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Introduction 

 

Data on hydrocarbon reservoir attributes (e.g., permeability, porosity) are only available at a set of 

sparse locations, thus resulting (at best) in an incomplete knowledge of spatial heterogeneity of the 

system. This lack of information propagates to uncertainty in our evaluations of reservoir performance 

and of the resulting oil recovery. A variety of studies framed in the context of a stochastic approach 

have been performed for single phase fluid flow and transport (e.g., Dagan, 1989; Gelhar, 1993; 

Dagan and Neuman, 1997; Zhang and Winter 1999; Sanchez-Vila et al., 2006; Guadagnini et al., 2018 

and references therein). Here, we consider a two-phase flow setting taking place in a randomly 

heterogeneous (correlated) permeability field and study competitive effects on fractional flow due to 

(a) viscous and (b) gravity forces through a suite of detailed computational experiments. With 

reference to these types of problems, Zhang and Tchelepi (1999) consider immiscible two-phase 

displacement as described through the Buckley-Leverett approach to estimate saturation and the 

associated uncertainty in random media. These authors ground their study on an extension of 

(statistical) moment equations of single phase fully saturated subsurface flow (see, e.g., Guadagnini 

and Neuman, 1999; Zhang, 2002; Ye et al., 2004; Zhang and Lu, 2004) to two-phase flow. This 

approach entails approximating otherwise exact moment equations through a perturbative technique. 

Examples of studies of heterogeneity effects within the context of the Buckley-Leverett approach with 

focus on saturation front displacement are illustrated by Noetinger et al. (2006) and Teodorovich et al. 

(2011). To the best of our knowledge, an assessment of the feedback between viscous and gravity 

forces and random spatial heterogeneity of permeability fields is still unexplored. This is precisely the 

aim of our study, which is set in a numerical Monte Carlo (MC) context and is targeted to characterize 

oil recovery estimates under uncertainty for a one-dimensional waterflooding scenario. 

 

Problem formulation  

 

In the absence of source terms, mass conservation of water in a two-phase flow setting reads: 
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Here,   denotes porosity, wS  is water saturation, t  representing time; the water flux vector, 
wq , is 

driven by the action of three processes: (a) viscous forces, (b) gravitational segregation, and (c) 

capillary forces. Introducing fractional flow of water, wf , as the ratio of water flow to total (oil and 

water) flow, one obtains (e.g., Blunt, 2017): 
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Here, ,j r j j
K =  is mobility ( ,r jK  and j  being relative permeability and viscosity of water (j = 

w) or oil (j = o), respectively); t w o  = +  is total mobility; tq  is total flow; K  is absolute 

permeability; j  (j = w, o) denotes fluid density; cP  is capillary pressure; and xg  represents the 

component of gravity along the flow direction (i.e., sinxg g =  for flow tilted at an angle   

(evaluated counter-clockwise) from the horizontal). 

In a one-dimensional setting Eq. (1) can be rewritten as: 
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where x denotes a spatial coordinate. In the absence of capillary forces, wf  can be expressed as: 
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where the gravity term, gvN , being expressed as: 

( )w o x
gv

o t

K g
N

q

 



−
=  (5) 

 



 

 

Fourth EAGE Conference on Petroleum Geostatistics 

2-6 September 2019, Florence, Italy 

Methodological Approach 

 

Equation (3) is solved numerically via a Finite Difference approach in the presence of a spatially 

heterogeneous random permeability field. Taylor series expansion is used to approximate the 

derivatives of the state variables, high order terms in the expansion being considered to improve the 

accuracy of the solution (Ferziger and Peric, 2002). The latter is assessed through a comparison 

against the available Buckley-Leverett analytical solution (Buckley and Leverett, 1942) associated 

with a uniform permeability field. A grid convergence analysis is performed, considering as a 

benchmark the available analytical solution in the presence of viscous displacement corresponding to 

a waterflooding scenario controlled by an imposed water injection rate. We tackle random spatial 

variability of permeability in a numerical MC framework. The latter entails generating a collection of 

random realizations of a spatially correlated permeability field with given statistics. We consider the 

natural logarithm of permeability, Y = ln (K), as a second-order stationary spatial random process with 

given mean, Y , and zero-mean fluctuation, 'Y Y Y= − . The latter is modeled as a Gaussian 

random field characterized by an isotropic exponential covariance. Porosity is considered as a 

deterministic constant in our study. 

 

Showcase Scenario 

 

We study a one-dimensional waterflooding scenario developing in a porous medium initially fully 

saturated with oil, water and oil being modeled as immiscible fluids. We consider constant injection 

rate of water at one end of the system, oil production being monitored at the downstream boundary. 

We analyze various scenarios, starting from a horizontal system (i.e.,   = 0 deg) and systematically 

assessing the effects of −90 deg ≤   ≤ 90 deg. 

As an example, Figure 1 depicts the dependence of oil recovery on   (positive when counter-

clockwise from the horizontal-line), thus providing a visual depiction of the impact of gravity effects 

on oil recovery. Results are obtained for constant viscous effects (i.e., gvN  (5) is varied solely through 

 ) and a uniform absolute permeability of 100 millidarcy (corresponding to Y  = 4.6), and are 

depicted in terms of oil recovery at water breakthrough time (i.e., when the first breakthrough of the 

injected water is recorded) and Final Oil Recovery (i.e. oil recovery after 1.5 pore volume of water 

injection). Downhill flows (i.e.,   < 0) are associated with the highest recoveries. 
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Figure 1 Gravity effects on oil recovery (at water breakthrough time, blue, and after 1.5 pore 

volumes, black) of a two-phase flow in a homogeneous one-dimensional domain. Results are in terms 

of the gravity number Ngv (5) and angle  according to which the domain is tilted from the horizontal. 
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Results and discussion 

 

Our numerical MC study is based on the generation of N = 10,000 realizations of Y. In our examples, 

the variance of Y is taken as 
2
Y  = 0.01, correlation scale of Y being Y = 0.2 L (where L is equal to 

unity, in consistent units, a total of M = 100 generation nodes per correlation scale being employed). 

Figure 2 depicts the empirical probability density function (pdf) obtained for the final oil recovery 

when flow is horizontal (i.e., Ngv = 0.0; or  = 0). The corresponding Gaussian density associated with 

the same mean and variance is also shown for comparison. 
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Figure 2 Sample (i.e., based on N = 10,000 MC realizations) probability density function of final oil 

recovery; The Gaussian density associated with the same mean and variance is also shown. 

 

Figure 3 depicts the dependence of oil recovery variance on  , Ngv and 
2
Y .  
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Figure 3 Effect of gravity on variance of oil recovery. Results are in terms of the gravity number Ngv 

(5) and angle  according to which the domain is tilted from the horizontal. 

 

Comparison of the results depicted in Figure 3 indicates that increasing the spatial variability of 

permeability yields an enhanced uncertainty (as expressed in terms of variance) in oil recovery. The 

lowest values of variance are observed for vertical flows (i.e.,   = 90). This behavior is consistent 

with the observation that gravity effects are largest for these settings, thus resulting in a collection of 
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realizations where oil recovery fractions for a given time tend to be consistently small for   = 90. We 

further note that the largest values of variance of oil recovery fraction are observed for intermediate 

values of  , where viscous and gravity forces have a joint effect on the system dynamics. The dotted 

boxes in the figure show that increasing log-permeability variance from 0.005 to 0.01 (with keeping a 

constant Y ), the resulting uncertainty is three times larger at   = 15 deg than at  = 60 deg. Note 

that oil recovery uncertainty changes also as a function of fluid properties, e.g. in terms of mobility 

ratio (not shown). 

 

Conclusions 

 

Our work leads to the following major conclusions: 

1. Uncertainty in the spatial distribution of permeability propagates to final oil recovery 

fractions in a way that depends on the feedback between gravity and viscous forces driving 

the system. 

2. Uncertainty of final oil fraction recovered (as rendered in terms of variance) is smallest for 

vertical flows, consistent with the observation that the absolute value of the gravity number is 

largest in such scenarios and is dominant in controlling the flow dynamics. 

3. Variance of final oil fraction recovered tends to be higher when there is competition between 

the effects of gravity and viscous forces, the latter being influenced by the strength of the 

spatial variability of permeability. 
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