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The mechanical behaviour of a quasi-brittle material, i.e. Pietra Serena sandstone, was investigated both
numerically and experimentally in order to build a reliable numerical modelling system applicable to
more complex cases. The Karagozian and Case concrete (KCC) model was exploited as the material
constitutive law and a new method to utilise this model for efficient and accurate simulation of quasi-
brittle materials is discussed. The capability of this model is evaluated by comparing the results of the
numerical simulations with the corresponding experimental results, and the method itself is critically
assessed.
� 2019 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by
Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

This article aims to assess the suitability of a realistic material
description in the rock mechanics domain. Understanding me-
chanical behaviour of quasi-brittle material is crucial in many sci-
entific and industrial sectors, such as deep well drilling (Pepper,
1954; Hu and Randolph, 1998), and underground mining (Lacy
and Lacy, 1992; Brady and Brown, 2013). Although the knowledge
of the mechanical behaviour of quasi-brittle material has been
advanced by the developments of numerical analyses and com-
puter resources, the analysis of quasi-brittle materials’ failure
modes is still a crucial issue (Santarelli and Brown, 1989; Chen and
Egger, 1999), with added complexity due to the sensitivity to
confining stress, associativity flow, strength and post-failure de-
formations, localisation, etc. (Martin, 1993; Malvar and Crawford,
1998; Li et al., 2003; Jaeger et al., 2007; Brady and Brown, 2013).
For this, the mechanical properties of a quasi-brittle material were
investigated in this study to promote the understanding and the
future design demands of this domain.

The term ‘quasi-brittle’ is used for materials including rock
(Labuz et al., 1985), concrete (Cornelissen et al., 1986) and most
s).
ock and Soil Mechanics, Chi-
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y-nc-nd/4.0/).
ceramics. Quasi-brittle materials exhibit both moderate strain
hardening (before reaching their ultimate strength) comparable
with metallic materials and sharp softening responses reminiscent
of brittle material (Huang and Karihaloo, 1993), and their nonlinear
response has been analysed by several constitutive equations (Bai
et al., 1999; Jing and Hudson, 2002). The common frameworks
implemented in the finite element method (FEM) for geological
constitutive modelling are based on the theoretical concepts of
continuum mechanics, i.e. elasticity, plasticity (Huang and
Karihaloo, 1993), damage (Rots and De Borst, 1987), visco-
plasticity (Winnicki et al., 2001) and different combinations of
these (Malvar et al., 2000a; Fossum and Brannon, 2004; Brannon
and Leelavanichkul, 2009; Saksala, 2010).

The complex features of the quasi-brittle materials have been
recently investigated and several numerical methods have been
proposed (Kochavi et al., 2008a,b; Jaime, 2011; Wu and Crawford,
2015; Zhao et al., 2016). A meso-mechanical model proposed by
Gary and Bailly (1998) was used to investigate the strain-rate ef-
fects on the failure behaviour of concrete under quasi-static and
dynamic loadings, based on the description of the mechanisms
observed at a microscopic level after failure started. The main
damaging process considered in this study was the brittle tensile
response induced by the Poisson’s effects under compression
loading. An anisotropic continuum damage model based on the
micro-plane concept was proposed by Kuhl et al. (2000). Scalar
damage laws of this model were formulated on different individual
oduction and hosting by Elsevier B.V. This is an open access article under the CC BY-
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Fig. 1. Triaxial testing apparatus used (Cividini et al., 1992).
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micro-planes representing the planes of potential failure. A three-
dimensional (3D) damage model with induced damage anisot-
ropy was proposed by Desmorat et al. (2007), in which plain rein-
forced concrete as well as pre-stressed concrete structures was
simulated by implementation of the damage model in commer-
cially available finite element codes to high damage level inducing
yielding of the reinforcement steel. The finite element code LS-
DYNA was implemented in conjunction with an advanced mate-
rial model, i.e. the Karagozian and Case concrete (KCC) model. The
third release of the model in LS-DYNA, named *MAT_CONCRETE_-
DAMAGE_REL3, was developed by Malvar et al. (1994, 1995, 1997,
2000a). This material model consists of three fixed and indepen-
dent strength surfaces and decouples the deviatoric and volumetric
responses. An equation-of-state (EOS) is used in conjunction with
KCC material model for decoupling the volumetric and deviatoric
responses. The KCC material model itself fulfils all the other input
fields by an internal algorithm based on the parameter uniaxial
compressive strength (UCS). However, this adjustment was origi-
nally performed based on the experimental test results of concrete,
and the KCC model employing this automatic generation mode
cannot realistically predict the mechanical response of quasi-brittle
materials other than concrete.

This article thus aims at developing a mixed experimental-
numerical approach for the calibration of the KCC material model
for another type of quasi-brittle material, Pietra Serena sandstone,
and at assessing its transferability in finite element analysis. For this
purpose, two experimental tests, i.e. a triaxial compression test and
a Brazilian disc test, were performed under several loading condi-
tions based on the protocols of ASTM D7012-04 (2004).

The methods used and the results obtained during the experi-
mental tests are reported in Section 2. Pietra Serena is medium-
grained sandstone composed of quartz (40%), feldspars (20%),
calcite (10%), micas and fragments of sedimentary (mainly carbo-
natic), volcanic and metamorphic rocks in terrigenous matrix (30%)
(Clausi et al., 2016). This type of rock is mainly present in the
Firenzuola basin (in the province of Florence, Tuscany, Italy). In
Section 3, the required numerical modelling concept behind the
KCC material model is described with emphasis placed on the
exploitation of experimental data for the calibration of different
input parameters, including also a modification resulting in tabular
damage function of the KCC model, inspired by the studies of Wu
et al. (2017). Even though the suggested tabular damage function
is provided for Pietra Serena, the suggested method can be used to
obtain tabular damage data for other materials. In Section 4, the
ability of the fully calibrated material model to replicate experi-
mental tests is analysed. Initially, the first two numerical simula-
tions, related to the replication of triaxial compression test and
Brazilian disc test, are exploited to verify the calibration process
and followed by a subsequent numerical simulation implemented
to replicate the flexural (four-point bending) test. This test presents
a complex state of stress ranging from tension to compression and
is a key test in the assessment of the calibrated model, particularly
since the data from this experimental test were not used for the
calibration of the model. The results of this numerical simulation
are compared with the experimental test data on the same mate-
rial, provided in Mardalizad et al. (2017). In the conclusion, the
advantages of the new method of using the KCC material model for
quasi-brittle materials other than concrete are discussed.

2. Experimental testing program

2.1. Triaxial compression test

This experimental program includes a series of triaxial tests
conducted under increasing confining stresses. These tests were
carried out with a triaxial apparatus of the Geotechnical Division of
the Material Testing Laboratory, Politecnico di Milano (Cividini
et al., 1992) by employing the protocols of ASTM D7012-04
(2004). This apparatus is mainly composed of a cell and a loading
frame (see Fig. 1). The cell is designed to perform tests on the
specimens with dimensions of 100 mm in diameter and up to
200 mm in height, and to withstand a confining stress up to
50 MPa.

The cell rests on a circular bottom plate of the loading frame
which moves upwards to increase the axial load. The maximum
capacity of the loading frame is 2200 kN. Both the confining stress
and the load frame are driven by two independent servo-hydraulic
systems, with a close loop control managed by a dedicated
controller. The equipment allows the performance of either
pressure/load-controlled or displacement-controlled tests or a
combination of the two.

The feedback control for the confining stress includes a pressure
transducer HBM - Model P3M (measuring range of 0e50 MPa, and
accuracy of 0.2%), while the applied force is measured by a load cell
BLH - Model CP21 (capacity of 2225 kN, and accuracy of 0.05% rated
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output). The axial displacements between the upper and the lower
surfaces of the specimen are measured by means of an external
frame, which lies on an aluminium rod, in contact with the top
surface of the specimen through a top cap hole, and which, at its
bottom, holds an linear variable differential transformer (LVDT)
(manufactured by LEANE, Model SE375, Class A). The LVDT, in its
turn, maintains the contact with the specimen bottom base (with
the help of a second aluminium rod inserted into a bottom hole)
thanks to its return spring. Therefore, any changes in the specimen
height cause a correspondent change in the transducer rod
position.

The triaxial tests of this experimental campaignwere performed
on 5 cylindrical specimens, with an identical nominal diameter and
a height equal to 100mm and 200mm, respectively. Each specimen
was jacketed with a reinforced rubber membrane of 3 mm in
thickness. After being placed on the cell base plate, the top cap was
applied to the upper base and the membrane was tightened to both
the top piston and the bottom base, by means of two worm gear
hose clamps, to prevent the hydraulic oil from penetrating the rock
during the test. Finally, the cell was assembled and inserted into a
load frame with all hydraulic lines being properly connected.

All specimens (see Fig. 2) were subjected to a stress state assumed
to be isotropic, starting from s1 ¼ s3 ¼ 0 and increasing up to the
required value s1 ¼ s3 ¼ s for each test (10 MPa, 20 MPa or 28 MPa)
at an average constant rate of 0.3 MPa/s for both s1 and s3 (AB). In
fact, to accurately control the isotropic stage and prevent any test
failure, each stress increase was performed in two steps: an initial
increase of s1 followed by a s3 increase at constant s1. The maximum
difference between s1 and s3 was always maintained below 0.1 MPa.
The specimens were then sheared under displacement control set-
tings at a constant rate of 0.001 mm/s up to failure (BC).

The test results are displayed in Figs. 3 and 4 for the isotropic
stress and the shear stages, respectively. Fig. 3a shows the isotropic
stress state increase procedure as previously described. Fig. 3b
presents the specimen deformations during this increment,
showing the almost similar behaviour of all specimens except for
specimen B2 which differed slightly. A similar difference is also
Fig. 2. Diagram of stress path for triaxial compression test.
visible in Fig. 4, in which all the shear stages of all the performed
tests are compared. The maximum deviatoric stress of specimen B2
differs from the other test results, since the maximum load rises to
a value comparable with the 28 MPa tests (see Table 1). Also, the
initial stiffness appeared to be comparable with the 28 MPa tests.
The reason of this undesired response of specimen B2 (lower
compressibility in the isotropic stage and a higher resistance in the
shear stage) is probably due to both the specimen arrangement in
the load cell and the mechanical locking along the failure surface,
which also caused an immediate decrease of deviatoric stress after
failure. A comparison of the failure mode of each specimen is
presented in Fig. 5.

2.2. Brazilian disc test

The tensile strength is one of the key parameters to describe the
mechanical behaviour of rocks. The poor tensile resistance of rocks
renders a conventional direct tension test particularly difficult.
However, the tensile strength of a brittle material can be measured
indirectly by means of the Brazilian disc test. The test consists of
compressive loading applied to a cylindrical disc periphery. This
loading condition initiates a fracture along the compressive diam-
etral direction, where the maximum principal tensile stress is
dominant. Therefore, the splitting tensile strength measured by the
Brazilian test is representative of the maximum principal tensile
strength of a material. The identification of the location where the
maximum tensile strain takes place is another challenging issue. It
can be described by a transition failure mode between a tensile
failure mode that refers to as the diametral splitting fracture, and a
shear failure mode, associated with the parts close to the loading
platens (Li and Wong, 2013).

The Brazilian disc tests were performed on cylindrical speci-
mens which, according to ASTM D3967-08 (2008), have a thickness
to diameter ratio (tm/dm) of 0.2e0.75 and a specimen diameter
greater than (at least) 10 times the maximum grain size. The
sandstone is a medium-grained clastic sedimentary rock, with a
sand size of 0.06e2 mm. The geometry data of the specimens are
reported in Table 2.

According to Table 2, the specimens with an almost identical
diameter were grouped into four classes based on their thickness,
named G, H, I and J. As shown in Fig. 6a, the testing apparatus
consists of an upper compressive platen which is displacement-
controlled and a lower steel platen which is rigid. The upper
platen is moved downwards to apply a compressive load. The ve-
locity of this platen was set to 0.15 mm/min to ensure that failure
occurred between 1min and 10 min as prescribed by ASTM D3967-
08 (2008).

Fig. 6b shows a specifically built steel bearing block with a
curved surface. This block was positioned in between the upper
platen and the specimen to decrease the contact stresses as sug-
gested by ASTM D3967-08 (2008). Since the splitting tensile
strengthmeasured by the Brazilian test is computed based on a line
load, the applied load should be limited to a narrow band. However,
the narrow strip loading may create extremely high contact
stresses which cause premature cracking. ASTM D3967-08 (2008)
stated that if the arc of contact remains smaller than 15�, the error
in deriving the principal tensile strength is less than 2%, while
premature cracking is decreased dramatically. Therefore, the cur-
vature radius of this supplementary bearing plate was designed to
ensure that its arc of contact with the specimen does not exceed 15�

and the width of contact is less than 6.5 mm (which refers to 40/6).
According to ASTM D3967-08 (2008), grease was used to

decrease the friction between the specimen and the testing appa-
ratus and to provide a better self-adjustment of the specimens
during the loading. The applied load of the compressive platen was



Fig. 3. Diagrams of confining stress (s3) vs. s1 and axial strain (εa): (a) Isotropic stage, and (b) Deviatoric stage.
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measured automatically by the load cell of the apparatus. Even
though the measurement of the displacement of the specimen was
not described in ASTMD3967-08 (2008), it wasmeasured bymeans
of a displacement gauge contacting extensometer. As visible in
Fig. 6a, the flexible tip of the extensometer is located at the centre
of the lower face of a curved bearing block. However, since the
extensometer itself is fixed to the fixture of the testingmachine, the
displacements of all the components in between are measured.
Therefore, in the configuration shown in Fig. 6a, the experimental
data provided by the extensometer contain the displacements of
both the specimen and the cylindrical steel block (which is placed
between the specimen and the fixture of the apparatus). This set of
data therefore does not represent the actual displacement of the
specimen, but since the mechanical properties of the steel blocks
are known, they can be replicated in the numerical simulations as
well.

The tensile splitting strength is defined as

st ¼ 2Fmax

pdmtm
(1)

where Fmax is the maximum load recorded during the tests.
ASTM D3967-08 (2008) suggested reporting the repeatability

limit as well. The experimental results of the Brazilian disc test in
terms of the maximum force Fmax and its corresponding displace-
ment Dlmax, the average tensile splitting strength bsbt and repeat-
ability limit are listed in Table 3. The ratio between the repeatability
limit and the tensile splitting strength is also reported as a measure
of the variability of the results.

The variability of the tensile splitting strength of all the four
classes of specimens is acceptable and in agreement with the re-
sults provided by other experimental programs, i.e. ASTM D3967-
08 (2008). The force-displacement diagrams of four classes are
shown in Fig. 7.

Fig. 8 shows the specimens broken after the Brazilian test. The
solid black lines and the dashed red lines represent the diametral
loading direction and the fracture pattern, respectively. The tensile
failure mode was observed for all of the specimens. The fracture
pattern was independent of the thickness-to-diameter ratio with
crack initiation near the interface between the specimen and the
bottom steel plate and the propagation along the loading direction.
The failure modes observed during the tests are in agreement with
the results for sandstones under a Brazilian test reported in Basu
et al. (2013), where the specimen failed by a central crack mainly
parallel to the loading direction.
3. Constitutive modelling of rock materials using Karagozian
and Case concrete (KCC) model

Constitutive models for geomaterials are often based on an
initial yield surface coupled with a hardening rule. The subsequent
yield surfaces will expand as the loading increases, resulting in a
match with the failure surface (Matsuoka and Nakai, 1985). There
are many studies aiming at investigating the failure function, which
accordingly leads to the description of the failure surface of the
geomaterial. The key feature of yielding of cohesive-frictional soil
and rock materials is their mean pressure dependence. Experi-
mental studies show that the failure surfaces of rock materials are
curved and have smooth meridians. Therefore, the failure surfaces
can be more conveniently described in the Haigh-Westergaard 3D
stress space due to its cylindrical coordinate system. Eq. (2) can be
used to transform the Cartesian coordinate system of the principal
stresses into the Haigh-Westergaard system:
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3775 ¼ 1ffiffiffi
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p

2664 x
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ffiffiffi
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3775 (2)

where x, r and q are the Haigh-Westergaard coordinates defined as
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J3
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�
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#

9>>>>>>>>>>>>=>>>>>>>>>>>>;
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where I1 is the first principal invariant of the Cauchy stress; J2 and J3
are the second and third principal invariants of the deviatoric part
of the Cauchy stress, respectively; p is the hydrostatic pressure; and
seq is the equivalent stress.
3.1. Brief introduction to Karagozian and Case concrete (KCC) model

The failure function of the KCC material model, implemented
in LS-DYNA, is characterised by a pressure-dependent yield



Fig. 4. Experimental results of triaxial compression tests, in terms of deviatoric stress vs. axial strain. sy, su and sr denote the yield, ultimate and residual strengths, respectively; E25
and E50 represent the tangent elastic moduli at 25% and 50% of su, respectively; Es is the secant elastic modulus at 50% of su; and Eav is the average modulus of linear portion of
stress-strain curve.
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surface Fðr; q; x; lÞ formulated as Eq. (4) in terms of the Haigh-
Westergaard stress invariants (Malvar et al., 1997; Crawford
et al., 2011):

Fðr; q; x; lÞ ¼
ffiffiffiffiffiffiffiffi
3=2

p
r� 4ðq; x; lÞ (4)

where l is the damage parameter in KCC model, and 4ðq; x; lÞ is the
failure surface of the KCC model.
3.2. Failure strength surfaces

The failure surface of the KCC model 4ðq; x; lÞ is a function of the
current values computed for a specific set of state variables that
specify the strength of the material. The failure surface is computed
by means of the linear interpolation functions that use a pair of
fixed- and independent-strength surfaces which are defined by the
user. These interpolation functions are different for hardening and
softening. The pair for hardening and softening is denoted as the
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yield-maximum and maximum-residual strength surfaces,
respectively. Therefore, the 4ðq; x; lÞ function can be described by
4ðq; x; lÞ ¼

8>>>>><>>>>>:
rfbr½JðpÞ; q��bsyðpÞ

	 ðl � l0Þ
rfbr½JðpÞ; q�
hðlÞ�bsmðpÞ � bsyðpÞ	þ bsyðpÞ

� ðl0 � l � lmÞ
rfbr½JðpÞ; q�fhðlÞ½bsmðpÞ � bsrðpÞ� þ bsrðpÞg ðlm � lÞ

(5)
where l0 and lm correspond to the points at which the hardening
and softening regimes start, respectively; rf considers the strain rate
enhancement, which is beyond the scope of this article. In the KCC
model, when this parameter is equal to unity, the effect of the strain
rate is neglected. bsyðpÞ, bsmðpÞ and bsrðpÞ correspond to the yield,
ultimate and residual strength surfaces in the triaxial compression
state of stress, respectively, when the Lode angle q is equal to 60�

(see Fig. 9); hðlÞ is the interpolation damage function; and br ½JðpÞ;
q� is the non-dimensional function which is equal to the ratio be-
tween the current radius of the failure surface rðqÞ (see Fig.10b) and
the distance of the failure surfaces from the hydrostatic axis at the
compressive meridian rc.

In Eq. (5), the KCC model considers the effect of the third
invariant, i.e. the Lode angle q, by means of the function br ½JðpÞ; q�.
This functionwas originally derived from Eq. (6), which is the shape
of the failure criterion in the deviatoric plane, and it was proposed
by Willam and Warnke (1975):

rðqÞ¼
2rc
�
r2c�r2t

�
cosqþrcð2rt�rcÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4
�
r2c�r2t

�
cos2qþ5r2t �4rtrc

q
4
�
r2c�r2t

�
cos2qþð2rt�rcÞ2

(6)

where r(q) determines the distance of the failure surface at the
deviatoric section by considering the effect of the Lode angle q, and
rt expresses the distance of the failure surface from the hydrostatic
axis at the tensile meridian. The deviatoric plane of a Willam-
Warnke failure model is indicated in Fig. 10b.br ½JðpÞ; q� is computed using Eq. (7). This equationwas obtained
by dividing both sides of Eq. (6) by rc. In order to present the term
JðpÞ, which is a strength index of the brittle material related to the
confining stress (equal to Dst=Dsc, and in the KCC model also equal
to rt =rc), both the numerator and the denominator of the right-
hand side of Eq. (6) are divided by rc2.
br ½JðpÞ; q� ¼ rðqÞ
rc

¼
2
�
1�J2�cos qþ ð2J� 1Þ
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4
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(7)
According to Eqs. (5) and (7), the parameter J(p) plays a sig-
nificant role in determining the failure surface of the KCC model.
Malvar et al. (1997) defined this parameter as a linear piecewise
function on the full range of pressure:
JðpÞ ¼

8>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>:
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where f 0c is the UCS, ft is the principal tensile strength, a is an
experimental parameter related to the biaxial compression test,
and ai (i ¼ 0, 1 and 2) are the user-defined input parameters. Ac-
cording to Eq. (8), J(p) varies from 1/2 to 1, which is in accordance
with the experimental data provided by Chen (1982). It also in-
dicates that p ¼ 8:45f 0c is the transition point in which the
compressive meridian is equal to tensile one, and accordingly from
this point onwards, there is a circular failure surface on the devia-
toric plane section. Moreover, it considers a value equal to 1/2 for
the negative range of pressures. It is worth mentioning that this
function is implemented in LS-DYNA (Schwer and Malvar, 2005)
and no input is required by the users.

The experimental data of a triaxial compression test (the second
test under confining stress of 28 MPa) were first calculated by Eq.
(8) (see Fig. 11a). Based on the corresponding value of J(p), the
function br ½JðpÞ; q� was calculated and it reached to unity for the
whole hardening and softening regimes, as expected (q ¼ 60�) (see
Fig. 11b).

3.3. Fixed strength surfaces

The KCC model has three fixed independent failure sur-
faces in the compressive meridian (xer plane), which corre-
spond to the yield, the ultimate and the residual strengths of
the material, respectively. The pressure-sensitive strength
surfaces of bsyðpÞ, bsmðpÞ and bsrðpÞ are respectively defined as
(Mardalizad et al., 2018):



Table 1
Experimental results of triaxial compression test under three levels of confining
pressures.

Specimen sy (MPa) su (MPa) sr (MPa) E25 (GPa) E50 (GPa) Es (GPa) Eav (GPa)

A1 89.48 133.61 61.84 20.46 23.62 16.8 23.63
B1 116.58 266.13 78.7 24.48 25.52 16.89 25.59
B2 132.75 187.14 86.87 27.88 30.22 23.43 29.7
C1 128.36 189.43 96.12 28.01 27.83 17.35 26.55
C2 131.97 190.58 101.31 27.65 27.51 17.45 26.79
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The parameters ai (i ¼ 0, 1 and 2) can be calibrated based on the
experimental data of the triaxial compression test by means of a
curve-fitting approach. The parameters ai of the KCC material
model for the Pietra Serena sandstone, based on the triaxial
compression test data, are reported in Table 4. These curves were
obtained by the Curve Fitting Toolbox of MATLAB software, in
which the Levenberg-Marquardt approach was considered as a
Fig. 5. Broken specimens after triaxial compression test.
fitting algorithm. The KCC failure surfaces and their corresponding
experimental data are shown in Fig. 12.

3.4. Equation-of-state (EOS)

The parameter x in Eq. (4) is related to the pressure p which is
calculated by the EOS to represent the volumetric responses. The
KCC model decouples the deviatoric and volumetric responses. The
deviatoric response is characterised by the migration of the current
stress state between the fixed failure surfaces, while the response
to pressure is defined by an EOS as a function of the volumetric
strain increments. The keyword *EOS_TABULATED_COMPACTION
in LS-DYNA provides a piecewise relationship between the pressure
and the volumetric strain (for loading), or the bulkmodulus and the
volumetric strain (for unloading) according to following equation:

p ¼ pEOS þ KDεev (12)

where pEOS is the pressure from the EOS, K is the bulk modulus, and
Dεev is the incremental elastic volumetric strain. Both pEOS and Dεev
can be determined by means of experimental test data, as a func-
tion of the volumetric strain. The elastic volumetric response at
current step ε

e
v;nþ1 in the KCC model is calculated by

ε
e
v;nþ1 ¼ lnðVnþ1=V0Þ � ε

p
v;n (13)

where V0 and Vnþ1 are the original and current volumes, respec-
tively; and ε

p
v;n is the plastic volumetric strain at the previous step.

The bulk modulus K in Eq. (12) is considered differently for loading
and unloading scenarios. The unloading is beyond the scope of this
study, but the loading bulk modulus KL is obtained by

KL ¼
����� pdEOS � pdþ1

EOS

ε
d
v;EOS � ε

dþ1
v;EOS

�����; εe;min
v;nþ1˛

h
ε
dþ1
v;EOS; ε

d
v;EOS

i
(14)

The subscript EOS in Eq. (14) expresses that the values related to
the pressure and the volumetric strain are taken from the EOS
input. The *EOS_TABULATED_COMPACTION keyword provides 10
pairs of pressure-volumetric strain data, and the superscript d in-

dicates the sequence on the EOS input so that εe;min
v;nþ1˛

h
ε
dþ1
v;EOS; ε

d
v;EOS

i
.

Therefore, Eq. (12) can be represented for loading pressure by

pL ¼ pdEOS � KL

ε
e;min
v;nþ1 � ε

d
v;EOS

�
(15)

Due to the lack of a radial strain gauge device during the
compression test, the experimental pressure-volumetric strain data
were not measured for Pietra Serena sandstone and no other
Table 2
Geometry data corresponding to different classes of Brazilian disc test specimens.

Specimen dm (mm) tm (mm)

G1 39.7 16.1
G2 39.7 15.4
G3 39.7 16.2
H1 39.8 20.6
H2 39.8 20.7
H3 39.5 20.9
H4 39.7 20.8
H5 39.7 20.3
I1 39.6 23.9
I2 39.8 24
I3 39.7 23.9
J1 39.6 27.6
J2 39.6 27.7
J3 39.7 28.3
J4 39.6 27.7



Fig. 6. (a) Brazilian disc test apparatus, based on the ASTM configuration (red circle shows the extensometer), and (b) Curved bearing block.
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experimental studies of the EOS of Pietra Serena sandstone are
currently available in the literature. However, in an extensive
literature review (Coli et al., 2002, 2003, 2006), Berea sandstone
has similar mechanical properties to the Pietra Serena sandstone.
The blue curve in Fig. 13, obtained from Christensen and Wang
(1985), indicates the relationship between the bulk modulus and
the hydrostatic pressure of Berea sandstone.

The nonlinear least-squares curve fitting of MATLAB is exploited
to consider the bulk modulus as a natural logarithmic function of
the hydrostatic pressure, i.e. K ¼ f ðpÞ. By means of this function
and considering K ¼ � Vdp=dV , the volumetric strain values can
be written as

ε
dþ1
v;EOS ¼ �

Zpdþ1
EOS

pd
EOS

1
f ðpÞdpþ ε

d
v;EOS (16)

To solve Eq. (16), the initial condition should be imposed as
ε
0
v;EOS ¼ p0EOS ¼ 0. Therefore, the user input data of EOS as a series
Table 3
Experimental results of Brazilian disc test on four different specimens.

Specimen Fmax (kN) Dlmax (mm) bsbt (MPa)

H1 7.153 0.191 5.55
H2 6.708 0.182 5.19
H3 6.445 0.203 5.22
H4 7.108 0.157 5.49
H5 7.294 0.182 5.48
Average 5.39
Repeatability 0.48
Repeatability/average ratio 0.09
J1 8.513 0.32 4.94
J2 8.772 0.279 5.09
J3 9.762 0.294 5.527
J4 7.666 0.254 4.45
Average 5.01
Repeatability 1.25
Repeatability/average ratio 0.25
G1 5.835 0.198 5.8
G2 6.155 0.177 6.39
G3 5.266 0.235 5.21
Average 5.8
Repeatability 1.67
Repeatability/average ratio 0.28
I1 7.889 0.22 5.28
I2 10.324 0.264 6.9
I3 9.145 0.283 6.15
Average 6.11
Repeatability 2.29
Repeatability/average ratio 0.37
of pressure-volumetric strain are tabulated in Table 5. The param-
eter d indicates the sequence on the EOS input.
3.5. Modified damage function

The damage evolution of the material predicted by the KCC
model is depicted by the damage parameter l, which reflects the
magnitude of the plastic flow. In general, the plastic flow can be
described as

_εp ¼ _m
vg ðr; q; x; lÞ

vs
(17)

where _m is the plasticity multiplier (Wu and Crawford, 2015), and
the partial-associative plastic potential of the KCC model gðr; q; x; lÞ
can be expressed by

gðr; q; x; lÞ ¼
ffiffiffiffiffiffiffiffi
3=2

p
r� u4ðq; x; lÞ (18)

where u is the associativity parameter that defines the propor-
tionality between the deviatoric and volumetric components of the
plastic strain. This parameter is limited between the critical values
of 0 and 1, which provides associative (normal to the failure sur-
face) and Prandtl-Reuss (plastic volume strain is precluded) forms
of plasticity, respectively.

In the KCC model, the damage accumulation is imposed based
on a tabular damage function, consisting of 13 pairs of hel pa-
rameters. The original tabular function (Malvar et al., 2000b), and
the subsequent publications which presented some modifications
for this function, i.e. Markovich et al. (2011) and Kong et al. (2017),
focused on the concrete material. Wu et al. (2017) expressed a
modified tabular function of the KCC model for asphalt concrete
structures, since the corresponding strains at the peak stress of
normal concretes and asphalt structures are significantly different.
This publication inspired the research of a method to modify the
KCC tabular damage function based on the experimental results of
the triaxial compression test.

The damage accumulation of the KCC model, and accordingly
the current failure surfaces are plotted schematically in Fig. 14. As
shown in Fig. 14a, the state of stress is determined by a linear
interpolation between the three failure surfaces. The stress-strain
diagram corresponding to a typical triaxial compression test is
indicated in Fig. 14c, which is determined by the associated damage
accumulation function, as shown in Fig. 14b. The response of the
material to the initial loading (phase I) is considered as a linearly
elastic deformation before reaching Point 1. The current failure
surface is therefore the same as the yield strength level bsy at this



Fig. 8. Broken specimens after Brazilian disc test.

Fig. 7. Force-displacement diagrams of Brazilian disc test on four different classes of specimens.
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range. A hardening plasticity response occurs after yielding and
before reaching the maximum strength bsm. Based on the level of
the confining stress, a softening response occurs after reaching the
maximum strength and before obtaining a residual strength bsr.
As shown in Fig. 14b, the damage function is imposed so that
initially and prior to the occurrence of any plasticity responses, the
value of h is equal to zero. It increases up to unity at a user-defined
value lm, corresponding to Point 2 (the maximum strength bsm).



Fig. 9. KCC fixed strength surfaces: (a) Deviatoric plane, (b) Rendulic plane, and (c) 3D stress space.

Fig. 10. (a) KCC failure surfaces in compressive meridian, and (b) Deviatoric section proposed by the Willam-Warnke model.

Fig. 11. Investigation of the experimental data on (a) JðpÞ � p and (b) br ½JðpÞ; q� � p diagrams.
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The KCC model considers the hardening plasticity by means of this
linear-piecewise function of hel. After Point 2, where the softening
takes place, h decreases to zero at lend corresponding to Point 3,
which indicates that after this point, the current failure surface is
the same as the residual strength level bsr. Therefore, as a first
requirement to determine the tabulated damage function of the
KCC model, the variations of h and l should be in accordance with
Table 6.

The strain rate tensor _ε can be split into an elastic part _εe and a
plastic part _εp in case of dealing with the small deformation/strain



Table 4
Calibrated KCC parameters ai of Pietra Serena sandstone based on the triaxial
compression tests.

Fixed strength surface a0 (MPa) a1 a2 (MPa�1)

Yield surface 38.771 0.55108 6.679 � 10�4

Maximum surface 22.645 0.50016 2.2652 � 10�3

Residual surface 0 0.38488 3.9888 � 10�3
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regime. The evolution of the damage parameter rate _l is computed
as a function of the plastic strain rate tensor _ε

p (Wu and Crawford,
2015):

_l ¼ hðpÞ _εp (19)
Fig. 13. Bulk modulus-hydrostatic pressure diagram of Berea sandstone (Christensen
and Wang, 1985).

Fig. 12. Calibration of the KCC parameters ai based on the triaxial compression tests on
Pietra Serena sandstone.
where h(p) is the damage evolution factor given by

hðpÞ ¼

8>>>>>>>>>>>>><>>>>>>>>>>>>>:

1
rf

1 
1þ p

rf ft

!b1
ðp � 0Þ

1
rf

1 
1þ p

rf ft

!b2
ðp < 0Þ

(20)

where b1 and b2 are the material parameters calibrated from test
data, in which the first parameter governs compression and the
second affects uniaxial tension. By neglecting the effect of the strain
rate (rf ¼ 1), the damage parameter l can be obtained just for the
compressive (positive) range of the hydrostatic pressure as

l ¼ 1�
1þ p

ft

�b1
ε
p ðp�0Þ (21)

The experimental data of the Brazilian test are used to deter-
mine ft, and three triaxial compression test data sets (one data set
that has reasonable hardening-softening behaviour under
confining stress of 20 MPa, and the other two data sets under
confining stress of 28 MPa) are used for determination of the hy-
drostatic pressure p and the equivalent plastic strain ε

p. The
parameter ε

p is commonly used for a von Mises isotropic hard-
ening model (i.e. metals) which can be expressed by

ε
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3
ε
p : εp

r
(22)

where ε
p is the plastic strain.

Eq. (22) for an axisymmetric loading application can be
simplified as

ε
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3

�
ε
p
axial

�2 þ 2

ε
p
lateral

�2�s
(23)

where ε
p
axial and ε

p
lateral are the axial and lateral components of the

plastic strain.
Due to the absence of a radial strain gauge device, the experi-

mental data of lateral displacements were not measured during the
triaxial compression tests, and only the test data of the axial strain
were obtained. However, the lateral strain εlateral was estimated by
Eq. (24), proposed by Binici (2005) for concrete materials:

εlateral ¼ �vεaxial
�
εaxial � ε

e
axial

�
εlateral ¼ �vsεaxial

�
εaxial > ε

e
axial

�
9>>=>>; (24)

where εaxial is the axial strain, n is the Poisson’s ratio, εeaxial is the
axial component of elastic strain, and ns is the Poisson’s ratio in
elastic range of 0.29 (ASTMD7012-04, 2004) that was considered to
be identical for Pietra Serena and Berea sandstones. The parameter
ns is the secant Poisson’s ratio that was determined by Binici (2005)
for normal concrete:

ns ¼ nl � ðnl � nÞexp
"
�
�
εaxial � ε

e
axial

D2

�2
#

(25)

where



Table 5
Equation-of-state (*EOS_TABULATED_COMPACTION) for the KCC material model.

d εv p (MPa)

1 0 0
2 �0.0001 1.4501
3 �0.0002 3.7687
4 �0.0005 9.0867
5 �0.001 19.8859
6 �0.0015 30.0015
7 �0.0019 40.3782
8 �0.0024 50.7179
9 �0.0032 71.0554
10 �0.0069 159.8497

Table 6
KCC damage evaluation parameters.

h l Current failure surface position Ds

0 � h < 1 0 � l < lm Dsy � Ds < Dsm
h ¼ 1 l ¼ lm Ds ¼ Dsm
1 � h > 0 lm � l � lend Dsm � Ds < Dsr
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D2 ¼ εaxialjpeak strength � ε
e
axialffiffiffiffiffiffiffiffiffiffiffiffi

�ln b
p ; b ¼ nl � np

nl � n
;

nl ¼ np þ 1" 
fr
f 0c

!
þ 0:85

#4 (26)

where fr is the tensile strength, and np is the ratio of the lateral
strain and the axial strain at the peak strain which was assumed to
be 0.5. To obtain experimental values for the parameter h, Eq. (4)
was considered. When the pressure-dependent surface meets the
yield condition, i.e. Fðr; q; x; lÞ ¼ 0, the following equation can be
derived:

Ds ¼
ffiffiffiffiffiffiffiffi
3=2

p
r ¼ 4ðq; x; lÞ (27)

By substituting Ds for 4ðq; x; lÞ in Eq. (5), the values related to
the parameter h were obtained, based on the deviatoric stress and
three fixed strength surfaces according to Eq. (28). The effect of the
Lode function was neglected in this equation, since the experi-
mental data used for modification of the damage tabular function
were derived from the triaxial compression test (see Fig. 11b).
Fig. 14. Schematic representation of the KCC model: (a) Linear interpolation between the fa
diagram (pt. represents point).
hðlÞ ¼ Ds� bsyðpÞbsmðpÞ � bsyðpÞ
ðhardeningÞ

hðlÞ ¼ Ds� bsrðpÞbsmðpÞ � bsrðpÞ
ðsofteningÞ

9>>>>>=>>>>>;
(28)

Therefore, it is possible to transform the experimental data of
the triaxial compression test from the Dseε diagram into the hel

diagram, by means of Eqs. (21) and (28). The parameter b1 in Eq.
(21) was used to adjust the tabular damage function, rendering the
results of the numerical simulation in accordance with the exper-
imental ones. The effect of the parameter b1 on obtaining the KCC
damage function is plotted in Fig. 15aec for the triaxial compres-
sion test data of the 1st test under confining stress of 20 MPa, the
1st test under 28 MPa and the 2nd test under 28 MPa, respectively.
These diagrams were subsequently merged in Fig. 15d for
comparison.

The diagram of ‘experimentally obtained values of hel’ (by
considering b1 ¼ 0.75) for a sandstone is shown in Fig. 16. Although
the values of this diagram yield to a very precise response in the
hardening regime, the softening gradient is found to be lower
compared to the experimental results. Therefore, a new set of hel is
presented in Fig. 16 as the ‘suggested values of hel’, that consists of
the same data as the ‘experimentally obtained values of hel’ in the
hardening regime, and an increased softening gradient. Further
substantial proof was obtained by exploiting the present calibration
in numerical simulations of the tests (virtual tests) and by
comparing the results with the experimental data. These compar-
isons (shown in Fig. 18) imply that the numerical results stand in a
reasonable agreement with the experimental data when the
parameter b1 was equal to 0.75.
ilure surfaces, (b) Damage function, and (c) A typical triaxial compression stress-strain



Fig. 15. Experimental representation of hel diagrams based on the parameter b1: (a) 1st test under confining stress of 20 MPa, (b) 1st test under confining stress of 28 MPa, (c) 2nd
test under confining stress of 28 MPa, and (d) Comparison of all experimental data based on the parameter b1 only.
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It should be noted that the suggested tabular damage function
was originally obtained based on Eq. (21) that governs only the
compressive pressure. According to Eq. (20), the same damage
evolution factor presented here, and accordingly the damage
function, can be adjusted in the tensile regime by setting the
parameter b2 (and also b3). This matter can be further investigated
by performing appropriate experimental and numerical studies.
Fig. 16. Comparison of experimentally evaluated and suggested KCC tabular damage
functions for rock materials.
These parameters bi can be determined by iteration until the value
of the fracture energy, Gf, converges for a specified characteristic
length, which is associated with the localisation width (i.e. the
width of the localisation path transverse to the crack advance).

The parameters RSIZE and UCF in the *MAT_072R3 keyword of
LS-DYNA are unit conversion factors and the NOUT is called the
‘output selector for effective plastic strain’. According to Hallquist
(2014), when NOUT ¼ 2, the quantity labelled as ‘plastic strain’ by
the LS-PrePost is actually the quantity that describes the ‘scaled
damage measure, d’, which varies from 0 to 2. When the amount of
Fig. 17. Effect of mesh size on ultimate force and computation time.



Fig. 18. Comparison between the results of the triaxial compression tests and the
corresponding numerical simulations of the fully calibrated KCC material model.

Table 7
Fully calibrated KCC material model for Pietra Serena sandstone.

Parameter Value

MID e

RO 2 � 10�9 t/mm3

PR 0.29
FT 5.9 MPa
A0 40.771 MPa
A1 0.5511
A2 6.68 � 10�4 MPa�1

B1 0.75
Omega 0.9
A1F 0.38488
Slambda e

NOUT 2
EDROP 1
RSIZE 0.03937 in/mm
UCF 145 psi/MPa
LCRATE e

LOCWID 1.35 mm
NPTS 13
Lambda1 0
Lambda2 1.94 � 10�4

Lambda3 3.19 � 10�4

Lambda4 4.60 � 10�4

Lambda5 5.93 � 10�4

Lambda6 7.26 � 10�4

Lambda7 8.37 � 10�4

Lambda8 8.69 � 10�4

Lambda9 9.01 � 10�4

Lambda10 9.72 � 10�4

Lambda11 1.08 � 10�3

Lambda12 1
Lambda13 1000
B3 0.5
A0Y 22.645 MPa
A1Y 0.50016
Eta1 0
Eta2 0.498757
Eta3 0.713508
Eta4 0.867684
Eta5 0.949989
Eta6 0.988934
Eta7 1
Eta8 0.993539
Eta9 0.978281
Eta10 0.917932
Eta11 0
Eta12 0
Eta13 0
B2 3.21
A2F 0.003989 MPa�1

A2Y 0.00226 MPa�1
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d is still lower than one, the elements of the part modelled by the
KCC fail to reach the yield limit. These corresponding elements
reach the yield strength at d ¼ 1, and when d ¼ 2, they meet their
ultimate residual failure level.

4. Numerical simulation and results

In this section, three experimental arrangements were numer-
ically replicated, i.e. the triaxial compression test, the Brazilian disc
test and the flexural test. The first two numerical simulations were
developed to verify the calibration procedure described in Section
3. The replication of the flexural test was subsequently performed
and compared with the experimental data provided by Mardalizad
et al. (2017), to show the reliability of the numerical investigations.
All the experimental problems replicated in this section were
solved by applying the KCC model to the sandstone. The numerical
simulations concern quasi-static loading and were analysed by the
FEM as provided in the explicit LS-DYNA commercial software. The
numerical parts considered to replicate the sandstone were dis-
cretised by one-point Gauss quadrature integrated (ELFORM ¼ 1 in
LS-DYNA) solid elements. Table 7 expresses the fully calibrated KCC
model, which was considered to be the default solution for the
analysis of this section. The EOS for all of the models is reported in
Table 5. All the geometry parts were generated, assembled and
meshed by ABAQUS software and subsequently imported in LS-
PrePost to specify the corresponding properties.

4.1. Triaxial compression test

The numerical model of the triaxial compression test consists of
three parts: two rigid platens (representing the compressive
platens) and the specimen. The rock specimen was replicated by a
cylinder with the height and diameter of 200 mm and 100 mm,
respectively. The displacement-controlled axial loading (compres-
sive) was imposed by the upper platen, while the lower platen was
fixed (i.e. zero degree of freedom). The confining stress was applied
by *LOAD_SEGMENT_SET keyword to the exterior lateral side of the
specimen and the upper platen. This confinement was applied
gradually over the first 25 ms to avoid the wave propagation noise
and was then kept constant. After the confining stress reached its
constant final value, the upper compressive platen was pushed
down at a constant velocity of 140 mm/s. This loading rate was
utilised in these quasi-static analyses, since the reduction of the
computation time by the time-scaling approach was more conve-
nient. This approach requires the monitoring of the ratio of the
kinetic to the internal energy during the simulations to avoid a
large value (typically more than 10%).

The mesh convergence studies were performed, and the cylin-
der was discretised by four different sizes of meshes, i.e. 3 mm,
5 mm, 10 mm and 20 mm. Fig. 17 indicates the numerical results of
the triaxial compression test under confining stress of 20 MPa
obtained for these different cylinders. The results are reported in
terms of the ultimate force (kN) and the computation time (min).
The blue curve indicates that themesh size of the numerical models
does not influence the ultimate forcewhen themesh size is equal to
or lower than 5 mm. In order to reduce the computation time, the
cylinder with a 5-mm mesh size was considered for the numerical
simulations in this section.



Fig. 19. Effect of the parameter LOCWID on the numerical simulation results (confining
stress ¼ 10 MPa).

Fig. 20. Effect of the parameter LOCWID on the numerical simulation results
(confining stress ¼ 20 MPa).

Fig. 21. Effect of the parameter LOCWID on the numerical simulation results
(confining stress ¼ 28 MPa).
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Fig. 18 shows the plots of the deviatoric stress versus the axial
strain computed by the fully calibrated KCC model, i.e. the hel

damage data are the ‘suggested values of hel’ indicated in Fig. 16,
for confining stresses of 10 MPa, 20 MPa and 28 MPa. The devia-
toric stress expressed in this figure is the difference between the
axial stress and the confining stress. The solid lines in this figure
represent the results of the numerical simulation, while the
dashed lines express the experimental data. The solid lines were
shifted to the right so that the point corresponding to the begin-
ning of linearly elastic regime was the same in both experimental
and numerical diagrams. Thereby the effect of the settlement
phase of the experimental tests (that occurs in the nonlinear
regime at the beginning of the tests), which is not required to be
replicated by the numerical simulations, could be neglected.
Across all the confining stress levels, the results of the numerical
modelling revealed reasonable agreement with the experimental
results, in all of the three separate phases, i.e. linearly elastic,
hardening and softening regimes. The most noteworthy features
captured by this fully calibrated KCC model are related to the
‘brittle- or strain-weakening’. This phenomenon is typically
observed in sandstones, in which pronounced damage occurs at
the softening phase and the shear plane develops yielding a
sudden stress drop. This phenomenon was captured due to the
damage tabular function, which was obtained based on experi-
mental results.

Generally, there are two different methods to control the
softening behaviours of materials by the KCC model: (a) the
damage tabular function (hel diagram in which the effect of
parameter b1 is considered) and (b) the parameter LOCWID. This
parameter represents the localization width (in mm), which is
usually three times the maximum aggregate size for concretes. The
results of the first method, as shown in Fig. 18, demonstrate that
the numerical simulations precisely replicate the experimental
data. The damage function implemented for these simulations is
the ‘suggested values of hel’ indicated in Fig. 16. However, the
sensitivity analyses based on the parameter LOCWID are
expressed in Figs. 19e21 for the confining stresses of 10 MPa,
20 MPa and 28 MPa, respectively. The damage function imple-
mented for these later simulations is the ‘experimentally obtained
values of hel’ reported in Fig. 16, which was originally obtained
based on experimental data. Even though the numerical results
obtained by the second approach (adjusting parameter LOCWID)
replicate the experimental data up to an acceptable level, the re-
sults obtained by the first approach expressed more accurate re-
sponses. This is more obvious in case of a sudden drop in the
softening regime. The parameter LOCWID was able to expand the
softening regime, while the gradient of the diagram was not
significantly altered.

By definition, the parameter b2 that governs the tensile regime
has no influence on the triaxial compression test. Therefore, the
sensitivity analyses are not reported upon this parameter. The
automatic surface to surface contact treatment was defined for all
the contacts, using frictional coefficients ranging from 0.1 to 0.4.
The distribution of the ‘scaled damage parameter’ (after failure) of a
triaxial compression model conducted with a coefficient of friction
equal to 0.4 is shown in Fig. 22a. Additional calculations conducted
with friction coefficients of 0.1, 0.2 and 0.3 gave similar results. The
X-shaped damage bands of failure in Fig. 22a are observed as a
function of frictional end conditions. Due to the isotropic material
used in the confined compression test simulations, only the average
stress-strain responses are correctly predicted while the failure
mode shown in Fig. 22a is not the narrow shear bands attested in
the experiments. The formation of the shear band could probably
be triggered better in the simulations by introducing material or
geometric imperfections.



Fig. 22. Distribution of the scaled damage parameter after failure: (a) Triaxial compression test, (b) Brazilian disc test, and (c) Flexural test.
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4.2. Brazilian disc test

The numerical model developed to analyse the Brazilian disc
test consists of four geometry parts, which are a rigid upper
compressive platen, an elastic curved bearing block, the specimen
and an elastic cylindrical (steel) lower platen. The simple elastic
material model (*MAT_ELASTIC in LS-DYNA) was used for the
bearing block and the lower platen, by considering the elastic
modulus equal to 210 GPa. Since the axial deflectometer used to
measure the displacement was fixed to the bed of the apparatus,
this cylindrical lower platen was modelled according to its real
dimensions. The curved bearing block was also modelled in order
to avoid excessive stress concentration within the numerical sim-
ulations (the same logic as that in the experimental procedure).

The part representing the sandstone specimen has the same
geometry as that of the specimens of class H, with a diameter of
40 mm and a thickness of 20 mm. Similar numerical analyses were
performed for the specimens with other geometries; however, they
are not reported herein due to similar characteristics. This part is
discretised by using one-integration point hexagonal solid ele-
ments. Mesh convergence analyses (similar to what was indicated
in Section 4.1) showed that solid elements with a side dimension of
lower than 1.5 mm did not influence the results. Therefore, the
specimen discretised with a 1mmmesh sizewas considered for the
numerical simulations of this section. The displacement-controlled
compressive loading was imposed by the upper platen and the
bottom surface of the cylindrical lower platen was fixed (i.e. zero
Fig. 23. Comparison of the experimental and numerical results of the Brazilian disc
test, in terms of load-displacement.
degree of freedom). Again, due to the quasi-static nature of this
simulation, a time-scaling approach was exploited to save
computation time. Therefore, the upper compressive platen was
pushed down by a smooth-step function at an average velocity of
0.1 mm/ms. The automatic surface to surface contact treatment was
defined for all the contacts. The distribution of the ‘scaled damage
parameter’ (after failure) of a Brazilian disc model is shown in
Fig. 22b with the failed elements clearly located along the loading
diametral direction, where the principal tensile stress reaches its
maximum value.

The fully calibrated KCCmodel and the EOS which are expressed
in Tables 7 and 5, respectively, were used for the numerical simu-
lations. However, the sensitivity analyses were performed based on
the parameter b2.

In the Brazilian disc test, the principal tensile stresses were uni-
formly distributed along most parts of the vertical diameter (except
the areas near the two contacts). Therefore, by considering Eq. (20),
the parameter b2 was expected to have a major influence on the
numerical results. The numerical results in terms of the load-
displacement curves are compared in Fig. 23 with experimental
data. By increasing the parameter b2, h(p) in Eq. (20) is decreased,
causing a reduction of the area below the tabular damage function,
rendering the material more brittle, and accordingly decreasing the
failure force. Therefore, the precise value of the parameter b2 for a
material was determined by trial-and-error method. The last row of
Table 8 represents the 95% confidential interval (CI) of the average
value of each mechanical property. As shown in Fig. 23 and Table 8,
when the parameter b2 reaches 3.21, the best fit of the numerical
results with the experimental ones can be obtained.

4.3. Flexural test

The replication of the flexural test was performed to show the
capability of the numerical investigations and the calibration pro-
cedures described. The flexural tests were performed on the same
material as provided by Mardalizad et al. (2017). Accordingly, the
symmetrical configuration of the four-point flexural test yields
nominally zero shear forces and a constant bending moment
Table 8
Numerical results of the Brazilian disc test and comparison with the experimental
data.

Parameter Fmax (kN) Dlmax (mm)

b2 ¼ 1.35 8.075 0.182
b2 ¼ 2.5 7.752 0.178
b2 ¼ 3.21 7.531 0.177
b2 ¼ 5 7.503 0.172
b2 ¼ 10 6.91 0.157
Average of the experimental data 6.942 0.183
‘95% CI’ of the experimental data 6.504e7.579 0.162e0.204



Fig. 24. Comparison of the experimental and numerical results of the flexural test, in
terms of load-displacement.
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between the two rollers. The principal tensile and compressive
stresses are generated at the top and bottom surfaces of the spec-
imen, respectively. Although the failure is dictated by the tensile
regime (similar in almost all brittle material), the appropriate
modelling of the compressive behaviour is critical to reach the final
mechanical response of this application.

Due to the symmetrical nature of this experimental test, only
one-quarter of the configuration was modelled. The numerical
model consisted of five components, which were the upper
compressive platen, two rollers, the specimen and the support steel
block. The simple elastic material model (*MAT_ELASTIC in LS-
DYNA) was used for both the aluminium rollers and the support
steel block, by considering their elastic modulus equal to 70 GPa
and 210 GPa, respectively. Since the axial deflectometer used to
measure the displacement was fixed to the bed of the apparatus,
the support block was modelled on its real dimensions.

The geometry of the part representing the sandstone specimen
was the same as the experimental one, with a length of 318 mm, a
width of 102 mm and a height of 32 mm. This part was discretised
by using one-integration point hexagonal solid elements with a
side dimension of 3 mm. The displacement-controlled compressive
loading was imposed by the upper rigid platen and the bottom
surface of the steel support block was fixed (i.e. zero degree of
freedom). Similar to the two previous simulations, the time-scaling
approach was used to save computation cost. Therefore, the upper
compressive platen was pushed down at a constant velocity of
9 mm/s. The automatic surface to surface contact treatment was
defined for all the contacts. The fully calibrated KCC model and the
EOS which are expressed in Tables 7 and 5, respectively, were used
for the numerical simulations. The sensitivity analyses were also
performed based on the parameter b2.
Table 9
Numerical results of the flexural test in comparison with the experimental data.

Parameter Fmax (kN) Dlmax (mm)

b2 ¼ 2.5 5.157 0.642
b2 ¼ 3.21 (Fully calibrated KCC) 4.411 0.389
b2 ¼ 5 3.376 0.243
b2 ¼ 10 3.198 0.228
Average of the experimental data 3.835 0.554
‘95% CI’ of the experimental data 3.143e4.527 0.367e0.742
The numerical results are expressed in terms of force-
displacement diagrams in Fig. 24 and were subsequently
compared with the experimental ones. Identical to the Brazilian
disc test, due to the presence of the principal tensile stresses at the
lower surface of the specimen, the parameter b2 was shown to have
great influence on the results. The value of the parameter b2
determined by the Brazilian disc test (i.e. equal to 3.21) yielded the
best response also in the flexural test. The numerical results, both in
terms of the ultimate force and the maximum displacement, were
found to lie within the 95% CI of the experimental values (see
Table 9). As described in Mardalizad et al. (2017), ASTM D3967-08
(2008) fails to provide any recommendations for capturing the
displacement data and therefore an axial deflectometer was used to
measure these data. The deflectometer was attached to the fixture
of the apparatus and hence, as stated above, the displacement
corresponding to all the components between the rock and the
fixture was measured in the experimental results, causing the dif-
ference between the ultimate axial displacement levels in the nu-
merical and experimental results. The distribution of the ‘scaled
damage parameter’ (after failure) of a flexural model is shown in
Fig. 22c. The comparison of the failed elements in this model and
the experimental results, provided in Mardalizad et al. (2017),
shows that the numerical simulation precisely replicates the
experimental crack pattern.

5. Conclusions

The mechanical response of a rock material was investigated by
means of experimental tests and finite element modelling that
exploits an advanced KCC material model. The procedure proposed
for calibrating the KCC model was investigated specifically for
Pietra Serena sandstone but can also be used for other rock mate-
rials. This calibration procedure was mainly based on an experi-
mental approach aiming to overcome the main drawback of the
KCC model; the long set of data was required as input parameters.
The automatic input generation mode (implemented in the 3rd
release of the KCC in LS-DYNA) is not aimed to realistically predict
the mechanical response of other types of quasi-brittle materials
other than concrete. The experimental test required for this cali-
bration method consists of two programs, i.e. the triaxial
compression and the Brazilian disc tests, to characterise the ma-
terial deviatoric responses in compressive and tensile regimes,
respectively.

The input parameters were investigated and classified into five
distinct categories: tensile strength, failure (fixed) strength sur-
faces, tabular damage function, EOS and damage parameters. The
quasi-static Brazilian disc test was used to measure the ultimate
principal tensile strength. The triaxial compression test, with three
levels of confining stresses, was carried out to determine the other
groups. The yield, the ultimate and the residual strengths measured
via the experimental tests were used to determine the parameters
ai, which are the KCC input parameters to describe the fixed
strength surfaces. Since the KCC model decouples the deviatoric
and volumetric responses, the experimental data of the isotropic
stage (of triaxial compression test) can be potentially used to define
the EOS for a given material. However, due to the absence of an
appropriate laboratory device to measure the radial displacement,
the EOS dedicated to the material under investigation in this study
was determined analytically, based on the experimental data of the
axial displacement. A modification to the tabular damage function
was suggested based on the experimental data of the triaxial
compression test in the deviatoric stage. Finally, through exploiting
the availability of the numerical models, a sensitivity analysis was
performed to determine the parameters bi, which are the damage
parameters of the KCC material model.
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Therefore, a material model specifically calibrated with the
required full set of input data was developed for Pietra Serena
sandstone. The fully calibratedmaterial model was implemented in
the finite element codes of the explicit LS-DYNA to replicate the
experimental tests (verification). The numerical results for both the
triaxial compression and the Brazilian tests were consistent with
the experimental test results. The fully calibrated material model
was then further investigated by replicating a flexural (four-point
bending) test, which includes both the compressive and tensile
stresses. The critical comparison between the numerical and the
experimental test results demonstrated the capability and preci-
sion of the procedure proposed.
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