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Abstract. In this paper we consider a state constrained differential inclusion
ẋ ∈ Ax + F (t, x), with A generator of a strongly continuous semigroup in
an infinite dimensional separable Banach space. Under an “inward pointing
condition” we prove a relaxation result stating that the set of trajectories lying

in the interior of the constraint is dense in the set of constrained trajectories
of the convexified inclusion ẋ ∈ Ax + coF (t, x). Some applications to control
problems involving PDEs are given.

1. Introduction. We study a class of infinite dimensional differential inclusions
subject to state constraints. Interest in this kind of equations arises in several
contexts. Differential inclusions find a natural application in a research area of
great development, the control theory, and the infinite dimensional setting allows
to apply our results to control problems involving PDEs. Hence, models describing
many physical phenomena such as diffusion, vibration of strings, fluid dynamics,
may be included in our analysis.

In this paper we are concerned with the differential inclusion

ẋ(t) ∈ Ax(t) + F (t, x(t)), a.e. t ∈ [t0, 1] , (1)

and the convexified differential inclusion

ẋ(t) ∈ Ax(t) + coF (t, x(t)), a.e. t ∈ [t0, 1] , (2)
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with coF (t, x(t)) the closed convex hull of F (t, x(t)). The operator A is the in-
finitesimal generator of a strongly continuous semigroup S(t) : X → X, X is an
infinite dimensional separable Banach space, F : I × X  X is a set-valued map
with closed non-empty images, I = [0, 1] and t0 ∈ I. The trajectories of the differ-
ential inclusion (1) are understood in the mild sense (see [25]) and are subject to
the state constraint. Namely given a set K ⊂ X, we restrict our attention to the
trajectories satisfying

x(t) ∈ K, for t ∈ [t0, 1] . (3)

In this paper we shall always assume that K is the closure of an open subset of X.
When satisfying the constraint, a trajectory x is called feasible.

Differential inclusions, and control systems, in presence of state constraints, are
largely employed in applied sciences. One of the tools playing a key role in this
context consists in approximating feasible trajectories by trajectories lying in the
interior of the constraints. It is used for instance to establish regularity properties
of value functions, to justify the use of the Maximum Principle in normal form, to
prove existence and regularity results of optimal solutions. The classical technique
employed to construct the approximating trajectories relies on the possibility of
directing the velocity into the interior of the constraint K whenever approaching
the boundary ∂K of K. To this aim, in the finite dimensional setting, an “inward
pointing condition” was proposed by Soner, see [28], to get continuity of the value
function associated to an optimal control problem with dynamics ẋ ∈ F (x) inde-
pendent of t. Since then, this subject has received considerable attention, a partial
list of references includes [5, 6, 10, 16, 18, 19].

Defining the oriented distance from x ∈ X to K by

dK(x) =

{
infk∈K ∥x− k∥X if x /∈ K
− infk∈(X\K) ∥x− k∥X otherwise,

the inward pointing condition, in the case of time independent F and state con-
straints with a locally C1,1 boundary, takes the following form:

min
v∈F (x̄)

⟨∇dK(x̄), v⟩ < −ρ, ∀ x̄ ∈ ∂K , (4)

for some ρ > 0, cf. [5, 18]. As in many applied models state constraints having
nonsmooth boundary are present, a number of papers made extensions of (4) to the
nonsmooth setting. However, contrary to the smooth case, here some regularity of
the dynamics F (t, x) is usually required both in t and in x. On the other hand,
it may happen in some applications that the dynamics depends on t in a merely
measurable way. In order to extend the theory to this situation, in the recent
works [16, 17] a new inward pointing condition (equivalent to the classical one if K
has smooth boundary) is proposed: for any “bad” velocity v pointing outside the
constraint, there exists a “good” one v̄ such that the difference v̄ − v points inside
in a uniform way. To be more precise, let ∂dK(x) denote the Clarke generalized
gradient of dK at x ∈ X. Its support function is defined by

σ(x; y) = sup
ξ∈∂dK(x)

⟨ξ, y⟩, ∀ y ∈ X.

The new inward pointing condition is as follows ∀ x̄ ∈ ∂K, ∃ ρ > 0 such that if σ(x̄; v) ≥ 0 for some t ∈ I, v ∈ F (t, x̄),

then inf
v̄∈F (t,x̄)

σ(x̄; v̄ − v) < −ρ .
(5)
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Under this assumption, in [16, 17] some approximation results were proved in order
to get uniqueness of solutions for a constrained Hamilton-Jacobi-Bellman equation.

The purpose of the present paper is to perform the analysis in the infinite di-
mensional setting, the natural framework for many phenomena described by PDEs.
Also in this case we need results which permit to approximate feasible trajectories
by trajectories staying in the interior of the state constraints. Assuming an inward
pointing condition, Theorem 3.2 below guarantees the existence of the required ap-
proximation. Notice that, although the literature dealing with infinite dimensional
control theory (and infinite dimensional differential inclusions) is quite rich, see e.g.
the books [2, 3, 4, 14, 21, 22], the recent paper [11] and the bibliography therein,
to our knowledge, no similar results are known in this setting. As an application,
we obtain our main result, a relaxation theorem in infinite dimension (see Theorem
3.1).

We deal with great generality, allowing the state space X to be a separable Ba-
nach space. Hence, our analysis applies to some interesting and delicate frameworks
as the space of essentially bounded functions and the space of continuous functions.
For this reason, in this context, the relaxation theorem is obtained under a ver-
sion of condition (5), requiring some uniformity on a neighborhood of ∂K and with
respect to the semigroup. Nevertheless, as illustrated in Section 3, if some com-
pactness assumptions are satisfied, a much more simple condition, analogue to the
finite dimensional (5) is sufficient.

We consider the following inward pointing condition:

∀ x̄ ∈ ∂K, ∃ η, ρ, M > 0 such that if max
τ≤η

σ(z0;S(τ) v) ≥ 0 (6)

for some v ∈ coF (t, x), z0 ∈ B(x, η), t ∈ I, x ∈ K ∩B(x̄, η), then{
v̄ ∈ coF (t, x) : ∥v̄ − v∥X ≤ M , sup

z∈B(S(τ)x,η), τ≤η

σ(z;S(τ) (v̄ − v)) < −ρ
}
̸= ∅ .

Notice that condition (6) deals with the set-valued map coF , since, in order to prove
the relaxation theorem, we need to approximate relaxed trajectories by relaxed
trajectories lying in the interior of K. However, under additional compactness
conditions, the first convex hull can be removed from (6).

Quite interesting for the applications is the case when X is a Hilbert space, see
Section 5. In this framework we will provide an alternative version of condition (6),
which drastically simplifies the analysis when the set of constraintsK is convex. The
inward pointing condition needed here involves projections on convex sets rather
than generalized gradients of the oriented distance function which belong to the
dual space X∗.

1.1. Outline of the paper. Section 2 contains a list of notations, definitions,
and assumptions in use. The main theorems are stated in Section 3. Some results
which allow to simplify the inward pointing condition are also proposed. The Hilbert
space setting is analyzed in Section 4, while Section 5 is devoted to some applications
involving PDEs and integrodifferential equations. The final Section 6 and Appendix
contain proofs and technical tools.

2. Preliminaries. In this section we list the notation and the main assumptions
in use throughout the paper.
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2.1. Notation.

- B(x, r) denotes the closed ball of center x ∈ X and radius r > 0; B is the
closed unit ball in X centered at 0;

- given a Banach space Y , L(X,Y ) denotes the Banach space of bounded linear
operators from X into Y , C(I,X) the space of continuous functions from I
to X, L1(I,X) the space of Bochner integrable functions from I to X, and
L∞(I,X) the space of measurable essentially bounded functions from I to X;

- ⟨·, ·⟩ stands for the duality pairing on X∗ ×X;
- µ is the Lebesgue measure on the real line;

- sgn : R → {−1, 0,+1} is the sign function: t 7→

 −1 if t < 0,
0 if t = 0,
1 if t > 0.

We will use the following notion of solution.

Definition 2.1. Let t0 ∈ I and x0 ∈ X. A function x ∈ C([t0, 1], X) is a (mild) so-
lution of (1) with initial datum x(t0) = x0 if there exists a function f ∈ L1([t0, 1], X)
such that

f(t) ∈ F (t, x(t)), for a.e. t ∈ (t0, 1) (7)

and

x(t) = S(t− t0)x0 +

∫ t

t0

S(t− s) f(s) ds, for any t ∈ [t0, 1], (8)

i.e. f is an integrable selection of the set valued map t F (t, x(t)) and x is a mild
solution (see [25]) of the initial value problem{

ẋ(t) = Ax(t) + f(t), for a.e. t ∈ [t0, 1]
x(t0) = x0.

(9)

In order to simplify the notation, for a mild solutions x of (1), we denote by fx

the corresponding measurable selection in (9).
Notice that, since S(t) is a strongly continuous semigroup, there exists MS > 0

such that

∥S(t)∥L(X,X) ≤ MS , for any t ∈ I. (10)

The differential inclusion (1) is a convenient tool to investigate for example the
semilinear control system{

ẋ(t) = Ax(t) + f(t, x(t), u(t)), a.e. t ∈ [t0, 1]
u(t) ∈ U,

(11)

where U is an appropriate separable metric space of controls. Setting F (t, x) =
f(t, x, U), we can reduce (11) to (1) by applying a measurable selection theorem.

2.2. Assumptions. In our main theorems, we will assume the following conditions:

- positive invariance of K by the semigroup:

S(t)K ⊂ K, ∀ t ∈ I; (12)

- ∀ t ∈ I and any x ∈ X, F (t, x) is closed, and, for any x ∈ X,

the set-valued map F (·, x) is Lebesgue measurable; (13)

- F (t, ·) is locally Lipschitz in the following sense: for any R > 0, there exists
kR ∈ L1(I,R+) such that, for a.e. t ∈ I and any x, y ∈ RB,

F (t, x) ⊂ F (t, y) + kR(t)∥x− y∥XB; (14)
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- there exists ϕ ∈ L1(I,R+) such that, for a.e. t ∈ I and any x ∈ X,

F (t, x) ⊂ ϕ(t)(1 + ∥x∥X)B. (15)

3. The main results. In this section we state the results of the paper whose proofs
are postponed to Section 6. The first is a relaxation theorem.

Theorem 3.1. Assume (6) and (12)–(15). Then, for any ε > 0 and any feasible
trajectory x̂ of (2), (3), there exists a trajectory x of (1) satisfying

x(t0) = x̂(t0), x(t) ∈ IntK, for any t ∈ (t0, 1] (16)

and

∥x̂− x∥L∞([t0,1],X) ≤ ε. (17)

The key point in the proof of Theorem 3.1, is a result on approximation of feasible
trajectories, by trajectories lying in the interior of the constraint K.

Theorem 3.2. Assume (12)–(15) and that

∀ x̄ ∈ ∂K, ∃ η, ρ, M > 0 such that if max
τ≤η

σ(z0;S(τ) v) ≥ 0 (18)

for some v ∈ F (t, x), z0 ∈ B(x, η), t ∈ I, x ∈ K ∩B(x̄, η), then{
v̄ ∈ F (t, x) : ∥v̄ − v∥X ≤ M , sup

z∈B(S(τ)x,η), τ≤η

σ(z;S(τ) (v̄ − v)) < −ρ
}
̸= ∅ .

Then, for any ε > 0 and any feasible trajectory x̂ of (1), (3), there exists a trajectory
x of (1) satisfying (16) and (17).

In the following propositions pointwise versions of the inward pointing condition
(18) are proposed, see the applications in Section 5.

Proposition 1. Assume (14)–(15) with time independent kR, ϕ ∈ R+, that

F (·, x) is continuous for any x ∈ X, (19)

and

F (t, x̄) is compact, for any t ∈ I and any x̄ ∈ ∂K. (20)

Then, assumption (5) implies (18). Consequently, if (5) holds true with F replaced
by co F , then (6) is satisfied.

In the next proposition the convexity of values of F is needed on the boundary
of K.

Proposition 2. Let X be reflexive. Assume (19) and (14)–(15) with time inde-
pendent kR, ϕ ∈ R+, that for any x̄ ∈ ∂K and t ∈ I, F (t, x̄) is convex, and

the map ∂dK(·) is upper semicontinuous at x̄, and ∂dK(x̄) is compact. (21)

Then, assumption (5) implies (18) and (6).

Notice that when dK is C1 on a neighborhood of ∂K, then condition (21) is
satisfied. In the proof of Theorem 3.1, we need to approximate relaxed trajectories
by relaxed trajectories lying in the interior of K. This is the reason why the inward
pointing condition (6) required in this case involves the set-valued map coF . By the
way, the first convex hull in (6) can be removed in some special cases, as indicated
in the next proposition.
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Proposition 3. Suppose that for every t ∈ I and x̄ ∈ ∂K, coF (t, x̄) is closed and
the set-valued map

[0, 1] ∋ t co
{
v ∈ F (t, x̄) : σ(x̄; v) ≤ 0

}
(22)

is upper semicontinuous with closed values. Assume (19) and (14)–(15), with time
independent kR, ϕ ∈ R+ and that either (20) is satisfied, or that X is a reflexive
space and (21) is satisfied. Then (6) holds true whenever

for any x̄ ∈ ∂K, there exists ρ > 0 such that (23)

if σ(x̄; v) ≥ 0 for some v ∈ F (t, x̄) and t ∈ I, then inf
v̄∈coF (t,x̄)

σ(x̄; v̄ − v) < −ρ .

In the following remark, the special case of affine forcing terms is analyzed,
providing further simplification.

Remark 1. If dK is C1 on a neighborhood of ∂K and, for a subset U ⊂ Y ,

F (t, x) = f0(t, x) + g(t, x)U, (24)

where Y is a Banach space,

f0 : I ×X → X and g : I ×X → L(Y,X),

then the classical inward pointing condition implies (5) with F and also with co F
whenever either U is compact or Y is reflexive. Namely, assume (19), and (14),
(15) for time independent kR, ϕ ∈ R+, with F replaced by f0 and g. If either U is
compact or Y is reflexive, then co F (t, x) = f0(t, x) + g(t, x)coU . Then the inward
pointing condition:

∀ x̄ ∈ ∂K, ∀ t ∈ I, ∃ ū ∈ U such that ⟨∇dK(x̄), f0(t, x̄) + g(t, x̄)ū⟩ < 0 (25)

implies (5) both with F and with co F . Indeed, by compactness of [0, 1] and conti-
nuity of f0(·, x̄) and g(·, x̄), assumption (25) yields:

∀ x̄ ∈ ∂K, ∃ ρ > 0, ∀ t ∈ I, ∃ ū ∈ U with ⟨∇dK(x̄), f0(t, x̄) + g(t, x̄)ū⟩ < −ρ. (26)

Let t ∈ I and u ∈ coU be so that ⟨∇dK(x̄), f0(t, x̄) + g(t, x̄)u⟩ ≥ 0. Thus

⟨∇dK(x̄), f0(t, x̄)⟩ ≥ −⟨∇dK(x̄), g(t, x̄)u⟩.
Then, taking ū as in (26), we obtain

⟨∇dK(x̄),f0(t, x̄) + g(t, x̄)ū−
(
f0(t, x̄) + g(t, x̄)u

)
⟩

= ⟨∇dK(x̄), g(t, x̄)ū− g(t, x̄)u⟩ ≤ ⟨∇dK(x̄), g(t, x̄)ū+ f0(t, x̄)⟩ < −ρ,

yielding (5) with F and also with co F .
Under the same assumptions and F given by (24), let us consider two examples,

where condition (25) can be further simplified.

Case 1. 0 ∈ U . If ⟨∇dK(x̄), f0(t, x̄)⟩ < 0, for any x̄ ∈ ∂K and t ∈ I, then (25)
holds for ū = 0.

Case 2. U is the unit sphere in Y . Here, if

⟨∇dK(x̄), f0(t, x̄)⟩ < ∥g(t, x̄)∗∇dK(x̄)∥Y ̸= 0,

for any x̄ ∈ ∂K and t ∈ I, then (25) holds for

ū = − g(t, x̄)∗∇dK(x̄)

∥g(t, x̄)∗∇dK(x̄)∥Y
,

where g(t, x̄)∗ is the adjoint of g(t, x̄).
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Indeed, in this case, for any x̄ ∈ ∂K,

⟨∇dK(x̄), f0(t, x̄) + g(t, x̄)ū⟩ = ⟨∇dK(x̄), f0(t, x̄)⟩ − ∥g(t, x̄)∗∇dK(x̄)∥Y < 0,

yielding (25).

4. The case of Hilbert spaces. Here we analyze the case when the state space
X is Hilbert. In this setting, we show that if the state constraint is convex then the
inward pointing condition can be drastically simplified by involving projections on
convex sets instead of generalized gradients of the oriented distance function which
do belong to the dual space X∗. This turns out to be very useful in the applications,
as we will show in Section 5.

Let ⟨·, ·⟩X be the scalar product in X and let K be a proper closed subset of X
such that K = IntK. Denote by Z the set of points z ∈ X\∂K admitting a unique
projection P∂K(z) on ∂K. This set is dense in X (see [26]). For every z ∈ Z, set

nz =
z − P∂K(z)

∥z − P∂K(z)∥X
sgn(dK(z)) .

A new inward pointing condition involving nz is proposed in this Hilbert framework
in order to obtain results analogous to those from Section 3.

Theorem 4.1. Assume (12)–(15). Then,

(i) the assertions of Theorem 3.1 are valid under the following inward pointing
condition:

∀ x̄ ∈ ∂K, ∃ η, ρ, M > 0 such that ∀ t ∈ I, ∀ x ∈ K ∩B(x̄, η), (27)

∀ v ∈ coF (t, x) satisfying sup
τ≤η, z∈Z∩B(x,η)

⟨nz, S(τ) v⟩X ≥ 0, we have{
v̄ ∈ coF (t, x) : ∥v̄ − v∥X ≤ M , sup

τ≤η, z∈Z∩B(S(τ)x,η)

⟨
nz, S(τ) (v̄ − v)

⟩
X

< −ρ
}
̸= ∅ .

(ii) the assertions of Theorem 3.2 are valid under the following inward pointing
condition:

∀ x̄ ∈ ∂K, ∃ η, ρ, M > 0 such that ∀ t ∈ I, ∀ x ∈ K ∩B(x̄, η), (28)

∀ v ∈ F (t, x) satisfying sup
τ≤η, z∈Z∩B(x,η)

⟨nz, S(τ) v⟩X ≥ 0, we have{
v̄ ∈ F (t, x) : ∥v̄ − v∥X ≤ M , sup

τ≤η, z∈Z∩B(S(τ)x,η)

⟨
nz, S(τ) (v̄ − v)

⟩
X

< −ρ
}
̸= ∅ .

Again, these conditions can be simplified when the data satisfy some compactness
assumptions.

Proposition 4. Assume (14)–(15) with time independent kR, ϕ ∈ R+ and (19).
Further suppose that either (20) is valid, or F (t, x̄) is convex for any t ∈ I and
x̄ ∈ ∂K, and

∀ x̄ ∈ ∂K, ∃ r > 0 such that the set
{
nz : z ∈ Z ∩B(x̄, r)

}
is pre-compact. (29)

Then, the following assumption: for any x̄ ∈ ∂K, there exists ρ > 0 such that

for any t ∈ I and v ∈ F (t, x̄) satisfying inf
ε>0

sup
z∈Z∩B(x̄,ε)

⟨nz, v⟩X ≥ 0, (30)

there exists v̄ ∈ F (t, x̄) such that inf
ε>0

sup
z∈Z∩B(x̄,ε)

⟨
nz, v̄ − v

⟩
X

< −ρ

implies (28).
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Remark 2. The proof of Proposition 4 provided in Section 6 implies that it is still
valid if (29) is replaced by the following less restrictive assumption:

for x̄ ∈ ∂K define N (x̄) :=Limsupz→x̄, z∈Z {nz} (the Kuratowski upper limit)
and assume that for all x̄ ∈ ∂K the set N (x̄) is compact and for every ε > 0 there
exists δ > 0 such that

nz ∈ N (x̄) + εB ∀ z ∈ Z ∩B(x̄, δ).

In particular, if ∂K is of class C1, then the above holds true.

4.1. Convex state constraints. If K is convex, then the inward pointing con-
ditions (27), (28), and (30) can be weakened by replacing Z with KC := X \ K.
Indeed, any z ∈ KC admits a unique projection on ∂K and, as proved in the fol-
lowing proposition, for any z ∈ IntK ∩Z we can find an element w ∈ KC such that
nz = nw.

Proposition 5. Let K be a closed convex set such that K = IntK. Then, for any
z ∈ IntK ∩Z, there exists w ∈ KC such that z−P∂Kz = P∂Kw−w. In particular,
nz = nw.

Proof. Let z ∈ IntK ∩ Z and P∂K(z) be its unique projection on ∂K. By the
Hahn-Banach theorem, there exists p ∈ X such that ∥p∥X = 1 and

⟨p, P∂K(z)⟩X ≤ ⟨p, k⟩X , for any k ∈ K.

Let

M+ =
{
x ∈ X : ⟨p, x− P∂K(z)⟩X ≥ 0

}
⊇ K

and

M = ∂M+ =
{
x ∈ X : ⟨p, x− P∂K(z)⟩X = 0

}
.

Then M is a closed hyperplane in X and there exists a unique projection PM(z)
of z on M. Actually, since P∂K(z) ∈ M,

∥z − PM(z)∥X ≤ ∥z − P∂K(z)∥X ,

and, since K ⊂ M+ and z lies in the interior of K,

∥z − PM(z)∥X ≥ ∥z − P∂K(z)∥X ,

we deduce that PM(z) = P∂K(z). Take w = z + 2(P∂K(z) − z). As z ∈ IntK ⊂
IntM+, we have

⟨p, w − P∂K(z)⟩X = ⟨p, P∂K(z)− z⟩X < 0,

yielding w ∈ X \M+ ⊂ KC . Further, for any x ∈ M,

0 = ⟨z−PM(z), x−PM(z)⟩ = ⟨z−P∂K(z), x−P∂K(z)⟩ = ⟨P∂K(z)−w, x−P∂K(z)⟩.

This implies that P∂K(z) = PM(w). Finally, since M+ is a closed convex set, w
admits a unique projection PM+(w) = PM(w) = P∂K(z). So, for any k ∈ K ⊂ M+,

⟨w − P∂K(z), k − P∂K(z)⟩X ≤ 0,

implying P∂K(z) = P∂K(w). This ends the proof.

5. Examples. The examples analyzed in this section describe some classical mod-
els involving partial differential equations and integrodifferential equations, to which
we may apply our abstract results. In all the examples the state constraints satisfy
the positive invariance property (12).
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5.1. A one-dimensional heat equation. The first example is a one-dimensional
parabolic equation describing the heat flux in a cylindrical bar, whose lateral surface
is perfectly insulated and whose length is much larger than its cross-section. The
Neumann boundary conditions are assumed, corresponding to the requirement that
the heat flux at the two ends of the bar is zero. For x = x(t, s) : [0, 1]× [0, 1] → R
we consider the following inclusion (we omit the variable s in the sequel){

ẋ(t) ∈ Ax(t) + F (t, x(t)), t ∈ [0, 1]
x(0) = x0.

The state space is X = H1(0, 1) and the linear operator acting as Ax = x′′ − x
with domain D(A) =

{
x ∈ H2([0, 1],R) : x′(0) = x′(1) = 0

}
is the infinitesimal

generator of a strongly continuous semigroup S(t) : X → X, see e.g. [29, chapter
II]. (The notation prime stands for the distributional derivative.) Classical results
in PDEs ensure that, if the initial datum x0 takes nonnegative values, then the
solution x to ẋ(t) = Ax(t), x(0) = x0 takes nonnegative values. The reader is
referred to [1] or [27], containing a number of examples of sets invariant under the
action of the semigroup associated with A. In particular, if the state constraint is
the cone of nonnegative functions:

x(t) ∈ K =
{
x ∈ X : x ≥ 0

}
,

then the invariance property (12) is satisfied. Moreover, K is convex and IntK ̸= ∅.
The state space is endowed with the scalar product

⟨x, y⟩X = x(0)y(0) + ⟨x′, y′⟩L2(0,1), for any x, y ∈ X,

whose associated norm

∥x∥2X = |x(0)|2 + ∥x′∥2L2(0,1) for any x ∈ X,

turns out to be equivalent to the usual one ∥ · ∥H1(0,1). We show next that the set{
nz : z ∈ KC

}
is pre-compact. (31)

Since K is a closed convex cone, then any z ∈ KC can be uniquely represented as

z = P∂K(z) + b(z),

with b(z) ∈ K−, here K− is the negative polar cone to K. By [32],

K− =
{
p ∈ X : p′ is nondecreasing and p(0) ≤ p′(s) ≤ 0, for a.e. s ∈ [0, 1]

}
,

see also [24] where an explicit formula for b is provided. To prove (31), notice that{
nz =

b(z)

∥b(z)∥X
: z ∈ KC

}
⊂ Q :=

{ p

∥p∥X
: p ∈ K−, p ̸= 0

}
⊂ ∂B.

Any y ∈ Q satisfies y′ nondecreasing and

−1 ≤ y(0) ≤ y′(s) ≤ 0, for a.e. s ∈ [0, 1].

So, taking a sequence {yn} in Q,

∥yn∥W 1,∞(0,1) := ∥yn∥L∞(0,1) + ∥y′n∥L∞(0,1) ≤ 3,

implying that yn(0) → y(0) (up to a subsequence). Since y′n is nondecreasing,
Helly’s selection theorem, see [20], allows to deduce that, (again up to a subse-
quence),

y′n(s) → g(s), for a.e. s, with g ∈ L∞(0, 1),
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and, applying Lebesgue dominated theorem, we deduce that yn → g in L2(0, 1).
Further,

yn(s) = yn(0) +

∫ s

0

y′n(τ)dτ → y(s) := y(0) +

∫ s

0

g(τ)dτ, for any s ∈ [0, 1].

Hence g = y′, y ∈ W 1,∞(0, 1) ⊂ H1(0, 1), yielding the required pre-compactness.
Let F satisfy assumptions (14)–(15) with time independent kR, ϕ ∈ R+, (19), and

let F (t, x̄) be convex, for any x̄ ∈ ∂K and t ∈ I. Taking into account Proposition 4
and the results in subsection 4.1, the inward pointing condition (28) is implied by
the following assumption: for any x̄ ∈ ∂K there exists ρ > 0 such that

for any t ∈ I and v ∈ F (t, x̄) satisfying inf
ε>0

sup
z∈KC∩B(x̄,ε)

⟨nz, v⟩X ≥ 0,

there exists v̄ ∈ F (t, x̄) such that inf
ε>0

sup
z∈KC∩B(x̄,ε)

⟨
nz, v̄ − v

⟩
X

< −ρ .

5.2. Fourier’s problem of the ring. In the second example we consider the
temperature distribution in a homogeneous isotropic circular ring with diameter
small in comparison with its length and perfectly insulated lateral surfaces. This
problem can be modeled by a one-dimensional equation with periodic boundary
conditions {

ẋ(t) ∈ Ax(t) + F (t, x(t)), t ∈ [0, 1]
x(0) = x0,

(32)

where x = x(t, s) : [0, 1] × [0, 1] → R (s is omitted as in the previous example),
the state space is X = H1

per(0, 1) :=
{
x ∈ H1(0, 1;R) : x(0) = x(1)

}
, the linear

operator acting as Ax = x′′ with domain D(A) = H2(0, 1;R) ∩ H1
per(0, 1) is the

infinitesimal generator of a strongly continuous semigroup S(t) : X → X, see e.g.
[9]. As before we supplement inclusion (32) with the state constraint

x(t) ∈ K =
{
x ∈ X : x ≥ 0

}
.

Then, K satisfies condition (12), see for instance [23] dealing with invariant sets for
semigroups. Again, K is a closed and convex set with non empty interior. Hence,
by the results contained in subsection 4.1, the inward pointing conditions (27), (28),
and (30) can be stated with Z replaced by KC .

5.3. A model for Boltzmann viscoelasticity. The last example deals with the
phenomena of isothermal viscoelasticity. An integrodifferential inclusion is involved,
since, as outlined in the seminal works of Boltzmann and Volterra [7, 8, 30, 31], a
correct description of the mechanical behavior of elastic bodies requires the notion
of memory. The key assumption in this theory is that both the instantaneous
stress and the past stresses influence the evolution of the displacement function
y = y(x, t) : Ω× R → R. Here Ω ⊂ R3, a bounded domain with smooth boundary
∂Ω, represents the region occupied by the elastic body. Omitting the variable x in
the sequel, we study the following inclusion

ÿ(t) +A
[
y(t)−

∫ ∞

0

µ(s)y(t− s) ds
]
∈ F(t, y(t)), t > 0, (33)

where, A = −∆ with domain D(A) = H2(Ω)∩H1
0 (Ω), according to the assumption

that the body is kept fixed at the boundary of Ω, the memory kernel µ, taking into
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account the viscoelastic behavior, is supposed to be a (nonnegative) nonincreasing
and summable function on R+, with total mass

κ =

∫ ∞

0

µ(s)ds ∈ (0, 1),

piecewise absolutely continuous, and thus differentiable almost everywhere with
µ′ ≤ 0. Equation (33) is supplemented with the following initial condition

y(0) = y0, ẏ(0) = z0, y(−s)|s>0 = ϕ0(s),

for some prescribed data y0, z0, ϕ0, the latter taking into account the past history of
y. Applying Dafermos’ history approach, see [13], we can write (33) as a differential
inclusion of type (1). To this aim, we first introduce an auxiliary variable which
contains all the information about the unknown function up to the actual time

ηt(s) = y(t)− y(t− s), t ≥ 0, s > 0

and we recast problem (33) as the system of two variables y = y(t) and η = ηt(s)ÿ(t) +A
[
(1− κ)y(t) +

∫ ∞

0

µ(s)ηt(s)ds
]
∈ F(t, y(t)),

η̇t = Tηt + ẏ(t).
(34)

with initial conditions

y(0) = y0, ẏ(0) = z0, η0 = η0 = y0 − ϕ0.

Here the operator T is the infinitesimal generator of the right-translation semigroup
on the memory space M = L2

µ(R+,H1
0 (Ω)), namely,

Tη = −η′ with domain dom(T ) =
{
η ∈ M : η′ ∈ M, η(0) = 0

}
.

The notation prime standing for the distributional derivative, and η(0) =
lims→0 η(s) in H1

0 (Ω). In [11], details and related bibliography can be found, jointly
with some applications of this model to optimal control problems. Now, defining
the linear operator A on the state space X = L2(Ω)×H1

0 (Ω)×M, acting as

A(y, z, η) =
(
z,−A

[
(1− κ)y +

∫ ∞

0

µ(s)η(s) ds
]
, Tη + z

)
with domain

dom(A) =

{
(y, z, η) ∈ X

∣∣∣ z ∈ H1
0 (Ω) , η ∈ dom(T ),

(1− κ)y +
∫∞
0

µ(s)η(s)ds ∈ H2(Ω) ∩H1
0 (Ω)

}
and setting

x(t) = (y(t), z(t), ηt), x0 = (y0, z0, η0), F (t, x(t)) =
(
0,F(t, y(t)), 0

)
,

we view (34) as the following problem in X:{
ẋ(t) ∈ Ax(t) + F (t, x(t)), for t ∈ I
x(0) = x0.

(35)

The operator A generates a strongly continuous semigroup of contractions S(t) :
X → X whose first component is a solution of (33) for F = 0. Here, taking as a
state constraint in (35)

K = B,

we deduce that (12) is satisfied. Further, let U, f0 and g be as in Remark 1. Since
K = B in a Hilbert space, an appropriate adaptation on the basis of Section 4 of
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the inward pointing condition (25) reads: for any x̄ ∈ X with ∥x̄∥X = 1 and any
t ∈ I, there exists ū ∈ U such that

⟨x̄, f0(t, x̄) + g(t, x̄)ū⟩ < 0.

In particular in the case when U is the unit sphere in RN , the condition

⟨x̄, f0(t, x̄)⟩ < ∥g(t, x̄)∗x̄∥RN ̸= 0,

implies the above inward pointing condition, for ū defined by ū = − g(t,x̄)∗x̄
∥g(t,x̄)∗x̄∥RN

.

As discussed in Remark 1, Proposition 3 holds in this case implying the validity of
Theorems 3.1 and 3.2.

6. Proofs. We start by proving the main theorems contained in Section 3. To this
aim we need some preliminary results.

Lemma 6.1. Assume (18). Then, for any compact set D ⊂ K with D ∩ ∂K ̸= ∅,
there exist η′, ρ, M > 0 such that

if σ(z0;S(τ)v) ≥ 0 for some τ ∈ [0, η′], v ∈ F (t, x), z0 ∈ B(x, η′), t ∈ I (36)

and x ∈ K ∩ (D + η′B) satisfying dK(x) > −η′, then{
v̄ ∈ F (t, x) : ∥v̄ − v∥X ≤ M , sup

z∈B(S(τ)x,η′), τ≤η′
σ(z;S(τ) (v̄ − v)) < −ρ

}
̸= ∅ .

Proof. Fix a compact set D ⊂ K with D ∩ ∂K ̸= ∅. We prove first that there exist
η, ρ, M > 0 such that

if σ(z0;S(τ)v) ≥ 0 for some τ ∈ [0, η], v ∈ F (t, x), z0 ∈ B(x, η), (37)

t ∈ I, x ∈ K ∩ (D ∩ ∂K + ηB), then{
v̄ ∈ F (t, x) : ∥v̄ − v∥X ≤ M , sup

z∈B(S(τ)x,η), τ≤η

σ(z;S(τ) (v̄ − v)) < −ρ
}
̸= ∅ .

From the compactness of D ∩ ∂K there exists a finite number of xk ∈ D ∩ ∂K, for
k = 1, . . . , N , such that

D ∩ ∂K ⊂
N∪

k=1

IntB(xk, ηk) , (38)

with ηk > 0 as in (18) corresponding to xk. Now, define

Λ = inf

{
∥x− y∥X : x ∈ D ∩ ∂K, y ∈

(
K \

N∪
k=1

IntB(xk, ηk)
)}

.

We have that Λ > 0. Indeed, if Λ = 0 we can find two sequences {xi} ⊂ D ∩ ∂K

and {yi} ⊂ K\
∪N

k=1 IntB(xk, ηk) such that ∥xi − yi∥X → 0. By the compactness
of D ∩ ∂K, taking a subsequence and keeping the same notation we deduce the
existence of x̄ ∈ D ∩ ∂K such that xi → x̄ in X, implying that also

yi → x̄ ∈ K\
N∪

k=1

IntB(xk, ηk) in X,

in contradiction with (38). Finally, let

0 < η < min
{ Λ

2
, η1 , . . . , ηN

}
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and define

ρ = min{ρ1, . . . , ρN}, M = max{M1, . . . ,MN},
with ρk,Mk as in (18) associated to xk, for k = 1, . . . , N . Then for any

x ∈ K ∩
(
(D ∩ ∂K) + ηB

)
⊂

N∪
k=1

IntB(xk, ηk)

condition (37) holds true. Now, taking 0 < η′ < η
2 such that

sup
{
dK(x) : x ∈ D\

(
(D ∩ ∂K) +

η

2
B
)}

< −2η′,

we obtain (36).

Lemma 6.2. Under the assumptions of Theorem 3.2, for every compact set D ⊂ K,
there exist η′, δ > 0 such that, for any ε′ > 0, t̄ ∈ [t0, 1], and any solution y to (1),
(3) with y(t) ∈ D+η′B for any t ∈ [t̄, 1], we can find a solution xε′ to (1) satisfying

xε′(t̄) = y(t̄), xε′(t) ∈ IntK, for any t ∈ (t̄, (t̄+ 2δ) ∧ 1],

∥xε′ − y∥L∞([t̄,1],X) ≤ ε′.

Proof. Fix a compact set D ⊂ K. We may suppose that D ∩ ∂K ̸= ∅, because
otherwise the Lemma is trivial. Hence, Lemma 6.1 implies (36). Let η′, ρ,M > 0
be as in (36), R > 0 be such that D + η′B ⊂ R

4 B. If kR is as in (14), then it is not
restrictive to assume that ∥kR∥L1 > 0. Let

C = MSM
(
MS∥kR∥L1eMS∥kR∥L1 + 1

)
, (39)

and δ′ > 0 be such that for any Lebesgue measurable E ⊂ I,∫
E

kR(s)ds <
ρ ∥kR∥L1

ρ+ 4C
,

∫
E

ϕ(s)ds <
η′

2MS(1 +R)
whenever µ(E) ≤ δ′,

(40)
where MS , ϕ and C are as in (10), (15), (39). Define

δ =
1

2
min

{
η′, δ′

}
(41)

and pick any

0 < ε′ < min
{R

2
,
η′

2

}
. (42)

Let y be a solution to (1), (3) such that y(t) ∈ D + η′B for any t ∈ [t̄, 1]. Set

Γ =
{
s ∈ [t̄, 1] : dK(y(s)) > −η′ and ∃ z0 ∈ B(y(s), η′), max

τ≤η′
σ(z0;S(τ) f

y(s)) ≥ 0
}

and

T =

 (t̄+ 2δ) ∧ 1, if µ (Γ ∩ [t̄, (t̄+ 2δ) ∧ 1]) < ε′

2C

min
{
s > t̄ : µ (Γ ∩ [t̄, s]) = ε′

2C

}
, otherwise.

(43)

Lemma 6.1 and the measurable selection theorem ensure the existence of a measur-
able selection v̄(s) ∈ F (s, y(s)) such that for any s ∈ Γ

∥v̄(s)− fy(s)∥X ≤ M (44)

and for any τ ≤ η′, z ∈ B(S(τ) y(s), η′), ξ ∈ ∂dK(z),⟨
ξ, S(τ) (v̄(s)− fy(s))

⟩
< −ρ. (45)
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Then, we define

fε′(s) =

{
v̄(s), if s ∈ Γ ∩ [t̄, T ]
fy(s), otherwise

and set

yε′(t) = S(t− t̄) y(t̄) +

∫ t

t̄

S(t− s) fε′(s)ds

= S(t− t̄) y(t̄) +

∫
Γ∩[t̄,t∧T ]

S(t− s) v̄(s)ds+

∫
[t̄,t]\(Γ∩[t̄,T ])

S(t− s) fy(s)ds.

By the representation formula (8), estimates (10), (42), (43) and (44), we get for
any t ∈ [t̄, 1]

∥yε′(t)− y(t)∥X =
∥∥∥ ∫ t

t̄

S(t− s)
[
fε′(s)− fy(s)

]
ds

∥∥∥
X

(46)

≤ MS

∫ t

t̄

∥fε′(s)− fy(s)∥X ds = MS

∫
Γ∩[t̄,t∧T ]

∥v̄(s)− fy(s)∥X ds

≤ MSM µ (Γ ∩ [t̄, t ∧ T ]) ≤ MSM
ε′

2C
<

R

4
,

implying that yε′(t) ∈ R
2 B. Further, from (14), for a.e. t ∈ [t̄, 1],

fε′(t) ∈ F (t, y(t)) ⊂ F (t, yε′(t)) + kR(t)
∥∥yε′(t)− y(t)

∥∥
X
B.

Hence, setting

γ(t) = dist
(
fε′(t), F (t, yε′(t))

)
and m(t) = MSe

MS

∫ t
t̄
kR(s)ds,

as in Lemma A.1 in the Appendix, from (46) we get

γ(t) ≤ kR(t)∥yε′(t)− y(t)∥X ≤ kR(t)MSM µ (Γ ∩ [t̄, t ∧ T ]).

This implies in particular that

m(1)

∫ 1

t̄

γ(s)ds ≤ MSe
MS∥kR∥L1MSM µ (Γ ∩ [t̄, T ])∥kR∥L1 ≤ C

ε′

2C
<

R

4
. (47)

So, we can apply Lemma A.1 and deduce that, for any β > 1 there exists a solution
xε′ on [t̄, 1] of the differential inclusion{

x′(t) ∈ Ax(t) + F (t, x(t))
x(t̄) = y(t̄)

satisfying the estimates∥∥xε′(t)− yε′(t)
∥∥
X

≤ βMSe
MS

∫ t
t̄
kR(s)ds

∫ t

t̄

γ(s)ds

and ∥∥fxε′ (t)− fε′(t)
∥∥
X

≤ kR(t)βMSe
MS

∫ t
t̄
kR(s)ds

∫ t

t̄

γ(s)ds+ βγ(t).

In particular, applying (46), arguing as in (47), and taking β = 2, we get, for any
t ∈ [t̄, 1],

∥xε′(t)− y(t)∥X ≤ ∥xε′(t)− yε′(t)∥X + ∥yε′(t)− y(t)∥X (48)

≤ 2MSe
MS∥kR∥L1MSM∥kR∥L1

ε′

2C
+MSM

ε′

2C

≤ 2C
ε′

2C
= ε′.
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Finally, by the definition of δ and (40), we recover for t ∈ [t̄, (t̄+ 2δ) ∧ 1],

∥xε′(t)− yε′(t)∥X ≤ 2MSe
MS∥kR∥L1MSM µ (Γ ∩ [t̄, t ∧ T ])

∫ t

t̄

kR(s)ds (49)

≤ 2C

∥kR∥L1

µ (Γ ∩ [t̄, t ∧ T ])

∫ t

t̄

kR(s) ds ≤
ρ

2
µ (Γ ∩ [t̄, t ∧ T ]),

and∥∥fxε′ (t)− fε′(t)
∥∥
X

≤ kR(t)
ρ

2
µ (Γ ∩ [t̄, t ∧ T ]) + 2kR(t)MSM µ (Γ ∩ [t̄, t ∧ T ])

= kR(t)µ (Γ ∩ [t̄, t ∧ T ])
(ρ
2
+ 2MSM

)
.

Now, fix t ∈ (t̄, (t̄+ 2δ) ∧ 1]. We claim that xε′(t) ∈ IntK.
Let us first assume that µ (Γ∩ [t̄, t∧T ]) = 0. Observe that in this case we cannot

have t > T , otherwise µ (Γ∩ [t̄, T ]) = 0 and, by the definition of T , T = (t̄+2δ)∧ 1.
The last equality is impossible, since t ≤ (t̄ + 2δ) ∧ 1. Therefore µ (Γ ∩ [t̄, t]) =
0. Thus, by the definition of Γ, for almost every s ∈ [t̄, t] we have that either
dK(y(s)) ≤ −η′ or dK(y(s)) > −η′ and

sup
z∈B(y(s),η′),τ≤η′

σ(z;S(τ) fy(s)) < 0 . (50)

Suppose that dK(y(t)) ≥ −η′

2 , otherwise from (42) and (48), xε′(t) ∈ IntK. By
continuity, there exists s̄ ∈ [t̄, t) such that

∥y(t)− S(t− s̄) y(s̄)∥X <
η′

2
, (51)

and, for any s ∈ [s̄, t],

∥y(t)− y(s)∥X <
η′

2
and dK(y(s)) > −η′ . (52)

Then we have (50). By the mean value theorem (see [12]) there exist z ∈ [y(t), S(t−
s̄) y(s̄)] and ξ ∈ ∂dK(z) such that

dK(y(t)) = dK(S(t− s̄) y(s̄)) +
⟨
ξ, y(t)− S(t− s̄) y(s̄)

⟩
.

Since, by (51)–(52), z ∈ B(y(s), η′), for any s ∈ [s̄, t], applying the representation
formula (8), the invariance assumption (12), and (50) we obtain

dK(y(t)) ≤
∫ t

s̄

⟨
ξ, S(t− s) fy(s)

⟩
ds < 0 .

As µ (Γ ∩ [t̄, t]) = 0 implies xε′ ≡ y on [t̄, t], we have proved that xε′(t) ∈ IntK.
Now, we consider the case µ (Γ ∩ [t̄, t ∧ T ]) > 0. Applying again the mean value

theorem, we get for some z ∈ [y(t), xε′(t)] and ξ ∈ ∂dK(z),

dK(xε′(t)) = dK(y(t)) + ⟨ξ, xε′(t)− y(t)⟩ . (53)

It follows that z ∈ S(t− s) y(s) + η′B, for any s ∈ [t̄, t]. Indeed, recalling (8), (40),
(42), and (48), we obtain

∥z − S(t− s)y(s)∥X ≤ ∥z − y(t)∥X +
∥∥∥∫ t

s

S(t− r) fy(r) dr
∥∥∥
X

≤ ∥xε′(t)− y(t)∥X +MS(1 +R)

∫ t

s

ϕ(r) dr < ε′ +
η′

2
< η′ .
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Hence, from (41), (45), (49) and (53) we obtain

dK(xε′(t)) ≤ ⟨ξ, xε′(t)− y(t)⟩ = ⟨ξ, xε′(t)− yε′(t)⟩+ ⟨ξ, yε′(t)− y(t)⟩

≤ ∥xε′(t)− yε′(t)∥X +

∫
Γ∩[t̄,t∧T ]

⟨
ξ, S(t− s)

(
v̄(s)− fy(s)

)⟩
ds

<
ρ

2
µ (Γ ∩ [t̄, t ∧ T ])− ρµ (Γ ∩ [t̄, t ∧ T ]) = −ρ

2
µ (Γ ∩ [t̄, t ∧ T ]) < 0 .

This completes the proof.

Proof of Theorem 3.2. Fix t0 ∈ I, ε > 0 and a solution x̂ of (1), (3). It is enough to
consider the case when x̂([t0, 1])∩∂K ̸= ∅. By the Gronwall Lemma and assumption
(15), there exists R > 0 such that every trajectory x of (1), with x(t0) = x̂(t0),
satisfies ∥x(t)∥X ≤ R for all t ≥ t0. Then, let D =

{
x̂(t) : t ∈ [t0, 1]}, η′ be as in

Lemma 6.1, and take
ε̃ = min

{
ε, η′, 1

}
.

Observe that the same η′ can be used in the claim of Lemma 6.2 (see the proof
of Lemma 6.2). One of the key point of the proof is a Filippov type theorem, see
Lemma A.1 in the Appendix. Set

C = max
{
1,MSe

MS∥k2R∥L1

}
.

The claimed trajectory x is obtained by a backward iteration. Let δ be as in Lemma
6.2, and set

N = max
{
n ∈ N : t0 + nδ < 1

}
, sn = t0 + nδ, if 0 ≤ n ≤ N, sN+1 = 1.

We show that, for any 0 ≤ n ≤ N , there exists a solution yn to (1) satisfying

yn(sn) = x̂(sn), yn(t) ∈ IntK, for any t ∈ (sn, 1], (54)

∥yn − x̂∥L∞([sn,1],X) ≤
ε̃

2CN

N∑
k=n

Ck

2k
. (55)

In particular, y0(t0) = x̂(t0),

∥y0 − x̂∥L∞([t0,1],X) ≤
ε̃

2CN

N∑
k=0

Ck

2k
≤ ε̃

2

∞∑
k=0

1

2k
= ε̃

implying that the function x = y0 satisfies the requirements of our theorem.
Let n = N . Lemma 6.2 ensures the existence of a trajectory yN solving (1) and

satisfying (54), (55) for n = N . Now, we assume that n < N and that for any
n + 1 ≤ i ≤ N , there exists a solution yi to (1) on [si, 1] such that (54) and (55)
hold. Using yn+1 and applying Lemmas 6.2 and A.1, we construct the desired yn.
We begin by defining yn on the interval [sn+1, 1]. Let tN = sN + 1−sN

2 and, for
n < N − 1,

tn+1 = sn+1 +
δ

2
, and ϱ =

1

2
min

{
− dK(yn+1(t)) : t ∈ [tn+1, 1]

}
> 0 .

Define

εn = min

{
ϱ

C
,

ε̃

2CN+1

Cn

2n
,
R

2C

}
.

By Lemma A.1, for any z0 ∈ yn+1(tn+1) + εnB, there exists a solution xn to (1) on
[tn+1, 1] such that xn(tn+1) = z0 and

∥xn(t)− yn+1(t)∥X ≤ Cεn, for any t ∈ [tn+1, 1],
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implying that xn(t) ∈ IntK, for any t ∈ [tn+1, 1], and

∥xn − yn+1∥L∞([tn+1,1],X) ≤
ε̃

2CN

Cn

2n
. (56)

Define

zn(t) =

{
x̂(t) in [sn, sn+1)
yn+1(t) in [sn+1, tn+1].

Since zn solves (1), (3) and, by the inductive assumption (55), zn(t) ∈ D + η′B for
any t ∈ [sn, tn+1], we can apply Lemma 6.2 and obtain that there exists a solution
z̃n to (1) such that z̃n(sn) = x̂(sn), z̃n(t) ∈ IntK, for any t ∈ (sn, tn+1], and

∥zn(t)− z̃n(t)∥X ≤ εn, for any t ∈ [sn, tn+1]. (57)

Taking the solution xn obtained above from Lemma A.1 in the case z0 = z̃n(tn+1),
the function

yn(t) =

{
z̃n(t) in [sn, tn+1)
xn(t) in [tn+1, 1],

satisfies (54). Further, by the very definition of yn, the induction hypothesis and
the estimates (56), (57), we get

∥yn(t)− x̂(t)∥X = ∥z̃n(t)− zn(t)∥X ≤ εn ≤ ε̃

2CN

N∑
k=n

Ck

2k
, in [sn, sn+1],

∥yn(t)− x̂(t)∥X ≤ ∥yn(t)− yn+1(t)∥X + ∥yn+1(t)− x̂(t)∥X
= ∥z̃n(t)− zn(t)∥X + ∥yn+1(t)− x̂(t)∥X

≤ εn +
ε̃

2CN

N∑
k=n+1

Ck

2k
≤ ε̃

2CN

N∑
k=n

Ck

2k
, in [sn+1, tn+1],

and

∥yn(t)− x̂(t)∥X ≤ ∥yn(t)− yn+1(t)∥X + ∥yn+1(t)− x̂(t)∥X
= ∥xn(t)− yn+1(t)∥X + ∥yn+1(t)− x̂(t)∥X

≤ Cεn +
ε̃

2CN

N∑
k=n+1

Ck

2k
≤ ε̃

2CN

N∑
k=n

Ck

2k
, in [tn+1, 1],

ending the proof.

Proof of Theorem 3.1. Let ε, t0, x̂ as in the statement of the theorem. Our proof
follows some ideas from [6, Lemma 5.2], for a finite dimensional problem. We
distinguish two cases:

x̂(t0) ∈ IntK and x̂(t0) ∈ ∂K.

In the first case, Theorem 3.2 implies the existence of a solution y to (2) such that

y(t0) = x̂(t0), y(t) ∈ IntK, for any t ≥ t0, and ∥x̂−y∥L∞([t0,1],X) ≤
ε

2
.

Further, taking ϱ = 1
2 min

{
− dK(y(t)) : t ∈ [t0, 1]

}
, we have

y(t) + ϱB ⊂ IntK, for any t ∈ [t0, 1].

Applying the relaxation theorem, see [15, Theorem 2.1], we deduce that there exists
a solution x to system (1) such that

x(t0) = x̂(t0) and ∥x− y∥L∞([t0,1],X) ≤ min
{
ϱ,

ε

2

}
,
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implying that
x(t) ∈ y(t) + ϱB ⊂ IntK, for any t ≥ t0,

and
∥x̂− x∥L∞([t0,1],X) ≤ ∥x̂− y∥L∞([t0,1],X) + ∥y − x∥L∞([t0,1],X) ≤ ε.

It remains to consider the case x̂(t0) ∈ ∂K. We construct a sequence of solutions
yi to (1) converging in suitable space to a function x satisfying the claim of the
theorem. To perform our project we first apply again Theorem 3.2, in order to find
a solution y to (2) such that

y(t0) = x̂(t0), y(t) ∈ IntK, for any t > t0, and ∥x̂−y∥L∞([t0,1],X) ≤
ε

4
.

Then, we take a monotone sequence si ↓ t0, i = 1, 2, . . . and applying a relaxation
theorem from [15], we obtain trajectories xi solving (1) on [si, 1] and satisfying

xi(si) = y(si) and ∥xi − y∥L∞([si,1],X) < αi, (58)

for some αi > 0 to be determined below. Notice that, by the Gronwall Lemma,
there exists R > 0 such that every trajectory x of (1), with x(t1) = y(t1) for some
t1 ≥ t0, satisfies ∥x∥L∞([t1,1],X) ≤ R

2 . Let, for any i ≥ 1,

εi =
1

4
min

{
min

t∈[si,1]

(
− dK(y(t))

)
,
ε

2
, R

}
and αi =

1

MSeMS∥kR∥L1 + 1

εi
2i

≤ εi,

so that
xi(t) ∈ y(t) + εiB ⊂ IntK, for all t ∈ [si, 1]. (59)

Now, set s0 = 1, y1 ≡ x1 on [s1, s0], and, for any i ≥ 2,

yi(t) =

{
xi(t) on [si, si−1]
ỹi(t) on [si−1, 1].

Here, ỹi is a solution to (1) in [si−1, 1], with the initial datum ỹi(si−1) = xi(si−1),
obtained by applying Lemma A.1 to yi−1. Let gi(t) ∈ F (t, yi(t)) be such that

yi(t) = S(t− si)y(si) +

∫ t

si

S(t− s)gi(s)ds.

Since

∥ỹi(si−1)−yi−1(si−1)∥X = ∥xi(si−1)−xi−1(si−1)∥X = ∥xi(si−1)−y(si−1)∥X < αi,

we get the following estimates, for any t ∈ [si−1, 1],

∥yi(t)− yi−1(t)∥X = ∥ỹi(t)− yi−1(t)∥X ≤ MSe
MS∥kR∥L1αi <

εi
2i
,

and, for a.e. t ∈ [si−1, 1],

∥gi(t)− gi−1(t)∥X ≤ kR(t)MSe
MS∥kR∥L1αi < kR(t)

εi
2i
.

Then, recalling that εi ≤ εk and [sk, 1] ⊂ [si, 1], for any i ≥ k, we obtain, for any
j > i ≥ k ≥ 1, and any t ∈ [sk, 1],

∥yj(t)− yi(t)∥X ≤
j∑

m=i+1

∥ym(t)− ym−1(t)∥X <
εi+1

2i+1

∞∑
m=0

1

2m
=

εi+1

2i
≤ εi

2i
, (60)

and, for a.e. t ∈ [sk, 1],

∥gj(t)− gi(t)∥X ≤
j∑

m=i+1

∥gm(t)− gm−1(t)∥X < kR(t)
εi+1

2i
≤ kR(t)

εi
2i
. (61)
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Thus {yj}j>k is a Cauchy sequence in C([sk, 1], X) converging uniformly to some
continuous function x, and, for a.e. t ∈ [sk, 1], {gj(t)}j>k is a Cauchy sequence in
X converging to some limit g(t). We claim that, for any t ∈ [t0, 1],

x(t) = S(t− t0)x̂(t0) +

∫ t

t0

S(t− s)g(s)ds (62)

and, for a.e. t ∈ [t0, 1],

g(t) ∈ F (t, x(t)). (63)

Indeed, from assumption (15), for any 1 ≤ k < j and a.e. t ∈ [sk, 1],

∥gj(t)∥X ≤ ϕ(t)
(
1 + ∥yj(t)∥X

)
≤ ϕ(t)

(
1 +R

)
,

and the dominated convergence theorem jointly with the strong continuity of the
semigroup allow to prove that, for any k ≥ 1 and any t ∈ [sk, 1],

lim
j→∞

[
S(t−sj)y(sj)+

∫ t

t0

S(t−s)gj(s)χ(sj ,1)(s)ds
]
= S(t−t0)x̂(t0)+

∫ t

t0

S(t−s)g(s)ds .

On the other hand, for any 1 ≤ k < j and any t ∈ [sk, 1],

yj(t) = S(t− sj)y(sj) +

∫ t

t0

S(t− r)gj(r)χ(sj ,1)(r)dr

and limj→∞ yj(t) = x(t) . Now, as the limit above holds for any k, setting x(t0) =
x̂(t0) we obtain (62). To prove (63), notice that (60)–(61), and assumption (14)
imply that, for any 1 ≤ k < i and a.e. t ∈ [sk, 1],

g(t) ∈ F (t, yi(t)) + kR(t)
εi
2i
B ⊂ F (t, x(t)) + 2kR(t)

εi
2i
B .

So, since F (t, x(t)) is closed, (63) holds true for a.e. t.
Finally, we need to prove that, for any t > t0, ∥x̂(t) − x(t)∥X ≤ ε and x(t) ∈

IntK . For this aim, let us fix i ≥ 1 and t ∈ [si, si−1]. We take j > i such that

∥yj(t)− x(t)∥X ≤ εi
2i

≤ ε

4
,

by the definition of εi. Applying (58) and (60), we obtain for any t ∈ [si, si−1]

∥y(t)− yj(t)∥X ≤ ∥y(t)− xi(t)∥X + ∥xi(t)− yj(t)∥X

= ∥y(t)− xi(t)∥X + ∥yi(t)− yj(t)∥X ≤ εi +
εi
2i

≤ ε

2
.

Hence,

∥x̂(t)− x(t)∥X ≤ ∥x̂(t)− y(t)∥X + ∥y(t)− x(t)∥X

≤ ε

4
+ ∥y(t)− yj(t)∥X + ∥yj(t)− x(t)∥X ≤ ε .

Moreover, the previous estimates, the choice of εi and (59), (60) yield for every
j ≥ i as above

x(t) ∈ yj(t) +
εi
2i
B ⊂ yi(t) + εiB = xi(t) + εiB ⊂ y(t) + 2εiB ⊂ IntK .

This completes the proof.
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Proof of Theorem 4.1. In order to prove the theorem, it is sufficient to show that
the conclusions of Lemma 6.2 remain valid if we replace assumption (18) by (28).
Afterwards, the proof follows exactly as in the case of Theorems 3.2 and 3.1.

By the same arguments as those of Lemma 6.1, assumption (28) implies that for
any compact set D ⊂ K with D ∩ ∂K ̸= ∅, there exist η′, ρ,M > 0 such that

∀ t ∈ I, ∀x ∈ K ∩ (D + 2η′B), for any v ∈ F (t, x) satisfying (64)

dK(x) > −2η′ and sup
τ≤η′

sup
z∈Z∩B(x,2η′)

⟨nz, S(τ) v⟩X ≥ 0

∃ v̄ ∈ F (t, x) ∩B(v,M) with sup
τ≤η′

sup
z∈Z∩B(S(τ)x,2η′)

⟨
nz, S(τ) (v̄ − v)

⟩
X

< −ρ .

Now fix a compact set D ⊂ K such that D ∩ ∂K ̸= ∅. Let η′, ρ,M > 0 satisfy (64)
and R > 0 be such that D+ η′B ⊂ R

4 B. Define C, δ′, δ and ε′ as in (39), (40), (41)
and (42). Let y be a solution to (1), (3) such that y(t) ∈ D + η′B for any t ∈ [t̄, 1]
and set

Γ =
{
s ∈ [t̄, 1] : dK(y(s)) > −2η′ , sup

τ≤η′
sup

z∈Z∩B(y(s),2η′)

⟨nz, S(τ) f
y(s)⟩X ≥ 0

}
. (65)

Finally, define T > 0 and trajectories yε′ and xε′ as in the proof of Lemma 6.2.
Again, we obtain

∥xε′ − y∥L∞([t̄,1],X) ≤ ε′ (66)

and

∥xε′ − yε′∥L∞([t̄,(t̄+2δ)∧1],X) ≤
ρ

2
µ (Γ ∩ [t̄, t ∧ T ]) . (67)

Fix t ∈ (t̄, (t̄+ 2δ) ∧ 1]. We shall verify that xε′(t) ∈ IntK.
Consider first the case where µ (Γ ∩ [t̄, t]) = 0. By (65) for almost every s ∈ [t̄, t]

we have that either dK(y(s)) ≤ −2η′ or dK(y(s)) > −2η′ and

sup
τ≤η′

sup
z∈Z∩B(y(s),2η′)

⟨nz, S(τ) f
y(s)⟩X < 0 .

Suppose that dK(y(t)) ≥ −η′

2 , otherwise, from (42) and (66), it follows that xε′(t) ∈
IntK. Again, by continuity, there exists s̄ ∈ [t̄, t) such that

∥y(t)− S(t− s̄) y(s̄)∥X <
η′

2
, (68)

and, for any s ∈ [s̄, t],

∥y(t)− y(s)∥X <
η′

2
and dK(y(s)) > −η′ . (69)

Then we have

sup
τ≤η′

sup
z∈Z∩B(y(s),2η′)

⟨nz, S(τ) f
y(s)⟩X < 0 , a.e. s ∈ [s̄, t] . (70)

By Lemma A.2,

dK(y(t)) ≤ dK(S(t− s̄) y(s̄))+ sup
z∈Z∩([S(t−s̄)y(s̄),y(t)]+η′B)

⟨
nz, y(t)−S(t− s̄) y(s̄)

⟩
X
.

Since µ (Γ ∩ [t̄, t]) = 0 implies xε′ ≡ y on [t̄, t], and (68)–(69) yield

[S(t− s̄)y(s̄), y(t)] ⊂ B(y(s), η′) ∀ s ∈ [s̄, t] ,
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applying the representation formula (8), the invariance assumption (12), and (70)
we obtain

dK(xε′(t)) = dK(y(t)) ≤
∫ t

s̄

sup
z∈Z∩B(y(s),2η′)

⟨
nz, S(t− s) fy(s)

⟩
X
ds < 0 .

Now, we consider the case µ (Γ ∩ [t̄, t ∧ T ]) > 0. Applying again Lemma A.2 we
obtain

dK(xε′(t)) ≤ dK(y(t)) + sup
z∈Z∩([y(t),xε′ (t)]+η′B)

⟨nz, xε′(t)− y(t)⟩X . (71)

By (8), (40), (42), and (66), we have

[y(t), xε′(t)] ⊂ S(t− s) y(s) + η′B ∀ s ∈ [t̄, t] .

Then, from (28), (41), (67), (71) and the definition of yε′ we obtain

dK(xε′(t)) ≤ supz∈Z∩B(S(t−s) y(s),2η′)⟨nz, xε′(t)− yε′(t)⟩X+

supz∈Z∩B(S(t−s) y(s),2η′)⟨nz, yε′(t)− y(t)⟩X ≤ ∥xε′(t)− yε′(t)∥X+∫
Γ∩[t̄,t∧T ]

supz∈Z∩B(S(t−s) y(s),2η′)

⟨
nz, S(t− s)

[
v̄(s)− fy(s)

]⟩
X
ds

< ρ
2 µ (Γ ∩ [t̄, t ∧ T ])− ρµ (Γ ∩ [t̄, t ∧ T ]) = −ρ

2 µ (Γ ∩ [t̄, t ∧ T ]) < 0 ,

proving the theorem.

The proofs of Propositions 1, 2, 3 and 4 conclude the section.

Proof of Proposition 2. Let x̄ ∈ ∂K and take R = ∥x̄∥X + 1. Notice that, by (15),
for any t ∈ I and any x ∈ B(x̄, 1),

F (t, x) ⊂ ϕ(1 +R)B (72)

implying, in particular, that

∥v − w∥X ≤ M := 2ϕ(1 +R),

for any v, w ∈ F (t, x).
We prove our proposition using a contradiction argument. Assume that (18)

does not hold. Then, we can find sequences

ti ∈ I, xi ∈ B
(
x̄,

1

i

)
∩K, zi ∈ B

(
xi,

1

i

)
, ξi ∈ ∂dK(zi), 0 ≤ τi ≤

1

i
, vi ∈ F (ti, xi)

such that

⟨ξi, S(τi)vi⟩ ≥ −1

i
, (73)

and, for any w ∈ F (ti, xi), there exist

0 ≤ σi ≤ τi, yi ∈ B
(
S(σi)xi,

1

i

)
, ζi ∈ ∂dK(yi)

satisfying

⟨ζi, S(σi)(w − vi)⟩ ≥ −1

i
. (74)

Passing to the limit i → ∞ we reach a contradiction. Indeed, by (72),

vi ∈ F (ti, xi) ⊂ ϕ(1 +R)B.

Further, ∥zi − xi∥X ≤ 1
i , hence, assumption (21) implies that for any k ∈ N and

some ik,

ξi ∈ ∂dK(zi) ⊂ ∂dK(x̄) +
1

k
B, for any i ≥ ik,
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yielding ∥ξi − ξ̄i∥X∗ ≤ 1
k , for some ξ̄i ∈ ∂dK(x̄) and, as ∂dK(x̄) is a compact set,

up to a subsequence, ξ̄i → ξ0 ∈ ∂dK(x̄) implying that also ξi → ξ0. So, since X is
a reflexive space, up to subsequences,

ti → t, zi → x̄ in X, ξi → ξ0 in X∗, vi ⇀ v weakly in X, (75)

for some t ∈ I, ξ0 ∈ ∂dK(x̄) and v ∈ X. Finally, as τi → 0, from (73) we deduce
that

0 ≤ lim
i→∞

⟨ξi, S(τi)vi⟩ = lim
i→∞

⟨S(τi)∗ξi, vi⟩ = ⟨ξ0, v⟩ . (76)

Here S(t)∗ stands for the adjoint of S(t). Further, by (14) and (19), for any ε > 0
there exists iε such that,

F (ti, xi) ⊂ F (t, x̄) + εB and F (t, x̄) ⊂ F (ti, xi) + εB, for any i ≥ iε . (77)

The set F (t, x̄) + εB is convex and closed. By the Mazur lemma we get v ∈
F (t, x̄) + εB . Since ε > 0 is arbitrary, we deduce that v ∈ F (t, x̄).

From (5) and (76), there exists v̄ ∈ F (t, x̄) such that

σ(x̄; v̄ − v) < −ρ. (78)

By (77), there exists a sequence wi ∈ F (ti, xi) such that wi → v̄ in X. Now, taking
σi, yi, ζi as in (74), and passing to the limit, we finally get, up to subsequences,

yi → x̄ in X, ζi → ζ in X∗, (79)

and

0 ≤ lim
i→∞

⟨ζi, S(σi)(wi − vi)⟩ = lim
i→∞

⟨S(σi)
∗ζi, wi − vi⟩ = ⟨ζ, v̄ − v⟩ . (80)

As ζ ∈ ∂dK(x̄), (80) contradicts (78) and proves (18). Since F (t, x̄) is convex and
closed for any x̄ ∈ ∂K (6) follows.

Proof of Proposition 1. The proof is similar to the one of Proposition 2. The only
difference concerns the limits in (75), (76), (79), (80) where we obtain instead:

ξi
∗
⇀ ξ0 weakly-star in X∗, vi → v ∈ F (t, x̄) in X,

⟨ξi, S(τi)vi⟩ → ⟨ξ0, v⟩ ≥ 0 , ζi
∗
⇀ ζ weakly-star in X∗,

0 ≤ ⟨ζi, S(ti)(wi − vi)⟩ → ⟨ζ, v̄ − v⟩ .

The properties of the Clarke generalized gradient [12, Proposition 2.1.5] imply that
ξ0 and ζ belong to ∂dK(x̄). The assumption (20) is used here to prove that, up to
a subsequence, vi → v ∈ F (t, x̄). Indeed, thanks to (14) and (19), for any k ∈ N
there exists ik such that

vi ∈ F (ti, xi) ⊂ F (t, x̄) +
1

k
B, for any i ≥ ik

implying that ∥vi− v̄i∥X ≤ 1
k , for some v̄i ∈ F (t, x̄) and, as F (t, x̄) is a compact set,

up to a subsequence, v̄i → v ∈ F (t, x̄) yielding that also vi → v. The contradiction
is reached also in this case, ending the proof.

Proof of Proposition 3. The proof relies on the proof of [17, Lemma 3.7]. Fix x̄ ∈
∂K. By Propositions 1 and 2, it is sufficient to prove that there exists ρ > 0 such
that

for any t ∈ I and v ∈ coF (t, x̄) satisfying σ(x̄; v) ≥ 0, (81)

there exists v̄ ∈ coF (t, x̄) satisfying σ(x̄; v̄ − v) ≤ −ρ .
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Below we set

V +
t =

{
v ∈ F (t, x̄) : σ(x̄; v) ≥ 0

}
and

V −
t =

{
v ∈ F (t, x̄) : σ(x̄; v) < 0

}
.

We claim that for every t ∈ I and v ∈ coF (t, x̄) satisfying σ(x̄; v) ≥ 0, there exist
λ+ > 0, λ− ≥ 0, v+ ∈ coV +

t , v− ∈ X and w̄ ∈ coF (t, x̄) such that λ+ + λ− = 1,
v = λ+v+ + λ−v−, where v− = 0 if λ− = 0 and v− ∈ coV −

t otherwise, and that

σ(x̄; w̄ − v+) ≤ −ρ .

Indeed, for t and v as above, let λα > 0, vα ∈ F (t, x̄), α = 1, . . . , n, be such that∑n
α=1 λα = 1 and

∑n
α=1 λαvα = v. By reordering we may assume that v1, . . . , vm ∈

V +
t and vm+1, . . . , vn ∈ V −

t . Observe that m ≥ 1, since otherwise σ(x̄; v) < 0.
Define λ+ =

∑m
α=1 λα, λ

− = 1−λ+, v+ = 1
λ+

∑m
α=1 λαvα, v

− = 1
λ−

∑n
α=m+1 λαvα

if m < n and v− = 0 if m = n. Then v = λ+v+ + λ−v− and v+ ∈ coV +
t . By (23)

for each α = 1, . . . ,m, there exists wα ∈ coF (t, x̄) such that

σ(x̄;wα − vα) ≤ −ρ

4
.

Then the vector w̄ = 1
λ+

∑m
α=1 λαwα is as in our claim.

We shall prove (81) by contradiction. Suppose that for some sequences ti ∈ I,
vi ∈ coF (ti, x̄) satisfying

σ(x̄; vi) ≥ 0 (82)

and for any choice of w ∈ coF (ti, x̄) we have

σ(x̄;w − vi) > −1

i
. (83)

For each i let λ+
i > 0, λ−

i ≥ 0, λ+
i + λ−

i = 1, v+i ∈ coV +
ti , v

−
i ∈ X be such that

v−i ∈ coV −
ti if λ−

i > 0 and v−i = 0 otherwise, vi = λ+
i v

+
i + λ−

i v
−
i . Then for every

j ≥ 1 there exists i(j) such that for every i ≥ i(j) we can find w̄i ∈ coF (ti, x̄)
satisfying

σ(x̄; w̄i − v+i ) ≤ −ρ+
1

j
.

Taking subsequences and keeping the same notations, we may assume that for
some t, λ+, λ−, v+, v−, w̄ the following is satisfied: ti → t, λ+

i → λ+, λ−
i → λ−,

λ+ + λ− = 1, v+i → v+ ∈ coF (t, x̄), v−i → v− ∈ X, vi → v, w̄i → w̄ ∈ coF (t, x̄)
and

σ(x̄; w̄ − v+) ≤ −ρ .

The last four convergences are meant to be either weak or strong, depending on
the set of assumptions under consideration. Then v ∈ coF (t, x̄). By (82), one can
prove as in the above propositions that

σ(x̄; v) ≥ 0 . (84)

Moreover, since the set-valued map (22) is upper semicontinuous with closed images,
we get

v− ∈ co
{
v ∈ F (t, x̄) : σ(x̄; v) ≤ 0

}
⊂ coF (t, x̄) ∩

{
v ∈ X : σ(x̄; v) ≤ 0

}
whenever λ− > 0. Clearly v = λ+v+ + λ−v−. Furthermore, by (83), for all
w ∈ coF (t, x̄),

σ(x̄;w − v) ≥ 0 . (85)
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If λ− = 0, then we get a contradiction. Hence λ− > 0 and, consequently, v− ∈
co{v ∈ F (t, x̄) : σ(x̄; v) ≤ 0}. In particular, v− ∈ coF (t, x̄) and σ(x̄; v−) ≤ 0.

Suppose first that σ(x̄; v−) = 0 . Then for some µj > 0 and for some ṽj ∈
F (t, x̄) such that σ(x̄; ṽj) = 0, we have

∑l
j=0 µj = 1 and v− =

∑l
j=0 µj ṽj . By the

assumption,

σ(x̄;wj − ṽj) ≤ −ρ

2

for some wj ∈ coF (t, x̄) and each j. Set w− =
∑l

j=0 µjwj . Then w− ∈ coF (t, x̄)
and

σ(x̄;w− − v−) ≤ −ρ

2
.

Setting w = λ+v+ + λ−w−, we obtain a contradiction with (85).
On the other hand, if σ(x̄; v−) < 0 , then (84) yields λ+ > 0. Setting w =

λ+w̄ + λ−v− ∈ coF (t, x̄), we obtain

σ(x̄;w − v) = λ+σ(x̄; w̄ − v+) ≤ −λ+ρ < 0 .

This contradicts (85) and proves our claim.

Proof of Proposition 4. Consider first the case where F (t, x̄) is convex for any t ∈ I
and x̄ ∈ ∂K, and (29) holds. Let x̄ ∈ ∂K and take R = ∥x̄∥ + 1. The proof is
similar to the one of Proposition 2. Observe that for any t ∈ I and any x ∈ B(x̄, 1),
∥v − w∥X ≤ M := 2ϕ(1 +R), for any v, w ∈ F (t, x).

Assume by contradiction that (28) does not hold. Then, we can find sequences

ti ∈ I, xi ∈ B
(
x̄,

1

i

)
∩K, vi ∈ F (ti, xi), 0 ≤ τi ≤

1

i
and zi ∈ B

(
xi,

1

i

)
∩Z

such that

⟨nzi , S(τi)vi⟩X ≥ −1

i
, (86)

and, for any w ∈ F (ti, xi), there exist

0 ≤ σi ≤ τi and yi ∈ Z ∩B
(
S(σi)xi,

1

i

)
(87)

satisfying

⟨nyi , S(σi)(w − vi)⟩X ≥ −1

i
. (88)

By our assumptions, up to subsequences, ti → t, vi ⇀ v weakly in X, nzi → n in
X, as i → +∞, for some t ∈ I, v ∈ X and n ∈ X of norm equal to one. Since
zi → x̄, by (86), for any ε > 0,

0 ≤ lim
i→∞

⟨nzi , S(τi)vi⟩ = lim
i→∞

⟨S(τi)∗nzi , vi⟩ = ⟨n, v⟩ ≤ sup
z∈Z∩B(x̄,ε)

⟨nz, v⟩ . (89)

Therefore,

inf
ε>0

sup
z∈Z∩B(x̄,ε)

⟨nz, v⟩X ≥ 0 ,

where v ∈ F (t, x̄), because of the closedness and convexity of F (t, x̄) and (14), (19).
Hence, assumption (30) yields the existence of v̄ ∈ F (t, x̄) satisfying

inf
ε>0

sup
z∈Z∩B(x̄,ε)

⟨nz, v̄ − v⟩X < −ρ . (90)
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Let wi ∈ F (ti, xi) be a sequence converging in X to v̄, and let σi and yi be as in
(87), (88). Since yi → x̄, applying (88) and arguing as in (89), for every ε > 0 we
have

0 ≤ lim
i→∞

⟨nyi , S(σi)(wi−vi)⟩X = lim
i→∞

⟨S(σi)
∗nyi , wi−vi⟩X ≤ sup

z∈Z∩B(x̄,ε)

⟨nz, v̄−v⟩X .

This contradicts (90).
In the case of compact F (t, x̄), the proof follows the same lines, using now the

convergence nzi ⇀ n ∈ B weakly in X and vi → v ∈ F (t, x̄), up to a subsequence,
see the proof of Proposition 1 for the details.

Appendix. This section contains two technical results needed in the course of the
investigation. The first is an infinite dimensional version of the Filippov Theorem,
see [15, Theorem 1.2], modified here in a suitable form for our scopes.

Lemma A.1. Let δ0 ≥ 0 and t0 ∈ I. Assume (13)–(14), let y be the mild solution
to (9) in [t0, 1], for some f ∈ L1([t0, 1], X). Set R = 1

2 maxt∈[t0,1] ∥y(t)∥X ,

γ(t) = dist
(
f(t), F (t, y(t))

)
and m(t) = MSe

MS

∫ t
t0

kR(s)ds
.

If m(1)
(
δ0 +

∫ 1

t0
γ(s)ds

)
< R

2 , then, for any y0 ∈ y(t0) + δ0B and any β > 1, there

exists a solution x to (1) in [t0, 1], satisfying x(t0) = y0,

∥x(t)− y(t)∥X ≤ m(t)
(
δ0 + β

∫ t

t0

γ(s)ds
)
, for any t ∈ [t0, 1],

and

∥fx(t)− f(t)∥X ≤ kR(t)m(t)
(
δ0 + β

∫ t

t0

γ(s)ds
)
+ βγ(t), for a.e. t ∈ [t0, 1],

where fx ∈ L1([t0, 1], X) is so that (7) and (8) hold true for f = fx.

Proof. The proof proceeds exactly as in [15, Theorem 1.2]. The only difference is in
the first line of page 109, while applying Lemma 1.3 of [15]. The assumption β > 1
is needed to ensure that, for a.e. t, the set

F (t, y(t)) ∩ {f(t) + βγ(t)B} ̸= ∅.

Indeed, if γ(t) = 0, the definition of γ ensures that f(t) ∈ F (t, y(t)), while, if
γ(t) > 0, since β > 1, from the very definition of distance and the measurable
selection theorem we get that there exists a measurable selection w(t) ∈ F (t, y(t))
such that ∥f(t)− w(t)∥X ≤ βγ(t). Thus

w(t) ∈ F (t, y(t)) ∩ {f(t) + βγ(t)B}.

Notice that in finite dimension we can take β = 1, recovering the original Filippov
Theorem.

The second result is a version of the mean value theorem for the oriented distance
dK in Hilbert spaces. Here we make use of the notations introduced in Section 4.

Lemma A.2. Let (X, ⟨ , ⟩X) be a Hilbert space. For every x, y ∈ X we have

dK(y)− dK(x) ≤ inf
ε>0

sup
z∈Z∩([x,y]+εB)

⟨nz, y − x⟩X .
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Proof. Let x, y ∈ X and fix ε > 0. It is enough to consider the case x ̸= y. For
every s ∈ [0, 1] set γ(s) = x+ s(y − x). Then dK(γ(·)) is absolutely continuous. It
is sufficient to prove that for almost every s ∈ [0, 1]

d

ds
dK(γ(s)) ≤ sup

z∈Z∩B(γ(s),ε)

⟨nz, y − x⟩X ,

implying that

dK(y)− dK(x) =

∫ 1

0

d

ds
dK(γ(s)) ds ≤ sup

z∈Z∩([x,y]+εB)

⟨nz, y − x⟩X .

The maps dK(γ(·)) and d2K(γ(·)) are almost everywhere differentiable. Denote
by D ⊂ (0, 1) the set on which both functions are differentiable and fix s ∈ D. We
distinguish three cases.

Case 1. γ(s) /∈ K. Let L > 0 be a Lipschitz constant for d2K on γ([0, 1])+B. Recall
that |dK(x)| = dist(x, ∂K), for all x ∈ X. Then for each 0 < h < min{ε, 1− s} and
every z ∈ Z ∩ (B(γ(s), h2)\K) we have

d2K(γ(s)) ≥ ∥z − P∂K(z)∥2X − Lh2 (A.1)

and

d2K(γ(s+ h)) ≤ ∥γ(s+ h)− P∂K(z)∥2X = ∥γ(s)− z∥2X
+2⟨γ(s)− z , z − P∂K(z) + h(y − x)⟩X + ∥z − P∂K(z) + h(y − x)∥2X
= ∥z − P∂K(z) + h(y − x)∥2X + o(h) .

Consequently, for all h > 0 small enough,

d2
K(γ(s+h))−d2

K(γ(s))
h ≤ infz∈Z∩(B(γ(s),h2)\K)

∥z−P∂K(z)+h(y−x)∥2−∥z−P∂K(z)∥2

h + o(1)

= infz∈Z∩(B(γ(s),h2)\K) 2 ⟨z − P∂K(z) , y − x⟩X + o(1)

= infz∈Z∩(B(γ(s),h2)\K) 2 dK(γ(s)) ⟨nz , y − x⟩X + o(1)

≤ supz∈Z∩B(γ(s),ε) 2 dK(γ(s)) ⟨nz , y − x⟩X + o(1) .

Then we obtain

d

ds
d2K(γ(s)) ≤ sup

z∈Z∩B(γ(s),ε)

2 dK(γ(s)) ⟨nz , y − x⟩X

and

d

ds
dK(γ(s)) =

1

2 dK(γ(s))
· d

ds
d2K(γ(s)) ≤ sup

z∈Z∩B(γ(s),ε)

⟨nz , y − x⟩X .

Case 2. γ(s) ∈ Int K. Similarly to Case 1, for every 0 < h < min{ε, s} and every
z ∈ Z ∩ (B(γ(s), h2)\KC) we have (A.1) and

d2K(γ(s− h)) ≤ ∥γ(s− h)− P∂K(z)∥2X (A.2)

= ∥γ(s)− z∥2 + 2⟨γ(s)− z , z − P∂K(z)− h(y − x)⟩+ ∥z − P∂K(z)− h(y − x)∥2

= ∥z − P∂K(z)− h(y − x)∥2X + o(h) .
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Inequalities (A.1) and (A.2) yield

d2
K(γ(s−h))−d2

K(γ(s))
h ≤ infz∈Z∩(B(γ(s),h2)\KC) 2 ⟨P∂K(z)− z , y − x⟩X + o(1)

= infz∈Z∩(B(γ(s),h2)\KC) 2 (−dK(γ(s))) ⟨nz , y − x⟩X + o(1)

≤ 2 (−dK(γ(s))) supz∈Z∩B(γ(s),ε)⟨nz , y − x⟩X + o(1) .

Then we obtain

d

ds
d2K(γ(s)) ≥ 2 dK(γ(s)) sup

z∈Z∩B(γ(s),ε)

⟨nz , y − x⟩X

and again

d

ds
dK(γ(s)) =

1

2 dK(γ(s))
· d

ds
d2K(γ(s)) ≤ sup

z∈Z∩B(γ(s),ε)

⟨nz , y − x⟩X .

Case 3. γ(s) ∈ ∂K. Let us first suppose that | d
dsdK(γ(s))| = 2C > 0. Then for all

h > 0 small enough we have |dK(γ(s+ h))| ≥ Ch, so that the point s is isolated in
the set {s ∈ D : γ(s) ∈ ∂K}. Consequently,

µ

({
s ∈ D : γ(s) ∈ ∂K ,

d

ds
dK(γ(s)) ̸= 0

})
= 0 .

It remains to verify that in the case where d
dsdK(γ(s)) = 0, we have

sup
z∈Z∩B(γ(s),ε)

⟨nz , y − x⟩X ≥ 0 .

Assume by contradiction that there exists α > 0 such that

sup
z∈Z∩B(γ(s),ε)

⟨nz , y − x⟩X ≤ −α .

Let 0 < h < ε/4∥y−x∥X , {ξi}i∈N ⊂ B(γ(s), ε
2 )∩Int K converge to γ(s) as i → +∞

and set, for every 0 ≤ r ≤ h, γi(r) = ξi + r(y − x). Fix i ∈ N and define

hi = sup{0 < h̃ < h : γi([0, h̃]) ⊂ Int K}

Proceeding as in Case 2, we can prove that

d

dr
dK(γi(r)) ≤ sup

z∈Z∩B(γi(r),
ε
4 )

⟨nz , y − x⟩X ≤ −α , for a.e. r ∈ [0, hi] .

Then, γi(hi) ∈ Int K and, consequently, hi = h. Summarizing, we have obtained
that for every i ∈ N

d

dr
dK(γi(r)) ≤ sup

z∈Z∩B(γi(r),
ε
4 )

⟨nz , y − x⟩X ≤ −α , for a.e. r ∈ [0, h] .

Therefore, for every i ∈ N and h ∈ (0, ε
4∥y−x∥X

) we have dK(γi(h)) − dK(γi(0)) ≤
−αh . Taking the limit as i → +∞, we obtain

dK(γ(s+ h))− dK(γ(s)) ≤ −αh ,

that is impossible, since d
dsdK(γ(s)) = 0. This completes the proof.
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