
1 Introduction

According to the predictions of the International Technology
Roadmap for Semiconductors [1], the realization of efficient
interconnects is a challenging problem along the route
towards nanoelectronics, since they are required to satisfy
stringent requirements in terms of electrical and thermal
behaviors. In fact the scaling of very-large-scale integration
structures implies increasing current densities that result
in greater Joule heating and in greater temperature rises.
These thermal effects introduce a strong degradation of the
electrical speed performance.

In the last decades large efforts have been devoted in lit-
erature for modeling the electrical behavior of interconnects,
mainly resorting to equivalent electric transmission lines. In
order to alleviate the computational burden in the simulation
at circuit level, many techniques have been proposed for
modeling transmission lines by means of models of reduced
complexity, known as compact models [2].

However in order to properly take into account temper-
ature effects on the electrical performance of interconnects,
the electrical models of interconnects cannot be used as they
are, but have to be complicated for modeling electro-thermal
effects. The premier choice is an electro-thermal model com-
posed by a transmission line, modeling the electric effect,
coupled to a transmission line, modeling the thermal effect
[3]-[28]. Unfortunately, as a consequence of the nonlinearity
of such model, the results reported in literature for generating
compact models of electric transmission lines cannot be
applied. A novel approach for generating compact models
is thus both crucial and challenging.

In this paper an approach for generating compact models
of coupled electro-thermal transmission lines is proposed.
It takes into account the dependences of electric resistivity
on temperature relevant for interconnects. A projection is
applied in such a way that the nonlinear structure of the
electro-thermal equations is preserved. The projection space
is obtained from the Volterra series expansion [29] of the
solution of the electro-thermal problem.

The details of the derivation are provided for the
simplest case of a one-conductor electric transmission
line coupled to a one-conductor thermal transmission line.
The investigation af a simple example problem shows that

the proposed approach is efficient and leads to compact
and accurate electro-thermal models, ready to be used in
simulations at the circuit level, for temperature rises well
above those needed for interconnect analysis.

2 Formulation of the electro-thermal problem

The equation of an electric transmission line, here
assumed to be of RC type, can be written in the form

cpxq
Bv

Bt
px, tq `

Bi

Bx
px, tq “ 0 (1)

Bv

Bx
px, tq ` rpx, upx, tqqipx, tq “ 0 (2)

in which vpx, tq and ipx, tq are the voltage and current at
position 0 ď x ď L and at time instant t. The electric
capacitance per unit of length is cpxq and the electric
resistance per unit of length is rpx, upx, tqq, assumed to be
dependent on the temperature rise upx, tq in the common
form

rpx, upx, tqq “ rpx, 0qp1 ` μpxqupx, tqq, (3)

which is very accurate for metals in interconnects. For the
sake of simplicity, boundary conditions are assumed of the
form

ip0, tq “ Iptq, (4)
vpL, tq “ 0 (5)

in which Iptq is the port electric current. Initial conditions
are

vpx, 0q “ 0. (6)

The temperature rise distribution upx, tq is modeled by
a thermal transmission line ruled by equations

mpxq
Bu

Bt
px, tq `

B

Bx

ˆ
´ktpxq

Bu

Bx
px, tq

˙
`

` knpxqupx, tq “ gpx, tq, (7)

in which the thermal capacitance per unit of length is mpxq,
the thermal conductances per unit of length are ktpxq and
knptq. The power density gpx, tq is due to the Joule heating
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in the electric transmission line and can be written in the
form

gpx, tq “ ´
Bv

Bx
px, tqipx, tq. (8)

The equations of the thermal transmission line is completed
by boundary conditions, of Robin’s type, in the form

´ ktp0q
Bu

Bx
p0, tq “ hp0qup0, tq (9)

ktpLq
Bu

Bx
pL, tq “ hpLqupL, tq (10)

and by initial conditions

upx, 0q “ 0. (11)

The port variable Iptq of the electric transmission line is
completed by introducing the port voltage

V ptq “ vp0, tq. (12)

Previous equations of the coupled electric and thermal
transmission lines provide a well-known electro-thermal
model of interconnects [25]. These equations are here
elaborated for constructing a nonlinear compact electro-
thermal model. To this aim a novel projection approach is
used, which preserves the nonlinear structure of the electro-
thermal equations. Thus, vpx, tq is approximated in the form

vpx, tq “
m̂vÿ
i“1

vipxq v̂iptq (13)

in which vipxq, with i “ 1, . . . , m̂v, are a small number of
basis functions, to be determined. For the sake of robustness
they are assumed to form an orthonormal basis such thatż L

0

cpxqvipxqvjpxq dx “ δij , i, j “ 1, . . . , m̂v.

Similarly ipx, tq is approximated in the form

ipx, tq “
m̂iÿ
j“1

ijpxq ı̂jptq (14)

in which ijpxq, with j “ 1, . . . , m̂i, are a small number of
basis functions, to be determined. For the sake of robustness
they are assumed to form an orthonormal basis such thatż L

0

iipxqijpxq dx “ δij , i, j “ 1, . . . , m̂i.

Lastly upx, tq is approximated in the form

upx, tq “
m̂uÿ
k“1

ukpxq ûkptq (15)

in which ujpxq, with j “ 1, . . . , m̂u, are a small number
of basis functions, to be determined. Again, for the sake of
robustness they are assumed to form an orthonormal basis
such thatż L

0

mpxquipxqujpxq dx “ δij , i, j “ 1, . . . , m̂u.

With these assumptions, multiplying (1) by uipxq, inte-
grating with respect to x in r0, Ls, integrating by parts and
recalling (4), (5) it results in

dv̂i

dt
ptq `

m̂iÿ
j“1

ĝ1ij ı̂jptq “ vip0qIptq, (16)

in which

ĝ1ij “ ´

ż L

0

dvi

dx
pxqijpxq dx (17)

Also, multiplying (2) by ijpxq, recalling (3) and integrating
with respect to x in r0, Ls, it results in

´
m̂vÿ
j“1

ĝ1jiv̂jptq `
m̂iÿ
j“1

r̂1ij ı̂jptq `
m̂iÿ
j“1

m̂uÿ
k“1

r̂2ijk ı̂jptqûkptq “ 0,

in which

r̂1ij “

ż L

0

rpx, 0q iipxqijpxq dx, (18)

r̂2ijk “

ż L

0

μpxqrpx, 0q iipxqijpxqukpxq dx. (19)

In a similar way, multiplying (7) by ujpxq, integrating
with respect to x in r0, Ls, integrating by parts and recalling
(8), (9) and (10) it results in

dûi

dt
ptq `

m̂uÿ
j“1

k̂ij ûjptq “
m̂vÿ
j“1

m̂iÿ
k“1

ĝ2ijk v̂jptq̂ıkptq,

in which

k̂ij “

ż L

0

ˆ
ktpxq

dui

dx
pxq

duj

dx
pxq ` knpxquipxqujpxq

˙
dx`

` hp0quip0qujp0q ` hpLquipLqujpLq,

ĝ2ijk “ ´

ż L

0

uipxq
dvj

dx
pxqikpxq dx.

From (5), (11), initial conditions for the compact model
follow

v̂iptq “ 0, i “ 1, . . . , m̂v, (20)
ûiptq “ 0, i “ 1, . . . , m̂u. (21)

The compact thermal model provides an approximation
of the port voltage given by

V̂ ptq “
m̂vÿ
j“1

vjp0qv̂jptq. (22)

It also provides an approximation of the whole voltage,
current and temperature rise spatio-temporal distributions in



the forms

v̂px, tq “
m̂vÿ
j“1

vjpxq v̂jptq, (23)

ı̂px, tq “
m̂iÿ
j“1

ijpxq ı̂jptq, (24)

ûpx, tq “
m̂uÿ
j“1

ujpxq ûjptq. (25)

3 Volterra series moments

It is well known that the output yptq of a SISO time-
invariant nonlinear dynamical system of input uptq, under
proper regularity assumptions, can be given a Volterra series
expansion [28], [29]. Such Volterra series expansion is now
computed for the variables in the nonlinear electro-thermal
transmission line equations. To this aim, firstly (2), (3) are
rewritten in the form

Bv

Bx
px, tq ` rpx, 0qp1 ` μpxqupx, tqqipx, tq “ 0 (26)

and (4), (7) are rewritten in the form

mpxq
Bu

Bt
px, tq `

B

Bx

ˆ
´ktpxq

Bu

Bx
px, tq

˙
`

` knpxqupx, tq “ ´
Bv

Bx
px, tqipx, tq, (27)

Then Volterra series terms Vmpx, smq, Impx, smq, Upx, smq,
respectively for vpx, tq, ipx, tq, upx, tq are computed, in
which the notation sm “ ps1, s2, . . . , smq is adopted. Using
the properties of the theory of Volterra series expansions, it
results in˜

mÿ
k“1

sk

¸
cpxqVmpx, smq `

dIm

dx
px, smq “ 0,

dVm

dx
px, smq ` rpx, 0qImpx, smq ` μpxqrpx, 0q ¨

¨
m´1ÿ
k“1

ÿ
|pm|“k

Ukpx, spm
qIm´kpx, sp1

m
q

Nˆ
m

k

˙
“ 0,

with boundary conditions

Imp0, smq “ δm1, (28)
VmpL, smq “ 0, (29)

and in˜
mÿ

k“1

sk

¸
mpxqUmpx, smq`

`
d

dx

ˆ
´ktpxq

dUm

dx
px, smq

˙
` knpxqUmpx, smq “

“ ´
m´1ÿ
k“1

ÿ
|pm|“k

dVk

dx
px, spm

qIm´kpx, sp1

m
q

Nˆ
m

k

˙
,

with boundary conditions

´ ktp0q
dUm

dx
p0, smq “ hp0qUmp0, smq, (30)

` ktpLq
dUm

dx
pL, smq “ hpLqUmpL, smqq. (31)

In these expressions pm is a m-vector of zeros and ones,
and p1

m is the vector obtained from pm by exchanging all
zeros with ones and ones with zeros. Vector spm

is a vector
obtained by selecting the elements of sm corresponding to
the ones of pm.

Around a chosen value σm of sm Taylor’s series expan-
sions of Vmpx, smq, Impx, smq, Umpx, smq can be written
in terms of their moments in the form

Vmpx, smq “
ÿ
αm

Vm,αm
px,σmqpsm ´ σmq

αm , (32)

Impx, smq “
ÿ
αm

Im,αm
px,σmqpsm ´ σmq

αm , (33)

Umpx, smq “
ÿ
αm

Im,αm
px,σmqpsm ´ σmq

αm , (34)

in which αm are multi-indices of m elements. Using these
expressions in previous equations it results in˜

mÿ
k“1

σk

¸
cpxqVm,αm

px,σmq `
dIm,αm

dx
px,σmq “ 0,

dVm,αm

dx
px,σmq ` rpx, 0qIm,αm

px,σmq ` μpxqrpx, 0q ¨

¨
m´1ÿ
k“1

ÿ
|pm|“k

Uk,αpm
px,σpm

qIm´k,α
p1

m

px,σp1

m
q

Nˆ
m

k

˙
“ 0,

with boundary conditions

Im,αm
p0,σmq “ δm1δαm0, (35)

Vm,αm
pL,σmq “ 0, (36)

and in˜
mÿ

k“1

σk

¸
mpxqUm,αm

px,σmq`

`
d

dx

ˆ
´ktpxq

dUm,αm

dx
px,σmq

˙
` knpxqUm,αm

px,σmq “

“´
m´1ÿ
k“1

ÿ
|pm|“k

dVk,αpm

dx
px,σpm

qIm´k,α
p1
m

px,σp1

m
q

Nˆ
m

k

˙
,

with boundary conditions

´ ktp0q
dUm,αm

dx
p0,σmq “ hp0qUm,αm

p0,σmq, (37)

` ktpLq
dUm,αm

dx
pL,σmq “ hpLqUm,αm

pL,σmq. (38)

Thus the first moments Vm,αm
px,σmq, Im,αm

px,σmq,
Um,αm

px,σmq around a chosen expansion point σm with
|αm| ď qm can be iteratively determined at the cost of
the solution of

`
qm`m

qm

˘
linear electric transmission lines

equations and linear thermal transmission lines equations, in



the frequency domain for the real values σ1`σ2`¨ ¨ ¨`σm

of complex frequency.

However, from all previous equations it is noted that
Vmpx, smq “ Impx, smq “ 0 for m even and Umpx, smq “
0 for m odd. Thus Vm,αm

px,σmq “ Im,αm
px,σmq “ 0 for

m even and all values of αm and Um,αm
px,σmq “ 0 for

m odd and all values of αm. All these moments have not
to be computed explicitly.

The values of the moments of Vm,αm
px,σmq,

Im,αm
px,σmq, Um,αm

px,σmq, for some choices of the
expansion point σm, and expansion order qm, with m “
1, . . . , r, are then used for determining, by orthonormaliza-
tion, the basis functions vipxq, with i “ 1, . . . , m̂v, iipxq,
with i “ 1, . . . , m̂i and uipxq, with i “ 1, . . . , m̂u and
for the generation of the nonlinear electro-thermal compact
model. As it can be proven, this ensures that the chosen
moments in the Volterra series expansion of vpx, tq, ipx, tq,
upx, tq and T ptq are matched by the corresponding moments
in the Volterra series expansion of their approximations
v̂px, tq, ı̂px, tq, ûpx, tq and V̂ ptq. Moreover additional mo-
ments of V ptq with respect to the chosen ones are matched
by V̂ ptq. The details are not reported here.

The proposed approach has been here discussed in
terms of the continuous electro-thermal transmission line
equations. It can however be straightforwardly reformulated
in terms of any lumped circuit approximation of such
transmission lines. The proposed approach is applied in
the next section to such a lumped circuit approximation.
In this case it is shown that the method is efficient. In fact
the determination of the compact electro-thermal model,
does not require the demanding solution of the nonlinear
circuit in the time domain, but only the solution of few
linear circuits in the complex frequency domain, which is
less computationally expensive. The method is accurate.
In fact the error with respect to the exact spatio-temporal
distributions of voltages, currents and temperature rises
rapidly tends to zero increasing m̂. This is not only the
consequence of the choice of the basis functions used for
projection but also of the particular projection method
adopted which preserves the non-linear structure of the
electro-thermal problem. As a consequence of the structure
preserving projection, the method is also robust. In fact
no instabilities of the nonlinear compact models have been
observed.
4 Numerical Application

Normalized material data have been assumed. The
transmission line of length L “ 1 is divided into two parts
of equal length: in the first part, rpxq “ 1, μpxq “ 0.5,
cpxq “ 0.1, ktpxq “ knpxq “ 1, mpxq “ 1, hp0q “ 0; in the
second part, rpxq “ 5, μpxq “ 0, cpxq “ 0.1, ktpxq “ 1,
knpxq “ 0.5, mpxq “ 1, hp1q “ 8.

A lumped circuit approximating of this problem having
20, 000 nodes is introduced. A nonlinear dynamical compact
electro-thermal model is generated from such lumped circuit
using the proposed approach. The chosen values of the
expansion points σm and of the computed moments αm

are reported below.

m σm αm

1 10
´2 0

1
2
3

100 0
1

2 p10´2, 10´2q p0, 0q
p1, 0q
p1, 1q
p2, 0q

p100, 10´2q p0, 0q
p1, 0q

3 p10´2, 10´2, 10´2q p0, 0, 0q
4 p10´2, 10´2, 10´2, 10´2q p0, 0, 0, 0q

The construction of the compact electro-thermal models
requires the solution of 7 linear electric problems and 7 ther-
mal problems at frequencies on the real axis. The solution of
all these symmetric positive definite systems of equations, by
means of the conjugate gradient algorithm with incomplete
Cholesky preconditioning, requires about 1 second. After
orthonormalization of the determined moments, a compact
model with m̂v “ m̂i “ 7 and m̂u “ 7 is generated. The
nonlinear compact thermal model is represented by a DAE
of index 1. Thus any stiff numerical solver can be used for its
solution. Each simulation in the time domain, shown in Figs.
1-6, requires less than 1 second using ode15s in Matlab, on a
2.3 Ghz Intel Core i7. Instead the solution in the time domain
of the lumped circuit modeling the interconnect required
about 5 minutes for each simulation.

The accuracy of the compact model is rather insensitive
to the exact choice of the expansion points or matching
orders. The method is very accurate for all waveforms of
the current Iptq, as outlined in Figs 4-6, in which also the
solution of the linear problem, for μpxq “ 0, is reported. The
limit of accuracy of the generated compact model is reached
when the temperature rise u reaches the value 100. At this
value, since μpxq “ 0.5, the electric resistivity is increased
by a factor of 50 which is far more than what is required in
the analysis of interconnects [1].

5 Conclusions

In this paper a novel approach has been proposed for
generating nonlinear compact electro-thermal models of
transmission lines. The approach exhibits high levels
of accuracy for very small state space dimensions of
the model. It is also very efficient since it requires the
solution of few linear electric and thermal problems in the
frequency domain. Such compact models can be used to
accurately approximating not only the port variables of the
interconnects but also the whole spatio-temporal distribution
of voltage, current and temperature rise within the electric
and thermal transmission lines modeling an interconnect.
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