
Exploring Heterogeneous Task-Level Parallelism
in a BMA Video Coding Application using

System-Level Simulation
Carlos M. Betemps∗†, Mateus S. de Melo∗, Amir M. Rahmani‡¶, Antonio Miele§, Nikil Dutt¶, and Bruno Zatt∗

∗Federal University of Pelotas (UFPel), Postgraduate Program in Computing (PPGC), Video Technology Research
Group (ViTech), Pelotas, RS, Brazil. Email: {cm.betemps, msdmelo, zatt}@inf.ufpel.edu.br

†Federal University of Pampa (UNIPAMPA), Campus Bagé, Bagé, RS, Brazil. Email: carlos.betemps@unipampa.edu.br
‡TU Wien, Vienna, Austria. Email: amirr1@uci.edu

§Politecnico di Milano (Polimi), Milano, Italy. Email: antonio.miele@polimi.it
¶University of California, Irvine (UCI), CA, USA. Email: dutt@uci.edu

Abstract—High abstraction level models can be used within
the system-level simulation to allow rapid evaluations of
architectural aspects in early Design Space Exploration (DSE)
and direct the development decisions. Further, early DSE is of
paramount importance in the specification of future Embedded
Systems (ES) and its evaluation for applications with high
computing demands and energy restrictions. This paper presents
the exploration of Heterogeneous Task-Level Parallelism (HTLP)
in a Block-Matching Algorithm (BMA) video coding application.
HTLP means the creation and execution of simultaneous threads
of kernels defined for different types of Processing Elements (PE)
– e.g., CPU and GPU – but all for an equal purpose. We employ
a BMA implementation as a case study, and its characteristics
are used to explore the HTLP – in particular, its kernels for
data preparation, SAD (sum of absolute differences) criteria
calculation, and SAD values grouping. For the exploration, a
system-level simulation framework (SAVE-htlp) is augmented,
being able to support the HTLP. In the performed experiments,
SAVE-htlp simulates workload and architecture models and
explores 22 settings varying the PE type employed during the
tasks’ execution and the number of concurrent threads for each
kernel. Execution time, performance, energy, and power results
show HTLP settings overcoming CPU-only ones as well as those
with solely GPUs to process its tasks.

Keywords—Heterogeneous Task-level Parallelism, System-level
Simulation, Block-Matching Algorithm, Embedded Systems.

I. INTRODUCTION

A. Motivation and Context

Embedded Systems (ES) are highly diverse, ranging from
small systems such as wearables in healthcare and intel-
ligent sensors in smart spaces to distributed and complex
systems such as automotive and aerospace control systems
[1], [2]. Furthermore, embedded software features, size, and
complexity are in constant growth [3]. The ES design stays
in a competitive scenario with issues about time-to-market,
new functionalities, and performance constraints [4]. The ES
design involves basically three phases [5]: the modeling treats
the concepts and refinement of the specifications producing
hardware and software models; the validation aiming is to
achieve a reasonable confidence level that the system will

works as designed; and the implementation is the physical
realization of the hardware and software.

Execution time and energy consumption are important is-
sues in ES design since these systems are usually powered
by batteries and have tight performance constraints. Current
mobile System-on-Chips (SoCs) have large amounts of com-
puting capability [6] that can provide high performance with
low energy consumption. The single and multi-core eras are
constrained by issues involving power, complexity, software
parallelism, and scalability [7]. However, heterogeneous sys-
tems (e.g., SoCs) arise with advancement perspectives enabled
by abundant data parallelism and power efficient GPUs [7],
beyond the possibility of a better matching between the ap-
plication’ tasks and processing elements (PEs). SoCs combine
CPU cores of different features, GPU cores, and perhaps other
accelerators, with high bandwidth access to memory [7].

Usually, several application parts can be executed in parallel
creating possibilities to examine the task-level parallelism
(TLP). Multiprocessor systems allow exploring the TLP [8],
including heterogeneous systems where threads from different
kernel implementations (for distinct PE types), but all for the
same purpose, can be created and executed in parallel.

Video sharing services such as YouTube and Netflix are
widely used these days via mobile devices. The ES used on
these devices need to provide video applications. Video coding
(e.g., Motion Estimation) and computer vision (e.g., Object
Tracking and Stereo Matching) domains normally employ
Block-Matching Algorithm (BMA). This application type has
some parallelization aspects making it suitable to be explored
for HTLP. That is the cause we use a BMA implementation
[9] as a case study.

DSE activities usually follow the Y-chart approach [10].
Each solution includes descriptions for architecture and work-
load, and also the mapping between both. Using execution on
real hardware, simulation, or even estimates the solutions are
evaluated based on metrics related to performance and power.
According to the design constraints the architecture, workload,
and mapping are adjusted aiming to find the best solutions.

Due to the complexity of the new product design, the
competitiveness in the ES industry, and the existing gap in
the co-design of hardware and software, more and more
tasks of exploring alternative solutions are carried out at
the system level [10], [11]. Modeling is used to deal with
the ES complexity in design initiatives and to enhance the
development of such systems [12]. Higher abstraction levels
favor faster and more cost-effective approaches in the design
space analysis [13], allowing early estimation based on partial
and uncertain information that can guide the development
process [3]. Simulation is a way to evaluate different solutions.
It is a form of design analysis which aim is to bring a design
properties view and test the configurations [14]. Modeling and
simulation using high abstraction level have a key role in early
design phases, allowing to catch the system behavior and its
interactions usually requiring fewer development efforts [15].

Cycle and instruction accurate simulators cannot fully sup-
port the processing demand in DSE activities, given the
volume of details about the system (possibly not available in
early phases) which need to be simulated and also can require
prohibitively simulation time [4], [16]. Thus, the use of high
abstraction level is a necessity. Some works have used high
abstraction level models and tools in the representation and
simulation of the workload and architecture [4], [15]–[19].
However, it usually requires program level specifications (that
reduce the abstraction level) and does not use HTLP suitably.

The ES diversity and its design complexity, the opportunities
to employ heterogeneity in the applications’ TLP, and the use
of high abstraction level modeling/simulation reveal the ben-
efits of early DSE. Further, early DSE is of paramount value
in the spec of future systems (e.g., SoCs) and its evaluation
for applications with computing and energy demands.

In this work, we use an enhanced version of the SAVE
system-level simulator [17]. Its code structure is based
on C++/SystemC classes using Transaction Level Modeling
(TLM). SystemC is a system-level design language inserted in
many industry flows that uses the C++ infrastructure and its
object-oriented nature, being suitable to hardware/software co-
simulation [20]. TLM separate the communication components
from the computation ones using channels. It improves the
simulation time, allowing explore and validate design solutions
at a higher abstraction level [21].

B. Contributions and Goal

This work deals with the HTLP, which involves the creation
and execution of heterogeneous parallel threads from kernels
implemented for different types of PEs. For instance, in the
experiments, we spawned heterogeneous threads for a specific
goal that were executed concurrently on both CPUs and
GPUs. Thus, the SAVE system-level simulation framework
[17] is augmented intending to manage the HTLP and allowing
threads to run implementations of each type of PE in parallel,
raising the heterogeneity applied to the system. The SAVE
structure has provided a suitable base for the performed exten-
sion. We call the enhanced framework as SAVE-htlp, where
htlp stands for heterogeneous task-level parallelism. A pool of

generic processing resources represents the system architecture
while task graphs are used to model the applications. Thus,
both models use high abstraction level.

In summary, during the experiments, we can observe that
the better matching between the tasks’ threads and the used PE
types present enhanced performance and energy consumption.
Application tasks have different properties and are suitable
to use HTLP. System-Level simulation enables the rapid
evaluation of the HTLP in the BMA case study application.
We can state that the work involves phases of modeling and
validation in the ES design [5], but using high abstraction level
models in system-level simulations. Thus, the main goal of this
work can be described as follows: to evaluate the HTLP by
exploring the different kernels characteristics of the BMA case
study application by the use of system-level simulation.

This work is organized as follows. Section II presents
the related works. In Section III, the system-level simulation
framework is described, including the original framework
(SAVE) and the modified one (SAVE-htlp), as well as
the simulation’s input structure. Section IV presents the case
study – a BMA application. Moreover, the application and
architecture models are presented, including aspects of the
models generation. The experimental setup is described in
Section V, covering the configurations applied in the experi-
ments, whereas Section VI discuss the results, presenting data
about execution time, performance, energy, and power. Finally,
Section VII concludes the discussion and presents future work.

II. RELATED WORK

Some works have treated themes related to system-level
modeling, simulation, and design space exploration (DSE). In
[15], an approach called Sesame is presented that focuses on
the multimedia applications to efficiently prune and explore the
design space of target platform architectures. The applications
are represented by the Kahn Process Network model of com-
putation, generated automatically from C/C++ specification.
A model language is used to specify the application model,
the architecture model, and the mapping between them for
co-simulation. The method needs code level specifications to
define the system and its applications, reducing the abstraction
level, as well as forcing earlier resources allocation.

The COMPLEX framework and methodology are described
in [16] and [4], respectively. The work presented in [16]
describes an approach of Platform-based Design that uses
system-level time and power estimation to perform the DSE
and detaches the use of UML/MARTE based models as a
design input with the automatic generation of an executable
SystemC model. In [4] is presented a DSE approach that in-
cludes Model Driven Engineering and Electronic System Level
technologies. The framework capture a set of solutions based
on UML/MARTE models and functional code. An executable,
configurable, and high-performance model is automatically
created. Then, SCoPE+ tool [4] allows the simulation of
different solutions and generates performance estimates. Both
works require the modeling of several system viewpoints, such

as data, functional, communication&concurrency, platform, ar-
chitecture, and verification views. Thus, many complex models
are necessary to employ the approach at early design phases.

In [18] a DSE approach for Multimedia Embedded Systems
is presented. The applications are represented as HSDF (Ho-
mogeneous Synchronous DataFlow) graphs, and the hardware
platform as an ATG (Architecture Template Graph) directed
graph. The mapping between applications and architecture re-
sources is performed during the DSE. DEVS formalism is used
in the modeling, analysis, and simulation, allowing the system
evaluation to find optimal Pareto solutions. Genetic algorithms
and stochastic simulation lead the DSE. The formalism in its
usage demands developers with specific expertise.

Callou et al. [19] propose a methodology that aims to eval-
uate the energy consumption and execution time of embedded
real-time applications in early design phases. From assembly
code or C program, a Coloured Petri Net (CPN) model is gen-
erated to represent the applications. Estimates are generated
through stochastic simulation, and a tool was developed for
supporting automatic measurement on the hardware platform.
Again, code level representations are used in the methodology.

In early development phases, the described works do not
provide the option of creating simultaneous heterogeneous
threads of same goal tasks even implemented for different
types of PEs. Therefore, they do not take advantage of the
different characteristics of the kernels that exist in the same
application. Moreover, in the stated design step, the high-
level description of the system and its workload are attractive.
The simulation of these models allows evaluating the system
behavior not requiring the creation of several artifacts.

III. SYSTEM-LEVEL SIMULATION

According to Gries [10], during a system-level simula-
tion, the evaluation occurs at a high abstraction level. An
interconnection of architectural blocks like as processors,
memories, and buses represent the system. Coarse models such
as interaction processes or even complete procedures describe
the workload. This section describes the applied system-level
simulation framework, including the original simulator, the
simulator’s input file structure, and the performed modifica-
tions to deal with HTLP – to obtain the enhanced simulator.

A. The Original Simulator – SAVE

Miele et al. [17] propose the SAVE system-level simulation
framework implemented in SystemC and TLM to validate run-
time resource management policies for Heterogeneous System
Architectures (HSA) [6]. The framework [17] intends to deal
with the runtime management to allocate system resources to
applications, based on the PE’s efficiency and to fulfill Service
Level Agreement. The applications are modeled as task graphs
that include information about tasks types and latencies, per-
formance counters, threads, and others. Still, the architecture is
modeled as a set of generic resources, describing performance
and power models. The model’s parameters can be extracted
through simulation or execution in a real hardware, or even
estimated by an experienced developer. SAVE simulator does

Architecture

id : string
name : string

Processor

type : string
id : string
model : string
cluster : string

DVFS

Workload

id : string
name : string

Application

id : string
name : string
arrivalTime : ...

DefaultMapping

unit : string

ApplicationConstraints

ThroughputConstraint

min : string
max : string

ParallelizationInfo

Parallelize

unit : string
threads : string

Node

id : string
type : string
mapping : string
nonExecutable : string
heartbeat : string

Frequency

value : string
unit : string

Power

value : string
unit : string

Data

in : string
out : string
unit : string

PerformanceModel

processorModel : ...

Latency

value : string
Dependency

type : string
maxCycles : string
mapping : string
hetParall : string
maxThreads : string

VirtualPlataform

Constraints

id : string
name : string

Orchestrator

policy : string
period : string

Parameters

simulationDelay : string
powerUnit : string
frequencyUnit : string
timeUnit : string
timeResolution : string
orchestratorPeriod : string
applicationThroughputWindow : ...
statisticsPeriod : string

GlobalPowerPerformance

nodeID : string
value : string
unit : string
type : string 1..*

1

1

1..*

1

1

1..*
1

1..*

1

1

1

1

power

1
1

idlePower

1frequency

1

1

defaultFrequency
1

1

1
defaultLatency

1

1 1

1

1

1 1..*

1
src

1 1
tgt

1

1

*

1

1..*

1

1

1
1

1

1

0..1

+ orchestrator

1
11

1

1

11

1 1

Fig. 1. SAVE-htlp XML file elements and their relationships.

not provide the capability of splitting same purpose tasks in
parallel threads mapping them on different PE types. Hence,
the original framework was modified, and we named this
extended version as SAVE-htlp.

B. The Framework’s Input

An XML file provides both application and architecture
models to the simulation framework. This file also contains
the parameters values for each element of the architecture and
applications. The Fig. 1 presents a UML class diagram [22]
that conceptually illustrates the elements of an input XML file.

The XML file describes a VIRTUALPLATFORM, which
consists of an ARCHITECTURE, a WORKLOAD, and an OR-
CHESTRATOR, and have some properties such as simulation’
PARAMETERS and CONSTRAINTS. The ARCHITECTURE is
composed of PROCESSORs, that are profiled by DVFS (Dy-
namic Voltage and Frequency Scaling) elements in terms
of POWER, IDLEPOWER, and FREQUENCY. A WORKLOAD
includes all APPLICATIONs to be executed. An APPLICATION
is described by a task graph, which contains NODEs and
DEPENDENCies sets. A NODE describes an application task
and can be of two types: (i) Main tasks, which represent
application portions that are always executed sequentially by
the CPU; (ii) Elaboration tasks that represent kernels that can
be executed by the CPU, GPU, or other PE type, and can
be parallelized. NODEs contain a PERFORMANCEMODEL and
an input/output DATA. DEPENDENCY represents an edge in
the task graph. Edges can be of three types: (i) forward —
indicates the normal application’s advance to the next task;
(ii) backward — represents a loop edge; and (iii) branch
— indicates the advance to an elaboration task that can be
parallelized, possibly including other elaboration tasks that
can be executed in parallel on different PEs types. We here
extended the original DEPENDENCY properties for HTLP
execution: hetParall indicates that threads of the target task
can be instantiated in parallel together with threads of other
targets originated from the same task, and maxThreads defines

SW

HW

OS
Component

m1

k0

m0

m2

m3

c4 c5 c6 c7c0 c1 c2 c3

fw

fw

MALI

Homogeneous
GPU Parallelism

Heterogeneous
Parallelism

A
7

A
15

br
hetParall=false
maxThreads=8

m1

k1 k0

m0

m2

m3

bw
25

fw

br
hetParall=true
maxThreads=8

br
hetParall=true
maxThreads=8

fw

bw
25

fw fw

m1

k1

m0

m2

m3

fw

Homogeneous
CPU Parallelism

br
hetParall=false
maxThreads=8

fw

bw
25

Allocation

C
P

U

G
P

U

fwfw

Allocation Allocation
8 threads (CPU)8 threads

(CPU+GPU)

O
dr

oi
d

X
U

3

8 threads (GPU)
(Not in parallel in that case. The

system inserts the threads in a
FIFO structure for execution.)

W
or

kl
oa

d

Ta
sk

s’
 n

am
e

st
ar

tin
g

w
ith

:
m

 -
m

ai
n

ta
sk

k
- e

la
bo

ra
tio

n
ta

sk
 (k

er
ne

ls
)

Fig. 2. Heterogeneous Parallelism vs Homogeneous Parallelism.

the maximum number of (heterogeneous) parallel threads. To
illustrate the HTLP concept, the Fig. 2 shows models for three
sample applications and the Odroid-XU3 architecture [23]. On
the up right of Fig. 2, two application models employ ho-
mogeneous parallelism using eight threads in CPU and GPU,
respectively. On the up left, the model uses heterogeneous
parallelism via the creation of eight threads to be executed
concurrently in CPU and GPU. The attributes hetParall and
maxThreads defines each case. Section IV further discuss
details about the application and architecture models.

C. The Modified Simulator – SAVE-htlp

The modifications implemented in SAVE-htlp, com-
pared to the original framework [17], are next described.
SAVE-htlp allows that threads of different elaboration tasks
(which can be parallelized and executed in different types of
PE – described in Section III-B), achieved by the same previ-
ous task – i.e., sharing the same predecessor – can be initiated
in parallel in order to increase the system heterogeneity. In
addition, it has a controller to handle the join (in the next
task) of the created threads from a set of elaboration tasks.
The original framework allows threads that were created from
only one elaboration task per time and application. Moreover,
the number of threads to be created from an elaboration task
set (in a TLP portion) can be explicitly defined and different
for each TLP application part. Parameters in the application
graph model allow it (parameters hetParall and maxThreads
described in the DEPENDENCY class of Fig. 1 and in Fig.
2). SAVE-htlp is capable of dealing with nested loops
by resetting the cycles counters. It aims to deal with more
complex application models that can contain many nested loop
structures. In SAVE-htlp the threads’ latency is equal to the
instantiated task latency. So, the advantage is provided by the
possibility to create more threads while also executing fewer
iterations.

IV. CASE STUDY APPLICATION AND ARCHITECTURE

This section describes the architecture model (based on the
Odroid-XU3 platform) and a case study application (BMA –
Block-Matching Algorithm). BMA is a mode of finding match-
ing blocks in a digital video frames sequence. The BMA’s
goal is to get a block in the video frames representing the
best match regarding a reference block. Domains like Video
Coding (e.g., Motion Estimation) and Computer Vision (e.g.,
Object Tracking and Stereo Matching) apply such algorithms.
BMA applications must use similarity criteria such as, e.g.,
the Sum of Absolute Differences (SAD). We employ a BMA
implementation [9] as the base to the application model. Melo
et al. [9] have used the SAD criteria in BMA implementations
for GPU and FPGA. BMA has certain parallelization aspects
making it suitable to be explored in HTLP.

We manually build the control flow graph [24] of the BMA
application code described in [9] (from its main function) and
use it as the core application model. We have adapted this
graph to the input format used in the SAVE-htlp. However,
one can implement a way to generate it automatically from the
source code. It is worth mentioning that one can generate the
application model without the corresponding source code. The
application model is presented in Fig. 3. Each node presents
its mapping (CPU or GPU), latency, type, input/output data1,
and heartbeat update call [25] (when it is the case). The
latter is on task t19 (Fig. 3) where the application completes
the processing of a Coding Tree Unit (CTU). A CTU is a
processing unit of the High-Efficiency Video Coding (HEVC)
video standard [26]. The dependencies are annotated with its
type (forward, backward, or branch) and number of cycles in
a loop (backward edges). We can observe that three points
(elaboration tasks) in the application can be parallelized and
heterogeneously executed:

• srcB_filling: data preparation for sad_execute task.
According to the number of threads initiated for
sad_execute, an equal one is triggered for this task.

• sad_execute: execution of SAD calculation. The number
of threads for this task changes the cycles in the edge
(t14, t05_block_X) — denoted by N in Fig. 3. As more
threads started, fewer iterations will be needed.

• sad_grouping: grouping of SAD values — from 8x8
pixels size blocks into 64x64 pixels size CTU blocks.

We collect the parameters for performance and power
models by profiling the BMA application [9] running on an
Odroid-XU3 platform [23], featuring the Samsung Exynos
5422 Cortex-A15 quad-core and Cortex-A7 quad-core CPUs
and a Mali-T628 MP6 GPU [23]. Thus, such a platform is the
base of the case study architecture model.

We have adapted the BMA’s application code [9] to log the
tasks’ latencies. Next, we executed it on the A15 cluster at
2.0 GHz frequency. For performance parameters extraction, the
BMA application was executed 30 times coding five frames of

1The tasks latencies incorporate the memory operations delays. Thus, we
have used zero values for all tasks input and output data parameters. Fig. 3
presents these values only for modeling purposes.

fw

fw

fw

fw

fw

fw

fw

br

bw

7

fw
bw
7

fw

fw

br

fw

br

fw

fw

bw
N

fw

bw

7

br

fw

fw

bw
6

bw
3

fw

fw

bw
4

br

fw

fw

t00_init

[Mapping: Default is CPU]

Latency: 245.5837 (freq.: 2.0 GHz)

Task type: main

(Data) in: 0 out: 416×240×2

[HB:]

t01_frames

0.7012 (2.0 GHz)

main

in: 0 out: 0

t02_CTU_Y

0.0011 (2.0 GHz)

main

in: 0 out: 0

t03_CTU_X

0.0011 (2.0 GHz)

main

in: 0 out: 0

t04_block_Y

0.0011 (2.0 GHz)

main

in: 0 out: 0

t05_block_X

0.0011 (2.0 GHz)

main

in: 0 out: 0

t06_pixels_Y

0.0011 (2.0 GHz)

main

in: 0 out: 0

t07_pixels_X

0.0011 (2.0 GHz)

main

in: 0 out: 0

t08_srcB_filling

CPU

0.0011 (2.0 GHz)

main

in: 0 out: 1×T

t10

0

main

in: 8×T out: 8×8×T

t12_sadExecute_GPU

GPU

0.3966 (600 MHz)

elab

in: 8×8 out: 31×31×4

t17_sadGrouping_GPU

GPU

9.6471 (600 MHz)

elab

in: 31×31×4×8×8

out: 169×(1+1)

t19

0

main

in: 169×(1+1) out: 169×(1+1)

(1+1: X and Y displacement)

HB: 1

t21_videoNextFrame

0.9483 (2.0 GHz)

elab

in: 0 out: 416×240

t20

0

main

in: 0 out: 0

t23_End

0

main

in: 0 out: 0

t09

0

main

in: 1 out: 8×T

t11

0

main

in: 0 out: 0

t14

0

main

in: 31×31×4×T out: 31×31×4×8

t13_sadExecute_CPU

CPU

0.8661 (2.0 GHz)

elab

in: 8×8 out: 31×31×4

Search range:

 -15 to +15

4 bytes for SAD value

t15

0

main

in: 31×31×4×8 out: 31×31×4×8×8

t16

0

main

in: 0 out: 0

t22

0

main

in: 0 out: 0

t18_sadGrouping_CPU

CPU

40.1594 (2.0 GHz)

elab

in: 31×31×4×8×8

out: 169×(1+1)

 BMA (Block-Matching Algorithm) Application

- SAD (Sum of Absolute Differences) criteria.

 - Video Resolution: 416 x 240 (encoding of 5 frames)

 - Latencies in "ms" (milliseconds)

 - HB (heartbeat): count the processed CTUs.

 - Task Types:

 main: Main Task (CPU)

 elab: Elaboration Task (CPU | GPU)

 - Dependency (edges) types:

 fw: forward; br: branch; bw: backward

 - T - number of threads for srcB_filling and sad_execute tasks

 - N - cycles number in (t14, t05_block_x) loop edge:

 7: for one single thread on srcB_filling & sad_execute tasks

 3: for two threads on srcB_filling and sad_execute tasks

 1: for four threads on srcB_filling and sad_execute tasks

 0: for eight threads on srcB_filling and sad_execute tasks

 Total of Blocks in a CTU (64×64):

- 8×8 Blocks: 8×8

 - 8×16 Blocks: 8×4

 - 16×8 Blocks: 4×8

 - 16×16 Blocks: 4×4

 - 16×32 Blocks: 4×2

 - 32×16 Blocks: 2×4

 - 32×32 Blocks: 2×2

 - 32×64 Blocks: 2×1

 - 64×32 Blocks: 1×2

 - 64×64 Blocks: 1×1

 Total: 169

Fig. 3. BMA application model.

TABLE I
VALUES FOR THE PROCESSING ELEMENTS POWER MODELS

A15 A7 Mali-T628
Frequency

(MHz)
IdlePower

(W)
Power
(W)

IdlePower
(W)

Power
(W)

IdlePower
(W)

Power
(W)

2000 0.1809 1.4111
1900 0.1457 1.1632
1800 0.1220 0.9937
1700 0.1069 0.8686
1600 0.0957 0.7558
1500 0.0829 0.6665
1400 0.0744 0.5933 0.0296 0.1335
1300 0.0664 0.5301 0.0249 0.1179
1200 0.0591 0.4690 0.0208 0.1014
1100 0.0525 0.4134 0.0178 0.0882
1000 0.0464 0.3656 0.0152 0.0761
900 0.0408 0.3155 0.0128 0.0647
800 0.0354 0.2713 0.0107 0.0545
700 0.0330 0.2411 0.0089 0.0448
600 0.0304 0.2102 0.0071 0.0356 0.0517 0.3805
500 0.0275 0.1781 0.0058 0.0284
400 0.0242 0.1440 0.0049 0.0237
300 0.0201 0.1036 0.0039 0.0176
200 0.0155 0.0623 0.0029 0.0106

TABLE II
EXPERIMENTS CONFIGURATIONS

ET1 threads ET2 threads ET3 threads A15, A7, Mali
1 CPU 1 CPU 1 CPU 1 4, 4, 1
2 CPU 1 GPU 1 GPU 1 4, 4, 1
3 CPU 1 CPU|GPU 1 CPU|GPU 1 4, 4, 1
4 CPU 1 CPU|GPU 1 GPU 1 4, 4, 1
5 CPU 2 CPU+GPU 2 CPU 1 4, 4, 1
6 CPU 4 CPU+GPU 4 CPU 1 4, 4, 1
7 CPU 8 CPU+GPU 8 CPU 1 4, 4, 1
8 CPU 2 CPU+GPU 2 GPU 1 4, 4, 1
9 CPU 4 CPU+GPU 4 GPU 1 4, 4, 1
10 CPU 8 CPU+GPU 8 GPU 1 4, 4, 1
11 CPU 2 CPU 2 CPU 1 4, 4, 1
12 CPU 4 CPU 4 CPU 1 4, 4, 1
13 CPU 8 CPU 8 CPU 1 4, 4, 1
14 CPU 2 GPU 2 GPU 1 4, 4, 1
15 CPU 4 GPU 4 GPU 1 4, 4, 1
16 CPU 8 GPU 8 GPU 1 4, 4, 1
17 CPU 2 GPU 2 GPU 1 4, 4, 2
18 CPU 4 GPU 4 GPU 1 4, 4, 2
19 CPU 8 GPU 8 GPU 1 4, 4, 2
20 CPU 8 CPU+GPU 8 GPU 1 0, 8, 1
21 CPU 8 CPU+GPU 8 GPU 1 8, 0, 1
22 CPU 4 GPU 4 GPU 1 4, 4, 4
ET1: srcB_filling task; ET2: sad_execute task; ET3: sad_grouping task.
CPU|GPU: alternated CPU/GPU mapping; CPU+GPU: heterogeneous CPU/GPU mapping.

two video sequences from the Common Test Conditions (CTC)
[27]: (i) Blowing Bubbles, 416x240 pixels, 50 fps; and (ii)
Basketball Drill, 832x480 pixels, 50 fps. The average values
were used to devise the PEs’ performance model.

The power extraction was done using an interface to the
virtual file system to log data from the Odroid-XU3’ energy
monitor sensors [23]. Threads for the application and energy
reading were created and executed simultaneously. We have
executed the readings every five milliseconds. The frequency
range was 0.2 to 2.0 GHz for the A15 CPUs, and 0.2 to 1.4
GHz for the A7 CPUs (with 100MHz steps). For Mali, for both
latency and power profiling, the frequency was 600 MHz. Tab.
I presents the power models values for the PEs types, detailing
each frequency and its respective idle power and power.

V. EXPERIMENTAL SETUP

Tab. II presents the settings, including the configuration id
(#), the allocated PE type(s), the used number of threads,
and the number of processors (column A15, A7, Mali) for
each PE type available in the architecture for the srcB_filling,
sad_execute, and sad_grouping tasks execution. Furthermore,
we have used three SAVE-htlp resource mapping policies:

• Base: allocates all available CPUs (A15 and A7 clusters,
in such order), according to the number of threads;

Fig. 4. (A) Execution time, (B) performance, (C) consumed energy, and (D) power per configuration and policy.

• A7: allocates only the A7 CPUs, according to the number
of threads;

• A15: allocates only the A15 CPUs, according to the
number of threads.

In the configurations #1 to #4 only one thread is triggered
for each elaboration task. The PE type used in the srcB_filling
task is always CPU since it has a nature of a memory transfer
task. In all the configurations the task sad_grouping uses only
one thread since it is a sequential procedure with abundant
data parallelism. For the same task, the used PE type is CPU
or GPU (exclusively) in each configuration. Exceptionally,
setting #3 uses the CPU and GPU in an alternating way. The
sad_execute task has configurations with only one type of PE
(CPU or GPU) except for the settings #3 to #10. In #3 to
#4 is used the alternated mapping between CPU and GPU.
Settings #5 to #10 use the HTLP. According to the number of
threads and PEs, threads execute in both types of PE (GPU
and CPU). In configurations #17 to #19, the sad_execute is
performed considering one additional GPU to deal with the
sad_execute and sad_grouping kernels. The settings #1 to #19
were simulated with the three previously cited SAVE-htlp
resource mapping policies (Base, A7, and A15). Settings #20
to #22 were executed only with the Base policy. In #20
and #21, we consider the use of only A7 and A15 CPUs,
respectively. In #22, we extrapolate the number of GPUs to
four in the kernels’ execution – four threads in CPUs and
GPUs for the srcB_filling and sad_execute tasks, respectively.
In the simulations, execution time, performance, energy, and
power metrics were extracted and presented in Section VI.

We perform the experiments in a notebook equipped with an
Intel(R) Core(TM) i7-3612QM CPU (4 cores and 8 threads),
64bits, 2.10GHz frequency, 256KB L1 cache, 1MB L2 cache,
6MB L3 cache and 4GB main memory. The operating system
version is Linux 4.4.0-130-generic #156-Ubuntu. We use the
Linux time command (user mode) to log the simulation times.

VI. RESULTS AND DISCUSSION

Using the described policies, Fig. 4 (A) presents the ex-
ecution time of each configuration (Tab. II). Regarding the

performance, Fig. 4 (B) presents the frames per second rates
for the application in each setting and policy. Fig. 4 (C)
exhibits the total energy consumed by each setting. In the
same way, Fig. 4 (D) shows the data related to power.

Concerning the used SAVE-htlp policies, we can observe
that Base and A15 have similar behavior in all metrics.
However, the Base policy achieves better results in time
and performance. It is due to the use of more CPUs (A15
and A7) jointly. This scenario occurs when eight threads are
triggered, and almost all CPUs are used in parallel with the
GPU. A7 policy presents the worst time and performance
values, except in the settings #14 to #19, where the difference
is not significant. The higher number of threads only in GPU
(and one more GPU in #17 to #19) for the running of the
sad_execute task cause it, but is limited by the number of
GPUs. Regarding energy and power, A7 policy shows lower
values and yet little variations in #14 to #19 for time and
performance. These values show the high energy efficiency
and performance of GPUs. These findings indicates the GPU
dependency in BMA application kernels (sad_execute and
sad_grouping) to achieve better performances. We claim that
the Base policy is suitable to performance-oriented scenarios
since it can get an advantage of the total number of CPUs at
lower energy costs.

Using the configuration #1 in Base policy as the baseline,
Fig. 5 (A), (B), (C), and (D) presents an evaluation of the
settings in the resource mapping policies (Base, A7, and
A15) using the described metrics (Time, Performance, Energy,
and Power). In A7 and A15 policies, we can observe the
performance limitation regarding the use of four parallel
threads at most. Therefore, this reinforces the previous claim
about the Base policy. The following analysis considers only
the Base policy unless otherwise noted.

Between the settings with an Odroid-XU3 compatible archi-
tecture (#1 to #16), we can observe the high performance when
applying heterogeneous parallelism, i.e., a GPU processes
the sad_grouping task, and CPU and GPU computes the
sad_execute task threads (2, 4, or 8) – #8 to #10. These settings
employ CPU and GPU to process the sad_execute task threads

Fig. 5. Percentage gains for time (A), performance (B), energy (C), and power (D) for each configuration in the three resource policies (Base, A7, and A15)
with #1 in the Base policy as baseline.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
0

5

10

15

20

25

30

35
CPU-0 CPU-1 CPU-2 CPU-3 CPU-4 CPU-5
CPU-6 CPU-7 MALI-0 MALI-1 MALI-2 MALI-3

Config. #

E
n

er
g

y
(J

)

Configurations with four A15
CPUs (CPU-0 to CPU-3), four A7
CPUs (CPU-4 to CPU-7), and a
GPU (MALI-0), except:
- #17 to #19 with one additional
GPU (MALI-1)
- #22 with three additional GPUs
(MALI-1 to MALI-3)
- #20 with eight A7 CPUs (CPU-0
to CPU-7) and a GPU (MALI-0)
- #21 with eight A15 CPUs (CPU-
0 to CPU-7) and a GPU (MALI-0)

Configurations with four A15
CPUs (CPU-0 to CPU-3), four A7
CPUs (CPU-4 to CPU-7), and a
GPU (MALI-0), except:
- #17 to #19 with one additional
GPU (MALI-1)
- #22 with three additional GPUs
(MALI-1 to MALI-3)
- #20 with eight A7 CPUs (CPU-0
to CPU-7) and a GPU (MALI-0)
- #21 with eight A15 CPUs (CPU-
0 to CPU-7) and a GPU (MALI-0)

Fig. 6. Energy for each PE in the 22 configurations (in the Base policy).

and obtain advantage from use GPU to compute sad_grouping
task threads. The CPU is not beneficial for the sad_grouping
task due to their high latency and energy consumption.

Compared to the setting #1, #10 achieves gains circa 345%
of performance (running in a 77% lower time), consuming
approximately 68% less energy, and dissipating about 39%
more power. Regarding performance, we consider #10 (in
#1 to #16) the best configuration since it obtains the higher
performance consuming nearly 49% more energy compared to
setting #9 on A7 policy (the lowest consumed energy in #1 to
#16). About energy, we can emphasize the settings #14 to #19,
which uses only GPU in the sad_execute and sad_grouping
tasks. In these configurations, the consumed energy is similar
in all policies while the performance is near to #10.

Only not Odroid-XU3 compliant settings have achieved

similar or better performances compared to #10. Configura-
tions #17 to #19 have one additional GPU and significantly
increments the performance. In #20 and #21 was used only one
type of CPU. Setting #20 uses eight A7 CPUs and one GPU
to achieve a throughput similar to #10 consuming 31% of the
energy. On the other hand, #21 uses eight A15 CPUs and one
GPU to achieve the second higher performance consuming
47% more energy than #10. In #22, the four GPUs in the
architecture has achieved the higher performance and the
second lower energy consumption of the experiments. Com-
pared to #1, #22 has achieved gains of 447% in performance,
consuming 84% less energy, executing in an 81% lower time,
and dissipating 15% less power.

Using the Base policy, Fig. 6 presents the consumed energy
by each PE. In settings #1, #3, and #4 the high consumption
of the CPU-0 is evident, caused by the use of only one
thread. In #2 the use of solely GPU in the sad_execute and
sad_grouping kernels show its energy efficiency. Configura-
tions #5 to #10 employs the HTLP and affirms the necessity
of GPU in the processing of the sad_grouping task since #8
to #10 present lower values for energy and time. Settings
#11 to #13 shows that even with more threads, just CPUs
do not achieve comparable performance and still consume
more energy. Configurations #14 to #19 and #22 shows energy
consumptions similar to the ones obtained using the A7 policy,
but with a top like performances. In #20 and #21, A7 CPUs
and a GPU can achieve top performances, while A15 CPUs
shows its energy cost to obtain high throughput.

Concerning the sad_execute task, during the experiments
threads process each the same amount of data. However, the
GPU thread finishes its work earlier, making the CPU threads
represent a bottleneck, implying in the overall latency. Thus,
for the data partition or the number of threads in CPUs and
GPUs, we could use another strategy. An approach is to assign
a not equal data size for the CPU and GPU threads or even

Fig. 7. Simulation times for each setting in the resource policies.

a different partition of the threads between CPUs and GPUs,
intending to get a similar measure of time to each one complete
its workload. Singh et al. [28] present promising strategies.

In the experiments, the simulation times varied from 1.07
to 8.51 minutes and the average was 2.47 minutes per con-
figuration. Thus, one can evaluate many scenarios in a short
period. Fig. 7 shows the simulation times for each setting in
the resource policies (Base, A7, and A15).

VII. CONCLUSIONS AND FUTURE WORK

This work has presented the exploration of HTLP through
a case study. SAVE-htlp was adopted to employ application
and architecture models through the rapid simulation of 22
different settings, using performance and power models based
on values extracted from a real platform. Settings with HTLP
have shown better results caused by the fitter matching be-
tween the tasks, its number of threads, and used PE types.

We stress the importance of knowing the application char-
acteristics to obtain benefit from each TLP’ portion. The BMA
has three such parts: (i) srcB_filling task prepares data to
be processed and can be parallelized only in CPU threads,
(ii) sad_execute threads are numerous and are worth create
them on GPUs and CPUs in a parallel way (HTLP), and (iii)
sad_grouping have abundant data parallelism processed by the
GPU sequentially. Compared to the baseline, the best setting
with HTLP has executed in a 77% lower time and consumed
68% less energy.

Early DSE needs executable models. The presented mod-
els can be defined in development initiatives and simulated
allowing to direct design decisions. Moreover, system-level
simulation enables to explore many settings in a short period.

As future work, we plan to extend the SAVE-htlp frame-
work in at least three aspects: (i) provides FPGA processing
units, (ii) add resource policies to manage the HTLP and take
advantage of it, and (iii) collect and provide memory usage
details, like data transfers and contention.

REFERENCES

[1] M. Voelter, D. Ratiu, B. Kolb, and B. Schaetz, “Mbeddr: Instantiating
a language workbench in the embedded software domain,” Automated
Software Engineering, vol. 20, no. 3, pp. 339–390, 2013.

[2] F. Firouzi et al., “Internet-of-things and big data for smarter healthcare:
From device to architecture, applications and analytics,” Future Gener-
ation Computer Systems, vol. 78, pp. 583 – 586, 2018.

[3] M. Hendriks, T. Basten, J. Verriet, M. Brassé, and L. Somers, “A
blueprint for system-level performance modeling of software-intensive
embedded systems,” International Journal on Software Tools for Tech-
nology Transfer, vol. 18, no. 1, pp. 21–40, 2016.

[4] F. Herrera et al., “The COMPLEX methodology for UML/MARTE
Modeling and design space exploration of embedded systems,” Journal
of Systems Architecture, vol. 60, no. 1, pp. 55–78, 2014.

[5] G. De Micheli and R. K. Gupta, “Hardware/software co-design,” Pro-
ceedings of the IEEE, vol. 85, no. 3, pp. 349–365, 1997.

[6] “HSA Foundation,” http://www.hsafoundation.com/, 2018.
[7] P. Rogers, “Heterogeneous system architecture overview,” in 2013 IEEE

Hot Chips 25 Symp. (HCS), Aug 2013, pp. 1–41.
[8] D. P. Scarpazza, P. Raghavan, D. Novo, F. Catthoor, and D. Verkest,

“Software simultaneous multi-threading, a technique to exploit task-
level parallelism to improve instruction- and data-level parallelism,”
in Integrated Circuit and Syst. Design. Power and Timing Modeling,
Optimiz. and Simulation. Springer, 2006, pp. 12–23.

[9] M. Melo et al., “A parallel motion estimation solution for heterogeneous
system on chip,” in Integrated Circuits and Systems Design (SBCCI),
2016 29th Symposium on. IEEE, 2016, pp. 1–6.

[10] M. Gries, “Methods for evaluating and covering the design space during
early design development,” Integration, the VLSI journal, vol. 38, no. 2,
pp. 131–183, 2004.

[11] D. D. Gajski, S. Abdi, A. Gerstlauer, and G. Schirner, Embedded system
design: modeling, synthesis and verification. Springer Science &
Business Media, 2009.

[12] G. Liebel, N. Marko, M. Tichy, A. Leitner, and J. Hansson, “Model-
based engineering in the embedded systems domain: an industrial survey
on the state-of-practice,” Software & Systems Modeling, pp. 1–23, 2016.

[13] X. An, A. Gamatié, and E. Rutten, “High-level design space exploration
for adaptive applications on multiprocessor systems-on-chip,” Journal of
Systems Architecture, vol. 61, no. 3–4, pp. 172–184, 2015.

[14] C. Ptolemaeus, System design, modeling, and simulation: using Ptolemy
II. Ptolemy.org, Berkeley, 2014, vol. 1.

[15] C. Erbas, A. D. Pimentel, M. Thompson, and S. Polstra, “A framework
for system-level modeling and simulation of embedded systems archi-
tectures,” EURASIP Journal on Embedded Syst., no. 1, p. 82123, 2007.

[16] K. Grüttner et al., “The complex reference framework for hw/sw co-
design and power management supporting platform-based design-space
exploration,” Microprocessors and Microsystems, vol. 37, no. 8, pp. 966–
980, 2013.

[17] A. Miele, G. C. Durelli, M. D. Santambrogio, and C. Bolchini, “A
System-Level Simulation Framework for Evaluating Resource Man-
agement Policies for Heterogeneous System Architectures,” in Digital
System Design, 2015 Euromicro Conf. on. IEEE, 2015, pp. 637–644.

[18] B. Nogueira, P. Maciel, E. Tavares, R. M. A. Silva, and E. Andrade,
“Multi-objective optimization of multimedia embedded systems using
genetic algorithms and stochastic simulation,” Soft Computing, pp. 1–
18, 2016.

[19] G. Callou et al., “Energy consumption and execution time estimation
of embedded system applications,” Microprocessors and Microsystems,
vol. 35, no. 4, pp. 426–440, 2011.

[20] H. D. Patel and S. K. Shukla, Ingredients for Successful System Level
Design Methodology. Springer, 2008.

[21] L. Cai and D. Gajski, “Transaction level modeling: An overview,” in
Proceedings of the 1st IEEE/ACM/IFIP International Conference on
Hardware/Software Codesign and System Synthesis, ser. CODES+ISSS
’03. New York, NY, USA: ACM, 2003, pp. 19–24.

[22] H. Gomaa, Software modeling and design: UML, use cases, patterns,
and software architectures. Cambridge University Press, 2011.

[23] Hardkernel, “ODROID-XU3,” http://www.hardkernel.com/main/
products/prdt_info.php?g_code=g140448267127, 2018.

[24] T. J. McCabe, “A complexity measure,” IEEE Transactions on software
Engineering, no. 4, pp. 308–320, 1976.

[25] H. Hoffmann, J. Eastep, M. D. Santambrogio, J. E. Miller, and A. Agar-
wal, “Application heartbeats: A generic interface for specifying program
performance and goals in autonomous computing environments,” in
Proc. of the 7th Int. Conf. on Autonomic Computing. New York, NY,
USA: ACM, 2010, pp. 79–88.

[26] G. J. Sullivan, J. Ohm, W.-J. Han, and T. Wiegand, “Overview of the
high efficiency video coding (hevc) standard,” IEEE Trans. on Circuits
Syst. for Video Technol., vol. 22, no. 12, pp. 1649–1668, 2012.

[27] K. Sharman and K. Suehring, “Common test conditions,” Joint Col-
laborative Team on Video Coding of ITU-T SG16 WP3 and ISO/IEC
JTC1/SC29/WG11. JCTVC-AC1100. Macao, China, Tech. Rep., 2017.

[28] A. K. Singh, A. Prakash, K. R. Basireddy, G. V. Merrett, and B. M. Al-
Hashimi, “Energy-efficient run-time mapping and thread partitioning of
concurrent opencl applications on cpu-gpu mpsocs,” ACM Trans. Embed.
Comput. Syst., vol. 16, no. 5s, pp. 147:1–147:22, Sep. 2017.

