approximately constant.  

 

Fig. 15 – Modelling of individual crack opening: (A) strain contour at crack onset, (B) strain contour 
at unit damage level, (C) evolution of longitudinal stress in the semi-phases of the matrix element 

The mechanism shown in Fig. 15 confirms the expected behaviour sketched in Fig. 13-C. It can be 

seen that, in the bi-phasic model, confinement effects due to the presence of undamaged adjacent plies 

do not oppose to transverse crack development. Once the crack has developed, the load path in the 

matrix semi-phases of the 90° oriented plies is interrupted, but the load is re-introduced in the elements 

of the damaged layer through two mechanisms: 

a) the internal stress transfer mechanisms between the matrix semi-phases, previously discussed 

and represented in Fig. 15-C (load path a in Fig. 15-A); 

b) the development of interlaminar shear stress in matrix elements close to the cracked one, in 

the longitudinal direction: interlaminar shear transfers the load from the 90° oriented layer, 

where the stress path is interrupted by the crack, to the elements of the 0° oriented layers 
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(load path b in Fig. 15-A); such second transfer mechanism will be analysed more in detail 

in the following sub-sections. 

5.4 Numerical results for crack density evolution  

The stress transfer between the plies in the numerical model allows to re-introduce the loads in the 

undamaged zone of the 90° oriented block. Hence, it is fundamental to determine the development of 

subsequent cracks in such layer, as the overall strain increases. In the numerical analyses, the progressive 

development of individual cracks is indeed modelled, as it is represented in the sequence of strain and 

damage contours shown in Fig. 16, referred to the [0/903/0] laminate. The strain contours in Fig. 16-A 

indicates that new localizations progressively appear at an increasing level of average strain. Local strain 

also increases in the elements already damaged, to complete the crack opening. The damage contour 

presented in Fig. 16-B is taken at the same simulation time of the last strain contour in Fig. 16-A. It can 

be seen that intralaminar damage in the semi-phase completely evolved in the oldest cracks and it 

progressively increasing in the more recent ones.  

 

Fig. 16 – (A) numerical evolution of longitudinal strain localizations due to the intralaminar damage 
and (B) contour of intralaminar damage in the lower matrix semi-phase 

A post-processing technique is applied to evaluate the density of cracks in the numerical solutions at 

various steps. A Python script is used to extract automatically, from the solver output database, the 

elements along a longitudinal strip with activated intralaminar damage (dmc > 0). The number of these 

elements corresponds to the number of cracks and gives the crack density at each step, which correspond 
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to an average stress level applied to laminate. Numerical densities are then plotted against the average 

stress levels and compared with experimental plots of density evolution. 

The numerical curves of density evolution for the different mesh sizes in the model of the carbon 

reinforced laminate are correlated with the experimental data in Fig. 17. Correlation is generally 

acceptable, despite some discrepancies in the initial phases of crack development. However, the slope 

of the density vs. average stress curve is well captured. It can be observed that the best solution is 

obtained by using the smallest mesh size. The development of individual matrix cracks is well captured 

up to a density level higher than a crack per millimetre, without exhibiting over-constraining effects due 

to the adjacent plies. Crack evolution depends on the statistical distribution of properties and the 

sensitivity of the results to the mesh size in the longitudinal direction is quite limited, thanks to damage 

law regularization based on the characteristic length of the element (Eq. 19). 

 

Fig. 17 – Numerical-experimental correlation of crack density evolution in a carbon reinforced cross-
ply laminate, for different mesh sizes 

5.5 Crack density evolution in the presence of interactions between transverse 
cracking and delamination   

The results presented confirm that, for the [0/903/0] carbon fibre reinforced laminate, the effects of 

potential delaminations are not needed to be modelled in order to achieve a good numerical-experimental 

correlation, as stated in [48]. However, this is not expected to be true for the [0/906/0] glass fibre 
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reinforced laminate. In this second case, the crack density evolution was characterized by a progressive 

reduction of the slope in the curve of density vs. average state, beyond a certain threshold [2,48]. Such 

phenomenon was attributed to the onset of delamination processes between the 0° and the 90° oriented 

plies: delamination interfered with the load transfer mechanisms between the plies and opposed any 

further development of the cracking in the 90° oriented plies. Therefore, such case represents an 

important benchmark for the bi-phasic modelling technique in order to model the interaction between 

the two damage processes with a relatively coarse model.  The interlaminar CZM for delamination is 

calibrated considering a uniform shear strength II0 =40 MPa, which was the expectation value of the 

normal distribution adopted in [48]. The other material parameters for the interlaminar damage model 

are expected to play a less significant role in the interaction between transverse cracking and 

delamination. Hence, they are kept equal to the values identified for carbon/epoxy plies considered in 

section 4: I0 = 20 MPa, GIc = 0.24, and GIIc = 1.05. The interlaminar damage model is activated in the 

matrix elements between 90° oriented and 0° oriented plies, but is inhibited in the central matrix 

elements. 

The initial results obtained in the numerical analysis, in terms of crack density evolution vs. average 

applied stress, are presented and compared with experimental data of [2,48] in Fig. 18-A.  It can be 

observed that the numerical results match the experimental data up to a density of 400 cracks per meters, 

but do not represent the change of slope attributed to delamination phenomena. The analysis of the 

results is focused on the transverse shear stress that develops in the matrix elements between the 0° and 

the 90° oriented plies. Transverse shear is the second of the load transfer mechanisms between the plies, 

previously discussed in Section 5.3. According to the contour shown in Fig. 18-B, interlaminar shear 

stresses arise in the analysis, but they are not sufficient to promote delamination.  

However, the bi-phasic approach allows to control the interaction between a transverse crack and 

delamination by acting on the stress transfer mechanism internal to the matrix element, based on load 

path a indicated in Fig. 15-A. Indeed, part of the stress originally carried by the 90°-oriented matrix is 
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internally transferred to the matrix phase of the 0°-oriented plies, within the same matrix element. It is 

possible to control and attenuate such mechanism by introducing a parameter, h, that couples the 

intralaminar damages of the two matrix semi-phases. The introduction of the coupling between normal 

stress components leads to re-formulate Eq. 24 in the following way: 

 ቐ
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 Eq. 30 

where dU
mc and dL

mc are the intralaminar damage parameters in the upper and lower semi-phases, 

respectively. The coupling parameter h roughly models, at the meso-scale level, phenomena that would 

require a much more refined mesh to be correctly represented in a finite element analysis, including the 

influence of a transverse matrix cracking on the stress state of adjacent plies.  

 

Fig. 18 – (A) Numerical experimental-correlation of crack density for the original modelling approach, 
(B) transverse shear stress close to a crack in the original model, and (C) with coupling between 

damage in the semi-phases 

 

The application of Eq. 30 leads to an increment of the shear stress close to a matrix crack, depending 

on the value of the coupling parameter. In particular, with h equal to 1 the values are more than twice as 

large, as shown in Fig. 18-C. After the development of some cracks, the shear stress values exceed the 

assigned interlaminar strength, and delamination onset is predicted, as in Fig. 19-A. The increment of 
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the coupling parameter h involves a reduction of the crack density after an average stress of about 100 

MPa, as shown in Fig. 19-B. Hence, the experimental evolution of the crack density can be captured 

once the constitutive law is calibrated in order to properly model the interaction between delamination 

and matrix cracking. 

 

Fig. 19 – Effects of coupling between damage in matrix semi-phases: (A) intralaminar and 
interlaminar damage in a multiple transverse crack scenario, (B) numerical-experimental correlation of 

crack density for increasing values of the coupling parameter 

A further improvement is introduced by modifying the law in order to model the interlaminar-

intralaminar damage interaction at local level. In particular, the weakening of the interlaminar layer 

close to the tip of an intralaminar crack is taken into account. A variation of interlaminar strength and 

toughness is introduced, depending on the value of the intralaminar damage in the same matrix element. 

Such direct coupling is made possible by the specific characteristics of the bi-phasic modelling 

technique, and can be exploited in several ways. For the purpose to evaluate the effect on the crack 

density evolution in a pure tensile load condition, the simplified form expressed in Eq. 31 is adopted.  
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 Eq. 31 

The results obtained are summarized in Fig. 20. The magnified zone of the strip model shows four cracks 

and a complete interlaminar damage at the bottom and top crack ends, orginated by the coupling 

introduced through Eq. 31. Among the cracks, the matrix elements between the 0° and the 90° oriented 
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plies are partially delaminated due to the action of transverse shear stress. The crack density evolution 

curves shown in Fig. 20-B result lower than the one obtained through the coupling of the intralaminar 

damage in the matrix semi-phases, presented in Fig. 19-B. When the coupling parameter, h, is set at 1, 

the results reported in Fig. 20-B show that the introduction of Eq. 31 leads to a flat crack density vs. 

average stress curve. Accordingly, stress transfer mechanisms are totally inhibited by delamination and 

this opposes to the development of further cracks beyond a density level of 660 m-1.  

 

Fig. 20 – Effects of interaction between intralaminar damage and CZM for delamination: (A) 
modelling of multiple matrix cracking, (B) development of interlaminar damage, (C) numerical-

experimental correlation of crack density evolution 

Overall, the results obtained with a coupling parameter h =1 indicate that a good numerical-experimental 

correlation can be achieved. It has been shown that the bi-phasic modelling technique developed in this 

paper provides the possibility to act at different levels in order to model the effects of coupling between 

intralaminar and interlaminar damage without a representation of the stress field at the sub-ply level.  

 6. Concluding remarks 

An innovative approach to model long fibre reinforced composite laminates has been developed by 

applying a decomposition of the composite into two phases, which model the fibre- and the matrix- 

dominated properties of the material. Such bi-phasic decomposition has been introduced within an 

efficient modelling technique developed to represent complex delamination scenarios, which had been 

presented and validated in previous works. The original technique was based on the embedment of a 
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CZM into finite thickness 3D elements, carrying only out-of-plane stress components. These elements 

connected elements with two-dimensional geometries, representing the whole in-plane response of the 

plies. In the new bi-phasic model presented in this paper, the fibre phase has been lumped at the mid-

plane of the plies and it was represented by elements with two-dimensional geometry, whereas the 

complete three-dimensional stress-strain response of the matrix phase has been modelled through the 

3D elements. The meshes of the two phases occupy the same volume and interact at the mid-plane of 

the plies. This approach, denominated bi-phasic modelling technique, provides the opportunity to embed 

a description of delamination in the element of the matrix in terms of relative displacement of the mid-

planes of adjacent plies. Accordingly, a CZM can be introduced in finite thickness solid elements, with 

significant computational advantages, already proved in previous works. Besides such advantage, the 

main objective of the approach is to model both interlaminar and intralaminar damage mechanisms in 

the matrix within the same element, by using a single constitutive law. 

Two basic issues have been addressed to develop the new approach. First, a new strategy was developed 

to decompose composite properties, fixing the issues of previous procedures relevant to the physical 

admissibility of the matrix phase. Then, the problems inherent the characterization of matrix elements 

has been considered. Such elements represent the matrix-dominated properties in the volume between 

two mid-planes of two different plies with different properties and/or orientations. The issue relating to 

the combination of the matrix-dominated responses of the two plies has been solved by conceiving a 

particular structure for the constitutive law of the matrix phase. Moreover, the law also allows to model 

large delamination openings between the semi-phases.  

The capability to obtain a correct modelling delamination by means of the CZM embedded in the matrix 

elements has been successfully assessed in the paper by considering delamination tests in mode I and 

mode II. Such analyses have been also exploited to show that in-plane stress contributions attributed to 

the matrix phase are reliably modelled even in the presence of delamination cracks in the same element. 



 Alessandro Airoldi, Chiara Mirani, Lucia Principito 

 
 
 
 

48 
 
 
 
 
 

Moreover, computational advantages referred to the embedment of CZM into a finite thickness element 

have been confirmed through the comparison with conventional models.  

The possibility to model in a reliable way both delamination and a matrix-dominated in-plane stress 

response in the same element opens appealing opportunities to model intralaminar damage and its 

potential interactions with delamination by using finite element schemes refined at the meso-scale level.   

Indeed, considering the development of transverse matrix cracking in cross-ply laminates, appreciable 

numerical-experimental correlations have been achieved. It has been shown that the approach can model 

individual intralaminar cracks with a minimum through-the-thickness mesh refinement level and that 

experimental crack density evolution can be appreciably captured by statistically distributing the matrix 

properties. Moreover, the load transfer mechanisms between adjacent damaged and undamaged plies 

can be properly modelled and controlled. This has given the possibility to capture the evolution of matrix 

cracks in an experimental case characterized by the interaction between delamination and transverse 

matrix cracking. The interaction was captured by properly calibrating the constitutive law attributed to 

the matrix, without relying on the detailed representation of the stress states at the crack tips and without 

requiring non-local approaches. The results suggest that the proposed approach can be considered a new 

and promising method to develop computationally efficient meso-scale models of laminates. They also 

suggest that such models can be used to simplify the representation of complicated phenomena and 

interactions originated by mechanisms occurring at a much smaller scale of observation. 
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