
Regular languages as local functions

with small alphabets ⋆

Stefano Crespi Reghizzi and Pierluigi San Pietro

Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB)

Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano I-20133

stefano.crespireghizzi@polimi.it pierluigi.sanpietro@polimi.it

Abstract. We extend the classical characterization (a.k.a. Medvedev theorem) of any regular

language as the homomorphic image of a local language over an alphabet of cardinality depend-

ing on the size of the language recognizer. We allow strictly locally testable (slt) languages of

degree greater than two, and instead of a homomorphism, we use a rational function of the lo-

cal type. By encoding the automaton computations using comma-free codes, we prove that any

regular language is the image computed by a length-preserving local function, which is defined

on an alphabet that extends the terminal alphabet by just one additional letter. A binary alphabet

suffices if the local function is not required to preserve the input length, or if the regular lan-

guage has polynomial density. If, instead of a local function, a local relation is allowed, a binary

input alphabet suffices for any regular language. From this, a new simpler proof is obtained

of the already known extension of Medvedev theorem stating that any regular language is the

homomorphic image of an slt language over an alphabet of double size.

1 Introduction

The family of regular languages has different characterizations using regular expres-

sions, logical formulas or finite automata (FA). In the latter approach the more abstract

formulation, often named Medvedev theorem [6, 8], uses a local language (i.e., a strictly

locally testable (slt) [5] language of testability degree k = 2) and a letter-to-letter ho-

momorphism: every regular language R ⊆ Σ∗ is the homomorphic image of a local

language, called the source, over another alphabet Λ; the alphabetic ratio
|Λ|
|Σ| is in the

order of the square of the number of FA states. Continuing a previous investigation [3]

motivated by the attractive properties of slt encoding, we address the following ques-

tion: how small can the source alphabet, or, better, the alphabetic ratio, be? We recall

the answer provided by the generalized Medvedev theorem [3]: any regular language

is the homomorphic image of a k-slt language over an alphabet Λ of cardinality 2|Σ| –
but in general not less – where k is in the order of the logarithm of the FA size. Thus

the minimal alphabetic ratio is independent from the FA size.

The present study concerns new possibilities of reducing the source alphabet size,

while generalizing Medvedev theorem in a different direction: the homomorphism is

replaced by a rational function [1] (also known as transduction) of the local type [9].

Loosely speaking, a local function defines a mapping from a source language L ⊆
Λ∗ to a target language R ⊆ Σ∗ by means of a partial local mapping from words

⋆ Work partially supported by CNR - IEIIT.

2 S. Crespi Reghizzi, P. San Pietro

of fixed length k ≥ 1, over Λ, to letters of Σ: parameter k is called the degree of

locality of the function. To the best of our knowledge, the approach to regular language

characterization using local rational functions instead of homomorphisms, has never

been considered before, in this context.

Since a homomorphism is a function of locality degree one, the main question we

address is whether every regular language is the image of a local function, defined on

a source alphabet of cardinality smaller that 2|Σ|; the latter, as said, is the minimum

needed for a characterization using homomorphism.

Exploiting the properties of comma-free codes [2] to encode the computations of an

FA, we obtain a series of results. First, the main question above bifurcates depending on

the local function being length-preserving or not. If the local function is allowed to be

length-decreasing, we show that every regular language is the target of a local function

defined on a binary alphabet. Second, assuming that the local function preserves the

input length up to a fixed constant value, we prove that the source alphabet of size |Σ|+
1 suffices to characterize any regular language using a local function. Moreover, for the

subfamily of regular languages having polynomial density, we show that a binary source

alphabet permits to define every language using a local length-preserving function.

In a further generalization, the second part of the paper moves from a local function

to a local relations, i.e., a set of pairs of source and target words. Again, we assume the

relation to be length-preserving, and we prove that the source alphabet can be taken to

be binary, independently of the complexity of the target regular language. At last, the

latter results permits to obtain a new, simpler proof of the already mentioned homomor-

phic characterization theorem in [3].

It is noteworthy that although the theorems differ with respect to their use of local

functions/relations and on the length-preserving feature, all the proofs have a common

structure and rely on a formal property of comma-free codes when they are mapped by

a morphism and a local function/relation. Stating such property as a preliminary lemma

permitted considerable saving in the following proofs.

Altogether, a rather complete picture results about the minimum alphabet size needed

to characterize regular languages by means of local functions (including homomor-

phism as special case) and relations.

Paper organization. Sect. 2 lists the basic definitions for slt languages and rational

local functions/relations; it also includes the definition and the number of comma-free

codes, and states and proves the preliminary lemma mentioned above. Sect. 3 defines

the local function that encode the labelled paths of an FA, proves the results for length-

decreasing and then for length-preserving functions, and finishes with the case of lan-

guages having polynomial density. Sect. 4 presents the characterization of regular lan-

guages based on local relations, and the new proof of the homomorphic characterization

result in [3]. Sect. 5 summarizes the main results.

2 Preliminaries

For brevity, we omit the basic classical definitions for language and automata theory

and just list our notations. The empty word is denoted ε. The Greek upper-case letters

Regular languages as local functions with small alphabets 3

Γ,∆,Θ,Λ and Σ denote finite terminal alphabets. For clarity, when the alphabet ele-

ments are more complex than single letters, e.g., when a finite set of words is used as

alphabet, we may also embrace the alphabet name and its elements between “〈” and

“〉”. For a word x, |x| denotes the length of x. The i-th letter of x is x(i), 1 ≤ i ≤ |x|,
i.e., x = x(1)x(2) . . . x(|x|). For any alphabet, Σ≤k stands for

⋃

1≤i≤k Σ
i. Let # be a

new character not present in the alphabets, to be used as word delimiter to shorten some

definitions, but not to be counted as true input symbol.

A homomorphism ξ : Λ∗ → Σ∗ is called letter-to-letter if for every b ∈ Λ, ξ(b) is in Σ.

A finite automaton (FA) A is defined by a 5-tuple (Σ,Q,→, I, F) where Q is the set

of states, → the state-transition relation (or graph) →⊆ Q × Σ × Q; I and F are

resp. the subsets of Q comprising the initial and final states. If (q, a, q′) ∈→, we write

q
a
→ q′. The transitive closure of → is defined as usual, e.g., we also write q

x
→ q′

with x ∈ Σ+ with obvious meaning, and call it a path, with an abuse of language (for

a nondeterministic FA, q
x
→ q′ may actually correspond to more than one path in the

transition graph). We denote the label x of the path α = q
x
→ q′ by lab(α). The starting

and ending states are resp. denoted by in(α) = q and out(α) = q′. If q ∈ I and q′ ∈ F ,

the path is called accepting.

Strictly locally testable language family There are different equivalent definitions of

the family of strictly locally testable (slt) languages [5, 4]; without loss of generality,

the following definition is based on bordered words and disregards for simplicity a finite

number of short words that may be present in the language.

The following short notation is useful: given an alphabet Λ and for all k ≥ 2, let

Λk
= #Λk−1 ∪ Λk ∪ Λk−1#.

For all words x, |x| ≥ k, let Fk(x) ⊆ Λk
be the set of factors of length k present in

#x#. The definition of Fk is extended to languages as usual.

Definition 1 (Strict local testability). A language L ⊆ Λ∗ is k-strictly locally testable

(k-slt), if there exist a set Mk ⊆ Λk
such that, for every word x ∈ Λ∗, x is in L if, and

only if, Fk(x) ⊆ Mk. Then, we write L = L(Mk). A language is slt if it is k-slt for

some value k, which is called the testability degree. A forbidden factor of Mk is a word

in Λk
−Mk.

The degree k = 2 yields the family of local languages. The k-slt languages form an

infinite hierarchy under inclusion, ordered by k.

Local relations and functions Let Λ and Σ be finite alphabets, called the source and

target alphabet, respectively. A rational relation (also called a transduction) [1, 9, 8]

over Λ and Σ is a rational (i.e., regular) subset r ⊆ Λ+×Σ∗. The image of a word x ∈
Λ+ is the set of words y ∈ Σ∗ such that (x, y) ∈ r. The source and target languages of

a rational relation are respectively defined as {x ∈ Λ+ | ∃y ∈ Σ∗ : (x, y) ∈ r} and as

{y ∈ Σ+ | ∃x ∈ Λ+ : (x, y) ∈ r}.

A rational relation r is length-preserving if, for all pair of related words, the length of

the words differ by at most a constant value, i.e., there exists m ≥ 0 such that for all

(x, y) ∈ r, abs(|x| − |y|) ≤ m.

4 S. Crespi Reghizzi, P. San Pietro

Let r be a rational relation such that, for all x ∈ Λ∗, |{y ∈ Σ+ | (x, y) ∈ r}| ≤ 1. Then

the mapping f : Λ∗ → Σ∗ defined by f(x) = y is a (partial) function.

Next, we focus on the rational relations/functions called local1 [9], where there exists

k > 0 such that the image of each word x ∈ Λ+ only depends on its factors of length k;

such factors may be visualized as the contents of window of width k that slides frome

left to right on the source word. More precisely, for every word w ∈ Λ∗∪#Λ∗∪Λ∗#∪
#Λ∗#, with |w| ≥ k, we define the scan [9], denoted by Φk(w), as the sequence:

Φk(w) = 〈w(1) . . . w(k)〉, 〈w(2) . . . w(k + 1)〉, . . . , 〈w(|w| − k + 1) . . . w(|w|)〉.

Clearly, a scan Φk(w) can be viewed as a word over the “alphabet” Λk
#, that we denote

〈Λk
#〉 to prevent confusion. Such alphabet comprises all k-tuples in #Λk−1 ∪ Λk ∪

Λk−1#. For instance, Φ3(#abbab#) is the word 〈#ab〉〈abb〉〈bba〉〈bab〉〈ab#〉.

Definition 2 (local function / relation). A (partial) function f : Λ∗ → Σ∗ is local of

degree k, k ≥ 1, if there exist a finite set T ⊆ 〈Λk
#〉, and a homomorphism ν : T ∗ →

Σ∗, called associated, such that f(x) = ν (Φk(#x#)).
A local relation r ⊆ Λ∗×Σ∗ of degree k is similarly defined, using a finite substitution

σ : T ∗ → 2Σ
∗

instead of a homomorphism, as: r = {(x, σ(Φk(#x#)))}.

A function (a relation) is called local if it is local of degree k for some k ≥ 1.

It is obvious that the source language of a local function/relation is a k-slt language,

defined by the finite set T of factors.

Comma-free codes A finite set X ⊂ Λ+ is a code [2] if every word in Λ+ has at

most one factorization in words (also known as codewords) of X , more precisely: for

any u1u2 . . . um and v1v2 . . . vn in X , where the u and v are codewords, the identity

u1u2 . . . um = v1v2 . . . vn holds only if m = n and ui = vi for 1 ≤ i ≤ n. We use

a code X to represent a finite alphabet Γ by means of a one-to-one homomorphism,

denoted by J KX : Γ+ → Λ+, called encoding, such that JαKX ∈ X for every α ∈ Γ .

Let n ≥ 1. A set X ⊂ Λn is a comma-free code, if, intuitively, no codeword overlaps

the concatenation of two codewords: more precisely, for any t, u, v, w ∈ Λ∗, if tu, uv,

vw are in X , then u = w = ε, or t = v = ε.

Number of words of comma-free code We need the following result (see [7] and its

references) on the number of codewords in a comma-free code of length k over an

alphabet with cardinality |Λ| = n. Let ℓk(n) =
1
k

∑

µ(d)nk/d, where the summation

is extended over all divisors d of k, and µ is the Möbius function defined by

µ(d) =







1 if d = 1
0 if d has any square factor

(−1)r if d = p1 p2 . . . pr where p1 p2 . . . pr are distinct primes.

Proposition 1. For every alphabet with n letters and for every odd integer k ≥ 1 there

is a comma-free code of length k with ℓk(n) words.

1 Unfortunately, the adjective ”‘local”’, for slt languages means of testability degree two,

whereas for the locality degree of functions, it means any integer value.

Regular languages as local functions with small alphabets 5

The definition of the Möbius function µ is such that if k is a prime number the summa-

tion in the formula is just equal to nk − n, i.e., for k prime:

ℓk(n) =
nk − n

k
. (1)

Comma-free codes and local functions/relations The next lemma will be repeatedly

invoked in later proofs.

Lemma 1. Let Λ, Γ and Σ be finite alphabets and X ⊂ Λk be a comma-free code of

length k, for some k > 1, such that |X | = |Γ |. Let L ⊆ Γ+ be the 2-slt language

L(M2) defined by a set M2 ⊂ Γ 2
#.

1. The encoding of L by means of code X , i.e., the language JLKX , is a 2k-slt lan-

guage included in (Λk)∗.

2. Given a homomorphism π : Γ ∗ → Σ∗, the language π(L) is the target language

of a local function f : Λ∗ → Σ∗ of degree 2k, having JLKX as source language.

3. Given a finite substitution σ : Γ ∗ → 2Σ
∗

, the language σ(L) is the target of a local

relation r ⊆ Λ∗ ×Σ∗ of degree 2k, having JLKX as source language.

Proof. We first claim that XX+ is a (2k)-slt language. Let F2k(XX+) be the set of

the factors of length 2k of #XX+#, hence it is obvious that XX+ ⊆ L(F2k(XX+)).
We prove the converse inclusion by contradiction. Let z ∈ Λ+ be such that F2(z) ⊆
F2k(XX+) but z 6∈ XX+. Since every word in F2k(XX+) must have a code x ∈ X
has a factor, then for z not to be in L(F2k(XX+)), the set F2k(z) must include a word

of the form xy ∈ Λ2k, with x ∈ X , y 6∈ X, y ∈ Λk, or a word of the form xy#, with

x ∈ X, y ∈ Λ<n. We only consider the former case, since the latter is analogous. Since

xy ∈ F2k(XX+), there is a word p ∈ XX+ including xy as a factor of length 2k.

Since p ∈ XX+, p must be of the form X∗txyΛ+, with t 6= ε (otherwise y ∈ X),

|t| < k, and there exist u, v ∈ Λ+ such that uv = x ∈ X and tu ∈ X ; therefore, p has

the form X∗tuvwX∗, with w being a non empty prefix of y and such that also vw ∈ X .

By definition of comma-free code, since the three words tu, uv and vw are in X , either

t = v = ε, or u = w = ε, a contradiction with the assumption that all those words are

in Λ+.

We need a few definitions. Let Ψ2k ⊂ Λ2k
be the set of forbidden factors of M2 when

encoded with X , i.e., the set:

Ψ2k = {#JαKXΛk−1 | α ∈ Γ,#α /∈ M2} ∪ {JαβKX | α, β ∈ Γ, αβ /∈ M2}∪
{Λk−1JβKX# | β ∈ Γ, β# /∈ M2}.

(2)

To define language JLKX we use the following set which avoids the forbidden factors:

M2k = F2k(XX+)− Ψ2k. (3)

Clearly, the inclusion L(M2k) ⊆ X+ holds since M2k ⊆ F2k(XX+).
Part (1). We claim that L(M2k) is exactly the language JLKX , i.e., for any x ∈ Λ+,

x ∈ JLKX if, and only if, F2k(JxKX) ⊆ M2k.

6 S. Crespi Reghizzi, P. San Pietro

We prove L(M2k) ⊆ JLKX . Let x ∈ L(M2k) therefore F2k(x) ⊆ M2k and, by contra-

diction, let x /∈ JLKX . Since x ∈ XX+ and JLKX ⊆ X+, x must contain a factor of

one of the forbidden forms (2) in Ψ2k, a contradiction.

We prove JLKX ⊆ L(M2k). Let x ∈ JLKX ; it is enough to show that F2k(x) ⊆ M2k. By

contradiction, assume that there is w ∈ F2k(x), with w /∈ M2k. Since w ∈ F2k(XX+),
it must be w /∈ Ψ2k. Therefore, w can only be of the form yJαKXz, with yz ∈ Λk, for

some α ∈ Γ , with both y, z 6= ε, otherwise x could not be the comma-free encoding of

a word of L while having a factor not in Ψ2k. However, since x ∈ X+, there exist β, γ
such that w′ = JγKXJαKXJβKX is a factor of x, with y a suffix of γ and z a prefix of

β. If at least one of JγKXJαKX , JαKXJβKX is in Ψ2k, then x /∈ JLKX , a contradiction.

If both JγKXJαKX , JαKX JβKX /∈ Ψ2k, then by definition of F2k(XX+) it is necessary

that yJαKXz ∈ M2k, also a contradiction.

Part (2). Define a homomorphism ν′ : 〈Λ2k
〉∗ → Σ∗ for every z ∈ 〈Λ2k

〉, by

means of the following cases, for all u ∈ Λ+:

H1 : if z has the form 〈#u〉, let ν′(z) = ε
H2 : if z has the form 〈JαKX JβKX 〉, for some α, β ∈ Γ, let ν′(z) = π(α)
H3 : if z has the form 〈u〉, with u 6= 〈JαKX JβKX∀α, β ∈ Γ, let ν′(z) = ε
H4 : if z has the form 〈uJαKX#〉, let ν′(z) = π(α).

(4)

Loosely speaking, the image is a non-empty word in two cases: H2, when the ”sliding

window” contains two codewords, and H4, when the window ends with a codeword

followed by #.

The local function f ′ : Λ∗ → Σ∗, defined (as in Def. 2) by applying morphism ν′ to

the scan Φ2k, is total, since it is defined for every γ ∈ Λ2kΛ∗. This is useful in the

following proof.

If, as usual, we consider M2k as an alphabet, denoted as 〈M2k〉, we can define a ho-

momorphism ν : 〈M2k〉
∗ → Σ∗, as ν(z) = ν′(z) for every z ∈ 〈M2k〉 ⊆ 〈Λ2k

〉.
Let f : Λ∗ → Σ∗ be the local function defined as f(x) = ν(Φ2k(#x#)), for all

x ∈ L(M2k), which is thus defined only over L(M2k). We claim that the target lan-

guage of f is π(L).

i) We first prove that π(L) ⊆ f(Λ∗). The proof is by induction on the length n ≥ 2 of

words in L (ignoring shorter words as usual). Precisely, the induction hypothesis is:

if z ∈ Γ+ has length n ≥ 2, then ν′(Φ2k(#JzKX)) = π(z).

From this the thesis follows immediately: if y ∈ π(L), then y = π(z) for some z ∈
L ⊆ Γ+; obviously, F2k(JzKX) ⊆ M2k so f ′ is defined. Since f, f ′ have the same

value where they are both defined, it follows that f(JzKX) = f ′(JzKX) = π(z) .

Base case: if |z| = 2, then z = αβ, for α, β ∈ Γ . By definition, the set M2 contains

#α, αβ, β#. Thus, the set F2k(JαβKX) ⊆ M2k comprises three words: t1 = #JαKXv,

t2 = JαβKX , t3 = uJβKX#, for suitable u, v ∈ Λk−1. By Eq. (4), ν′(t1) = ε, ν′(t2) =
π(α), ν′(t3) = π(β). Since Φ2k(x) = t1t2t3, we have ν′(t1t2t3) = π(α)π(β).
Inductive step: assume now |z| > 2 and that the induction hypothesis holds for every

word z′ ∈ Γ+ with |z′| < |z|. Word z can be factored into δαβγ, where δ ∈ Γ ∗,

α, β, γ ∈ Γ . Let z′ = δαβ: by induction hypothesis, ν′(Φ2k(#Jz′KX)) = π(z′) =
π(δαβ). Let u be the suffix of length k − 1 of β: Then, ν′(Φ2k(#JδαβγKX#)) =

Regular languages as local functions with small alphabets 7

ν′(Φ2k(#JδαβKX)) · ν′(Φ2k(uJγKX#)) = π(δαβ) · ν′(Φ2k(uJγKX#)).
By definition of ν′ (case H4), ν′(Φ2k(uJγKX#)) = π(γ), hence the thesis follows.

ii) We now show that f(Λ∗) ⊆ π(L). It is enough to prove by induction on n ≥ 2k that

for every x ∈ XX+ ⊆ Λ+ of length n, there exists z ∈ Γ+ s.t. f ′(x) = π(z). (5)

In fact, to prove (ii), it suffices to notice that if y ∈ f(Λ∗), then there is x ∈ X+ such

that y = f(x) is defined (i.e., F2k(x) ⊆ M2k): since by (5) f ′(x) = π(z), we have

f(x) = f ′(x) = π(z) (functions f and f ′ are the same where f is defined).

We prove the base case n = 2k of (5). Let x = JαKXJβKX for α, β ∈ Γ . As in the proof

of Part (1), F2k(x) ⊆ M2k is composed of three words: t1 = #JαKXu, t2 = JαβKX ,

t3 = vJβKX#, for suitable u, v ∈ Λk−1. Since ν′ is total, f ′(x) = ν′(Φ2k(#x#) is by

definition ν′(t1)ν
′(t2)ν

′(t3) = π(α)π(β) = π(αβ).
The inductive case is also trivial. Let x ∈ XX+, |x| = n, with the induction hypothesis

holding for words of length less than n. Word x can be factored into x′x′′, with x′ ∈
X+, x′′ ∈ X . By induction hypothesis, there exists z′ ∈ Γ+ such that f ′(x′) = z′. The

proof is then analogous to the base case.

Part (3). (Sketch) We notice that for every z ∈ Γ , the substitution σ(z) is a finite

set of words over Σ, and we let m be the length of the longest word in σ(Γ). We

can thus define a finite alphabet 〈Θ〉, whose elements are the subsets in 2(Σ
≤m), and

a new finite substitution τ : 〈Θ〉∗ → 2(Σ
≤m), associating every symbol in 〈Θ〉 with

its corresponding set of words. We define the homomorphism π : Γ ∗ → 〈Θ〉∗, as

∀z ∈ Γ, π(z) = 〈σ(z)〉.
Then, the substitution σ can be defined as the composition of substitution τ with homo-

morphism π, i.e., σ(L) = τ(π(L)).
By Part (2), there is a local function f : Λ∗ → Θ∗ such that its target language is equal

to π(L). It is then clear that τ(f(L)) is a local relation. ⊓⊔

Example 1. We first illustrate Def. 2. Let Λ = {a, b} and Σ = {0, 1}. We define

a local function f : {a, b}∗ → {0, 1}∗ of degree 4. Let the set T ⊆ Λ4
be T =

F4 ({aab, bab}
+). To finish, let the associated homomorphism ν : T ∗ → Σ∗ be:

{

ν(#aab) = 0, ν(baab) = 0, ν(bbab) = 1,
for all other z ∈ F4 ({aab, bab}

+) : ν(z) = ε.

Notice that ν is undefined for all other words in Λ4
#, such as #a3 and abab. The target

language of f is 0{0, 1}∗; we show how to compute a value of f :

f(aab bab) = ν (Φ4(#aab bab#))
= ν(〈#aab〉) ν(〈aabb〉) ν(〈abba〉) ν(〈bbab〉) ν(〈bab#〉)
= 0εε1ε = 01.

Observe that X = {aab, bab} is a comma-free code of length 3, therefore {aab, bab}+

is a 6-slt language, although in this particular case is also 4-slt. If we encode 0 and

1 resp. with the codewords aab and bab, then the function f can be defined as fol-

lows: f (JzKX) =

{

z, if z ∈ 0(0 ∪ 1)∗

⊥, otherwise
. Clearly function f is not length-preserving,

because of the definition of ν.

To illustrate Part 1 of Lemma 1, observe that L = 0(0 ∪ 1)∗ is 2-slt, with L = L(M2)
and M2 = {#0, 00, 01, 10, 11, 0#, 1#}. Since the code length is 3, the language

8 S. Crespi Reghizzi, P. San Pietro

JLKX is 6-slt; its defining set M6 has the form of Eq. (3); we just list some factors:

M6 = {#aabaa,#aabba, aabaab, . . . , abaaba, . . . abaab#} where codewords are

evidenced in bold.

3 Characterization of regular languages by local functions

By the extended Medvedev theorem [3] (reproduced below in Th. 5), every regular lan-

guage over Σ is the homomorphic image of an slt source language over an alphabet Λ,

where |Λ| = 2|Σ|, and a smaller alphabet does not suffice in general. Instead of a ho-

momorphism, we study the use of a local function (of degree greater than one) such that

its target language is exactly the regular language to be defined. Then, the main question

is how small the source alphabet can be. The first answer (Th. 1) is that a binary source

alphabet suffices if the local function is not required to be length-preserving. Second,

Th. 2 says that for a local length-preserving function, a source alphabet containing just

one more letter than the target alphabet suffices. Then, a specialized result (Th. 3) for

regular languages of polynomial density, says that a length-preserving local function

over a binary source alphabet suffices, irrespectively of the size of Σ.

Theorem 1. For every regular language R ⊆ Σ∗, there exist a binary alphabet ∆ and

a local function f : ∆∗ → Σ∗, such that the target language of f is R.

Proof. Let A = (Σ,Q,→, I, F) be an FA recognizingR and let Γ =→ be the set com-

prising the edges of A; let m = |Γ |. Choose a prime k such that in Eq. (1) ℓk(2) ≥ m:

this is always possible since ℓk(2) =
2k−2

k . Therefore, there exists a comma-free code

Z ⊂ ∆k such that |Z| = m, and Jq
a
→ q′KZ is the codeword for 〈q

a
→ q′〉.

Define (as in the classical proof of Medvedev theorem) the 2-slt languageL = L(M2) ⊆
Γ+, where M2 ⊆ 〈Γ 2

#〉 is the set:

M2 =
{

#〈q
a
→ q′〉 | q ∈ I, a ∈ Σ, q′ ∈ Q

}

∪
{

〈q
a
→ q′〉 〈q′

b
→ q′′〉 | a, b ∈ Σ, q, q′, q′′ ∈ Q

}

∪
{

〈q
a
→ q′〉# | q ∈ Q, a ∈ Σ, q′ ∈ F

}

.

Define the homomorphism π : Γ ∗ → Σ∗ by means of π(〈q
a
→ q′〉) = a. It is obvious

that π(L) = R. From Lemma 1, Part 2), we have that π(L) is the target language of a

local function of degree 2k. ⊓⊔

In general, the local function of Th. 1 is not length-preserving. A length-preserving

function may require a source alphabet size depending on the target alphabet size. We

prove that a source alphabet barely larger than the target one is sufficient, also improving

on the alphabetic ratio of the generalized Medvedev theorem [3].

Theorem 2. For every regular language R ⊆ Σ∗, there exist an alphabet Λ of size

|Σ| + 1 and a length-preserving local function f : Λ∗ → Σ∗ such that the target

language of f is R.

Regular languages as local functions with small alphabets 9

We need some definitions and intermediate properties to prove the thesis. First, we

define certain sets of paths of bounded length in the graph of the FA A that recognizes

the language R ⊆ Σ∗.

Definition 3 (Bounded paths). Let A = (Σ,Q, δ, I, F) and let k ≥ 1. For ∼∈ {<,≤
,=}, let Σ∼k be the set of words in Σ+ of length, respectively, less than, less or equal

to, or equal to k. We define the following sets:

P∼k = {q
y
→ q′ | q, q′ ∈ Q, y ∈ Σ∼k}, P∼k,F = {q

y
→ qF | q ∈ Q, q′ ∈ F, y ∈ Σ∼k}.

We view the sets P∼k, P∼k,F as finite alphabets, to be respectively written as 〈P∼k〉
and 〈P∼k,F 〉. The language of the accepting paths of automaton A, of length ≥ k, is

denoted by Pk ⊆ 〈P=k〉
+〈P≤k,F 〉.

Of course, P<k ⊆ P≤k, P=k ⊆ P≤k and P∼k,F ⊆ P∼k.

The following statement is obvious.

Lemma 2. The language of the accepting paths of an FA A, Pk ⊆ 〈P=k〉
+〈P≤k,F 〉, is

the 2-slt language Pk = L(M2) defined by the following set:

M2 = {#α | α ∈ 〈P=k〉, in(α) ∈ I} ∪

{αα′ | α ∈ 〈P=k〉, α
′ ∈ 〈P=k〉 ∪ 〈P≤k,F 〉, out(α) = in(α′)} ∪ (6)

{α# | α ∈ 〈P≤k,F 〉} .

Next, we define the homomorphism

π : (〈P=k〉 ∪ 〈P≤k,F 〉)
∗ → Σ∗ as: π(α) = lab(α). (7)

It is obvious that π(Pk) = L(A) ∩Σ≥k.

Now, we encode every path in P≤k with a comma-free code X of the same length k.

Proposition 2. There exist k > 0, an alphabet Λ of cardinality |Σ|+ 1 and a comma-

free code X ⊂ Λk such that |P≤k| = |X |.

Proof. The set P≤k can be viewed as a subset of Q × (∪1≤i≤kΣ
i) × Q. By posing

n = |Σ|, it follows that |P≤k| ≤ |Q|2
∑

1≤i≤k n
i ≤ |Q|2nk+1. By Eq. (1), if k is

prime then ℓk(n+1) = (n+1)k−n−1
k . To have ℓk(n+1) ≥ |P≤k|, we need to choose k

so that |Q|2nk+1 ≤ (n+1)k−n−1
k , i.e., |Q|2knk+1 + n+ 1 ≤ (n+ 1)k. For fixed n and

fixed Q , the inequality holds for all sufficiently large k. ⊓⊔

Thus, each path α ∈ P≤k is encoded by a word JαKX of X and the following inequality

holds, to be used to prove the length-preserving property of the local function:

∀β ∈ P≤k : |lab(β)| ≤ |JβKX | ≤ |lab(β)|+ k − 1. (8)

Proof of Theorem 2 To finish the proof, we apply Lemma 1, Part 2) with the following

correspondence between mathematical entities:

– The alphabet Γ is the set of paths P≤k of Def. 3
– The code X is the one defined in Prop. 2
– The language L ⊆ Γ+ is Pk of Lemma 2
– The homomorphism π is defined in Eq. (7).

Hence a local function f of degree 2k exists, length-preserving by inequality (8). ⊓⊔

10 S. Crespi Reghizzi, P. San Pietro

The case of polynomial density languages Here we focus on the family of regular lan-

guages that have polynomial density. The density function [10] of a language R ⊆ Σ∗

counts the number of words of length n in R and is defined as ρR(n) = |R ∩Σn|. Lan-

guage R has polynomial density if ρR(n) = O(nk) for some integer k ≥ 0. Clearly, a

language R has polynomial density if, and only if, a deterministic trim FA that recog-

nizes R is such that, for any states q, q′ ∈ Q, the number of distinct paths of length n
from q to q′ is polynomial. We prove that if a regular language has polynomial density,

then in Th. 2 a binary source alphabet suffices.

Theorem 3. Let R ⊆ Σ∗ be regular language of polynomial density. There is a binary

alphabet∆ and a length-preserving local function f : ∆∗ → Σ∗ such that f(∆∗) = R.

Proof. The number of words of length h is O(hm−1), where m is the number of states

of a deterministic FA recognizing R. By letting in Eq. (1) (Prop. 1) n = |Λ| = 2 and

choosing a prime value for k, we have that ℓk(2) =
2k−2

k , which is O(2k), i.e., there is

a comma-free code X with |X | being O(2k). If the FA is trim, the number of different

k-paths is at most polynomial in k, hence for suitably large k it will be smaller than

|X |. Therefore, the proof of Th. 2 still holds with a binary comma-free code. ⊓⊔

4 Other results

Th. 2 above says that any regular language is the result of a local length-preserving

function applied to words over an alphabet containing one more letter. The next theorem

positively answers the question whether any improvement over the previous result is

possible if the image is defined by means of a local relation instead of a function.

Theorem 4. For every regular language R ⊆ Σ∗, there exist a binary alphabet ∆ and

a length-preserving local relation r ⊆ ∆+ × Σ+ such that the target language of r is

R.

Proof. Let A = (Σ,Q,→, I, F) be an FA. Refer to Lemma 1, and assume that Λ = ∆,

X ⊆ ∆k is a comma-free code of length k, and Γ = {(q, q′) | q, q′ ∈ Q, ∃α ∈
P≤k, q = in(α), q′ = out(α)}. We can safely assume that k is large enough so that

|X | = |Q|2, hence we can define a codeword J(q, q′)KX for every pair (q, q′) of states

of Q. The proof resembles the proof of Th. 2 but, instead of encoding every labelled ac-

cepting path, we just encode the two end states of the same path, omitting the path label.

Let ξ : 〈P≤k〉
∗ → ∆∗ be the homomorphism that erases the label of a path α ∈ 〈P≤k〉,

and returns its encoding by X , more precisely: ξ(α)= J〈in(α), out(α)〉KX . Define the

2-slt language L = L(M2) specified by the following set M2 over the alphabet 〈Γ 2
#〉:

M2 = {#〈q, q′〉 | q ∈ I, ∃α ∈ P=k, 〈q, q
′〉 = ξ(α)} ∪

{〈q, q′〉 〈q′, q′′〉 | ∃α ∈ P=k, β ∈ P≤k, ξ(α) = 〈q, q′〉, ξ(β) = 〈q′, q′′〉} ∪

{〈q, q′〉# | q′ ∈ F, ∃α ∈ P=k, 〈q, q
′〉 = ξ(α)} .

We define a finite substitution σ : 〈Γ 〉∗ → 2Σ
∗

as follows: ∀z ∈ 〈Γ 〉∗, σ(z) =
lab

(

ξ−1 (JzKX)
)

. From Lemma 1, Part 3), we have that σ(L) is the target language

of a local relation of degree 2k. ⊓⊔

Regular languages as local functions with small alphabets 11

Characterization of regular languages as homomorphic images of slt languages Our

last contribution is a new simpler proof, based on Th. 4, of the known result (Th. 8 of

[3]) that every regular language over an alphabet Σ is the homomorphic image of an slt

language over an alphabet of size 2|Σ|. The new proof sets a connection between the

old result and the preceding theorems. Overall, we obtain a fairly complete picture of

the alphabetic ratio needed for computing regular language by means of local functions,

local relations, and homomorphic images of slt languages.

It is convenient to introduce a binary operation that merges two strings into one. Given

two alphabets ∆,Σ, define the operator ⊗ : ∆+ ×Σ+ → (∆× (Σ ∪ ε))+ as follows.

For every u ∈ ∆+, v ∈ Σ+ such that j = |u| ≥ |v| = k, let

u⊗ v = 〈u(1), v(1)〉 . . . 〈u(k), v(k)〉 〈u(k + 1), ε〉 . . . 〈u(j), ε〉 .

E.g., if u = 010001 and v = abbab, then u ⊗ v = 〈0, a〉〈1, b〉〈0, b〉〈0, a〉〈0, b〉〈1, ε〉.
The operator can be extended to languages over the two alphabets as usual. We also

need the projections, resp. denoted by []∆ and []Σ onto the alphabets ∆ and Σ, defined

as: [u⊗ v]∆ = u, [u⊗ v]Σ = v.

Proposition 3. If X ⊂ ∆k is a comma-free code of length k > 1, then every subset Z
of X ⊗Σ≤k is also a comma-free code of length k.

Proof. By contradiction, assume that a word w ∈ Z+ can be factored as w = uzv and

as w = uu′z′v′, where |u′| < k and both z, z′ ∈ Z , i.e., z, z′ do overlap in w. By

definition, z = x ⊗ y and z′ = x′ ⊗ y′, for x, x′ ∈ X, y, y′ ∈ Σ≤ k; therefore [z]∆
and [z′]∆ are codewords of X , but they also overlap in [w]∆, the projection of w to ∆,

a contradiction of the definition of comma-free code. ⊓⊔

Theorem 5 (part of Theorem 8 of [3]). For any language R ⊆ Σ∗, there exists an slt

language L ⊆ Λ∗, where Λ is a finite alphabet of size |Λ| = 2|Σ|, and a letter-to letter

homomorphism ϑ : Λ∗ → Σ∗, such that R = ϑ(L).

Proof. For the sake of simplicity, we prove a looser bound, namely |Λ| = 2(|Σ| + 1).
The tighter bound is proved in [3]. Let ∆ = {0, 1}, the homomorphism ξ : 〈P≤k〉

∗ →
∆∗ and the comma-free code X ⊂ ∆+ be defined as in the proof of Th. 4. Let Λ =
∆× (Σ ∪ ε). Let Z ⊂ Λk be a comma-free code of length k, such that the encoding of

each α ∈ 〈P≤k〉 is defined as JαKZ = ξ(α)⊗ lab(α).
Referring to Lemma 1, we consider Γ to be the alphabet 〈P≤k〉 and the homomorphism

π : Γ ∗ → Σ∗ to be the projection π(α) = lab(α) for every α ∈ 〈P≤k〉. Therefore,

there exists a local function f : Λ∗ → Σ∗ whose source language is a 2k-slt language

L ⊆ Λ∗ and whose target language is R.

Define a letter-to-letter homomorphism ϑ : Λ∗ → Σ∗ as the projection to the alphabet

Σ, i.e., ϑ(z) = [z]Σ for every z ∈ Λ. Let z ∈ L, α ∈ 〈P≤k〉
+ be such that z = JαKZ .

It is clear that ϑ(z) = lab(α), and f(z) = lab(α) as well. Therefore, R = ϑ(L). ⊓⊔

In comparison, the proof in [3] used an ad hoc encoding paying the price of computing

its size; moreover, it did not take advantage of the properties in Lemma 1 about comma-

free codes, slt languages and local relations, that have permitted to shorten and simplify

all the proofs in this paper.

12 S. Crespi Reghizzi, P. San Pietro

5 Conclusion

We sum up the known results about characterizations of regular languages through local

mappings (local function, local relation, homomorphic image of strictly locally testable

language) in the following diagram:

source alphabet target language family

{0, 1}

|Σ|+ 1

2|Σ|

polynomial

density

R ⊆ Σ+

(N)LP: (non-)line-preserving

LL: letter-to-letter

LP local function, Th. 3

NLP local function Th. 1
LP local relation Th. 4

LP local function Th. 2

LL homomorphism Th. 5

We add that the lower limit 2|Σ| for the case of homomorphism is tight [3]. On the

other hand, it is likely but not proved that the |Σ|+ 1 limit for length-preserving local

functions is tight.

Acknowledgements D. Perrin directed us to comma-free codes. We thank the anony-

mous referees for their helpful suggestions.

References

1. J. Berstel. Transductions and Context-Free Languages. Teubner, Stuttgart, 1979.

2. J. Berstel, D. Perrin, and C. Reutenauer. Codes and automata. CUP, 2015.

3. S. Crespi Reghizzi and P. San Pietro. From regular to strictly locally testable languages. Int.

J. Found. Comput. Sci., 23(8):1711–1728, 2012.

4. A. de Luca and A. Restivo. A characterization of strictly locally testable languages and its

applications to subsemigroups of a free semigroup. Infor. and Cont., 44(3):300–319, 1980.

5. R. McNaughton and S. Papert. Counter-free Automata. MIT Press, 1971.

6. Y. T. Medvedev. On the class of events representable in a finite automaton. In E. F. Moore,

editor, Sequential machines – Selected papers, pages 215–227. Addison-Wesley, 1964.

7. D. Perrin and C. Reutenauer. Hall sets, Lazard sets and comma-free codes. Discrete

Mathematics, 341(1):232–243, 2018.

8. S. Eilenberg. Automata, Languages, and Machines, volume A. Academic Press, 1974.

9. J. Sakarovitch. Elements of Automata Theory. Cambridge University Press, 2009.

10. A. Szilard, S. Yu, K. Zhang, and J. Shallit. Characterizing regular languages with polynomial

densities. In MFCS 1992, pages 494–503. Springer, 1992.

