
1. Introduction

Over the last decade, the global energetic situation has been 
receiving a progressively greater attention. The adverse environ-
mental effects of fossil fuels, the volatility of the energy market, the 
growing energy demand and the intensive reliance on centralized 
bulk-power generation have triggered a re/evolution towards 
cleaner, safer, diversified energy sources for reliable and 
sustainable electric power systems [1–6]. The challenges involved 
have stimulated both technological development of new equip-
ment and devices, and efficiency improvements in design, plan-
ning, operation strategies and management across generation, 
transmission and distribution.

In this paper, we focus on distribution networks and the 
conceptual and operational transition they are facing. Indeed, the 
traditional passive operation with unidirectional flow supplied by a 
centralized generation/transmission system, is evolving towards an 
active operational setting with integration of distributed gen-
eration (DG) and possibly bidirectional power flows [7,8].

DG is defined as ‘an electric power source connected directly to the 
distribution network or on the customer site of the meter’ [8–10] and in 
principle offers important technical and economical benefits. Under the 
assumption that the distribution network operators have control over 
the dispatching of the DG power, improvement of the reliability of power 
supply and reduction of the power losses and voltages drops can be 
achieved. Indeed, DG allocation on areas close to the customers allows 
the power flowing through shorter paths, and therefore, decreasing the 
amount of unsatisfied power demand and enhancing the power and 
voltage profiles. Thus, the eventual intermittence of the centralized 
power supply can be smoothed [11]. In addition, the modular structure of 
the DG technologies implies lower financial risks [12,13] and thus the 
investments on the power system can be deferred [1,3].

Most of the actual DG technologies make use of local renewable 
energy resources, such as wind power, solar irradiation, hydro-
power, etc., which makes them even more attractive in view of the 
requested environmental sustainability (e.g., the Kyoto Protocol 
[7,14,15]). Given the intermittent character of these energy 
sources, their implementation needs to be accompanied by effi-
cient energy storage technologies.

Attentive DG planning is needed to seize the potential advan-
tages associated to DG integration, taking into account specific 
technical, operational and economic constraints, sources and loads 
forecasts and regulations. If the practice of selection, sizing and 
allocation of the different available technologies is not performed 
attentively, the installation of multiple renewable DG units could 
produce serious operational complications, in fact, counteracting 
the potential benefits. Degradation of control and protection 
devices, reduction of power quality and reliability on the supply, 
increment in the voltage instability and all related negative impacts 
on the costs, could become impediments for integration of DG [1–
3,8,10,14,16–20].

Viewing DG planning as a fundamental baseline of advance-ment, 
many efforts have been made to solve the associated problem of DG 
allocation and sizing. Objective functions consid-ered for the 
optimization are of economic, operational and technical type. Among 
the first type, cost-based objective func-tions have been used 
considering the costs of energy and fuel for generation, investments, 
operation and maintenance, energy pur-chase from the transmission 
system, energy losses, emissions, taxes, incentives, incomes, etc. [1–
3,7,8,11,13,14,16–27]. The sec-ond type of operational objective 
functions mainly revolves around indexes such as the contingency 
load loss index (CLLI)[23], expected value of non-distributed energy 
cost (ECOST), system average interruption duration index (SAIDI), 
system average interruption frequency index (SAIFI) [7,16,28], 
expected energy not supplied (EENS) [28,29], among others. 
Regarding the third type of objective functions, technical 
performance indicators include energy losses [1,30] and total voltage 
deviation (TVD) [18].

Power Flow (PF) equations are typically solved within the 
optimization problem to evaluate the objective functions, while 
respecting constraints and incorporating non-convex and non-
linear conditions. Given the complexity of the optimization pro-
blem, heuristic optimization techniques belonging to the class of 
Evolutionary Algorithms (EAs) have been proposed as a most 
effective way of solution [10], including particle swarm optimiza-
tion (PSO) [23,24,27,31,32], differential evolution (DEA) [18] and 
genetic algorithms (GA) [3,7,11,13,14,16,26,33,34].

An additional difficulty associated to the problem is the proper 
modeling of the uncertainties inherent to the behavior of primary 
renewable energy sources and the unexpected operating events 
(failures or stoppages) that can affect the generation units. These 
uncertainties come on top of those already present in the network, 
such as intermittence and fluctuation in the main power supply 
due to unavailability of the transmission system, overloads and 
interruptions of the power flow in the feeders, failures in the 
control and protection devices, variability in the power loads and 
energy prices, etc. These uncertainties are incorporated into the 
modeling by generating a random set of scenarios by Monte Carlo 
simulation (MCS); the optimization is, then, executed to obtain the 
optimal expected or cumulative value(s) of the objective function
(s) under the set of scenarios considered [2,3,7,16,28,32,34,35].

In the search for the optimal DG-integrated network, the use of 
only mean or cumulative values as objective function(s) of the 
optimization hinders the possibility of controlling the risk of the 
optimal solution(s): the optimal DG-integrated network may on 
average satisfy the performance objectives but be exposed to high-
risk scenarios with non-negligible probabilities [1,7,16,24,28,36].

The original contributions of this work reside in: addressing the 
optimal renewable DG technology selection, sizing and allocation 
problem within a simulation and multi-objective optimization 
(MOO) framework that allows for assessing and controlling risk; 
introducing the conditional value-at-risk (CVaR) as a measure of 
the risk associated to each objective function of the optimization
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[37,38]. The main sources of uncertainty are taken into account 
through the implementation of a MCS and OPF (MCS-OPF) resolu-
tion engine nested in a MOO based on NSGA-II [39]. The aim of the 
MOO is, specifically, the simultaneous minimization of the 
expected global cost (ECg) and expected energy not supplied 
(EENS), and corresponding CVaR values. A weighting factor β is 
introduced to leverage the impact of the CVaR in the search of the 
final Pareto optimal renewable DG integration solutions. The 
proposed framework provides a new spectrum of information for 
well-supported decision making, enabling the trade-off between 
optimal expected performance and the associated risk to achieve it.

2. Distributed generation network simulation model

This section introduces the MCS-OPF model, including the 
definition of the DG structure and configuration, the presentation 
of the uncertainty sources and their treatment, the MCS for 
scenarios generation and the OPF formulation for evaluating the 
performance of the distribution network, in terms of the objective 
functions of the MOO problem. The outputs of the MCS-OPF model 
are the probability density functions of the energy not supplied 
(ENS) and the global cost (Cg) of the network, and their respective 
CVaR values.

2.1. Distributed generation network structure and configuration

Four main classes of components are considered in the dis-
tribution network: nodes, feeders, renewable DG units and main 
power supply spots (MS). The nodes can be understood as fixed 
spatial locations at which generation units and loads can be 
allocated. Feeders connect different nodes and through them the 
power is distributed. Renewable DG units and main power supply 
spots are power sources; in the case of electric vehicles and storage 
devices they can also act as loads when they are in charging state. 
The locations of the main supply spots are fixed. The MOO aims at 
optimally allocating renewable DG units at the different nodes. Fig. 
1 shows an example of configuration of a distribution network 
adapted from the IEEE 13 nodes test feeder [40], for which the 
regulator, capacitor, switch and the feeders with length equals to 
zero are neglected.

Each component in the distribution network has its own 
features and operating states that determine its performance. 
Assuming stationary conditions of the operating variables, the 
network operation is characterized by the location and magnitude 
of power available, the loads and the mechanical states of the 
components, because degradation or failures can have a direct 
impact on the power availability (in the DG units, feeders and/or 
main supply).

The renewable DG technologies considered in this work include 
solar photovoltaic (PV), wind turbines (W), electric vehicles (EV) 
and storage devices (batteries) (ST). The power output of each of 
these technologies is inherently uncertain. PV and W generation 
are subject to variability through their dependence on environ-
mental conditions, i.e., solar irradiance and wind speed. Dis/
connection and dis/charging patterns in EV and ST, respectively, 
further influence the uncertainty in the power outputs from the DG 
units. Also generation and distribution interruptions caused by 
failures are regarded as significant.

The following notation is used for sets and subsets of compo-
nents in the distribution network:N—set of all nodes; MS—set of all 
types of main supply power sources; DG—set of all DG technolo-
gies; PV—set of all photovoltaic technologies; W—set of all wind 
technologies; EV—set of all electric vehicle technologies; ST—set of 
all storage technologies; FD—set of all feeders.

The configurations of power sources allocated in the network,
indicating the size of power capacity and the location, is given in
matrix form:

ð1Þ

where Ξ—configuration matrix of type, size and location of the
power sources allocated in the distribution network; ΞMS—size
and location of main supply, fixed part of the configuration matrix;
ΞDG—type size and location of DG units, decision variable part of
the configuration matrix; n—number of nodes in the network, |N|;
m—number of main supply type (transformers), |MS|; d—number of
DG technologies, |DG|.

ξi;j ¼
ζ number of units of the MS type or DG technology j allocated at node i

0 otherwise

(

8 iAN; jAMS [ DG; ζAΖn

ð2Þ

Feeders deployment is described by the set of pairs of nodes 
connected:

FD  ¼ fð1; 2Þ; …; ði; i0Þg 8ði; i0ÞAN � N; ði; i0Þ is a feeder ð3Þ

Any configuration {Ξ,FD} of power sources Ξ¼[ΞMS|ΞDG] and 
feeders FD of the distribution network are affected by uncertainty, 
so that the operation and performance of the distribution network 
is strongly dependent on the network configuration and scenarios. 
Furthermore, if the distribution network acts as a ‘price taker’, the 
variability of the economic conditions, particularly the price of the 
energy, is also an influencing factor [13,19,20]. For these reasons, it 
is imperative to represent and account for the uncertainties in the 
optimal allocation results for informed and conscious decision-
making.

Fig. 1. Example of distribution network configuration.



2.2. Uncertainty modeling

2.2.1. Photovoltaic generation
PV technology converts the solar irradiance into electrical 

power through a set of solar cells configured as panels. Commonly, 
solar irradiance has been modeled using probabilistic distribu-
tions, derived from the weather historical data of a particular 
geographical area. The Beta distribution function [41,42] is used in 
this paper:

f pvðsÞ ¼
ΓðαþβÞ
ΓðαÞΓðβÞs

ðα�1Þð1�sÞðβ�1Þ 8sA ½0;1�;αZ0;βZ0

0 otherwise

(
ð4Þ

where s—solar irradiance; fpv—beta probability density function; α,
β—parameters of the beta probability density function.

The parameters of the Beta probability density function can be
inferred from the estimated mean μ and standard deviation s of 
the random variable s as follows [1]:

β¼ ð1�μÞ μð1þμÞ
s2 �1

� �
ð5Þ

α¼ μβ
1�μ

ð6Þ

Besides dependence on solar irradiation, PV depends also on 
the features of the solar cells that constitute the panels and on 
ambient temperature on site. The power outputs from a single 
solar cell is obtained from the following equations [41,42]:

Tc ¼ Taþs
NoT �20

0:8

� �
ð7Þ

I ¼ sðIscþkiðTc�25ÞÞ ð8Þ

V ¼ VocþkvTc ð9Þ

FF ¼ VMPPIMPP

VocIsc
ð10Þ

PpvðsÞ ¼ ncellsFF � V � I ð11Þ

where Ta—ambient temperature [1C]; NoT—nominal cell operating
temperature [1C]; Tc—cell temperature [1C]; Isc—short circuit
current [A]; ki—current temperature coefficient [mA/1C]; Voc—open
circuit voltage [V]; kv—voltage temperature coefficient [mV/1C];
VMPP—voltage at maximum power [V]; IMPP—current at maximum
power [A]; FF—fill factor; ncells—number of photovoltaic cells;
Ppv(s)—PV power output [W].

2.2.2. Wind generation
Wind generation is obtained from turbine-alternator devices

that transform the kinetic energy of the wind into electrical power.
The stochastic behavior of the wind speed is commonly repre-
sented through probability distribution functions. In particular,
the Rayleigh distribution has been found suitable to model the

randomness of the wind speed in various conditions [1,42]:

f wðwsÞ ¼ 2ws
s e�ðws=sÞ2 ð12Þ

where ws—wind speed [m/s]; fw—Rayleigh probability density 
function; s—scale parameter of the Rayleigh distribution function.

Then, for a given wind speed value, the power output of one 
wind turbine can be determined as [1,41,42]:

PwðwsÞ ¼
Pw
RTD

ws�wsci
wsa �wsci

if wscirwsowsa

Pw
RTD if wsarwsowsco
0 otherwise

8><
>: ð13Þ

where wsci—cut-in wind speed [m/s]; wsa—rated wind speed [m/s]; 
wsco—cut-out wind speed [m/s];PwRTD—rated power [kW]; Pw(ws)—
wind power output [kW].

2.2.3. Electric vehicles
In this work, EV are considered as battery electric vehicles with 

three possible operating states: charging, discharging (i.e., inject-
ing power into the distribution network) and disconnected [43]. To 
model their pattern of operation, they are considered as a ‘block 
group’, aggregating their single operating states into an overall 
performance. The main reasons for this aggregation are the 
observed nearly stable daily usage schedule of EV and the need 
of avoiding the combinatorial explosion of the model [42].

The power output of one block of EV is formulated by assigning 
residence time intervals to each possible operating state and 
associating them with the percentage of trips that the vehicles 
perform by hour of a day [43]. This allows approximating the hourly 
probability distribution of the operating states per day, as shown 
Fig. 2. In a given (random) scenario of operational condi-tions, the 
determination of the operating state of a block of EV, of a specific 
hour of the day, is sampled randomly from the corre-sponding 
probability distribution. Accordingly, the power output for a unit or 
block group of EV is calculated using the expressions below:

where td—hour of the day [h]; tRop—residence time interval for 
operating state op [h]; fev—operating state probability density 
function; Pev

RTD—rated power [kW].

2.2.4. Storage devices
Analogously to the EV case, storage devices are treated as 

batteries. In reality, these present two main operating states, 
charging and discharging [44]. However, for this study the level 
of charge in the batteries is randomized and the state of dischar-
ging is the only one that is allowed. This is done to simplify the 
behavior of the batteries, making it independent on the previous 
state of charge. The discharging time interval is assigned according 
to the relation between the batteries rated power, their energy 
density and the random level of charge they present. For this, the 
discharging action is carried out at a rate equal to the rated power. 
Then, the power output per unit of mass of active chemical in the

f evðtd; opÞ ¼
pdchðtdÞ if op¼ discharging
pchðtdÞ if op¼ charging
pdtdðtdÞ if op¼ disconnected

8><
>: 8opAOPs¼ fcharging; discharging; disconnectedg ð14Þ

PevðopÞ ¼
Pev
RTD if op¼ discharging

�Pev
RTD if op¼ charging
0 if op¼ disconnected

8><
>: 8 tA ½0; tRop�; opAOPs¼ fcharging; discharging; disconnectedg ð15Þ



battery MT is estimated as follows:

f stðQstÞ ¼
1

SE�MT
8QstA ½0; SE �MT �

0 otherwise

(
ð16Þ

t0RðQstÞ ¼ Qst

Pst
RTD

ð17Þ

PstðtRÞ ¼ Pst
RTD 8 tRA ½0; t0R� ð18Þ

where Qst—level of charge in the battery [kJ]; SE—specific energy of 
the active chemical [kJ/kg]; MT—total mass of the active chemical in 
the battery [kg]; fst—uniform probability density function; PRTDst —
rated power [kW]; t0R—discharging time interval [h].

2.2.5. Main power supply
The MS spots in the distribution network are the power 

stations connected to the transmission system. The distribution 
transformers are located on these spots and provide the voltage 
level of the customers. The stochasticity of the available main 
supplies of power is represented following normal distributions 
[10,45], truncated by the maximum capacity of the transformers.

f pvðsÞ ¼
1

smsϕððPms �μmsÞ=smsÞ
ΦððPms

cap �μmsÞ=smsÞ�Φð�μms=smsÞ 8PmsA ½0; Pms
cap�

0 otherwise

8<
: ð19Þ

where Pms—available main power supply [kW]; μms—Normal 
distribution mean; sms—Normal distribution standard deviation; 
fms—Normal probability density function; Pms

ccp—maximum capacity 
of the transformer [kW]; ϕ—standard Normal probability density 
function; Φ—cumulative distribution function of ϕ.

2.2.6. Mechanical states of the components
Renewable DG units, MS spots and feeders are subject to wearing 

and degradation processes. These processes can trigger unexpected 
events, even failures, interrupting or reducing the specific function-ality 
of each component. Frequently, the stochastic behavior of failures, 
repairs and maintenance actions is modeled using Markov models 
[28,42]. In this work, a two-state model is implemented in which the 
components can be in the mutually exclusive states: available to operate 
and under repair (failure state). Assuming the duration of each state as 
exponentially distributed, the mechanical state of a component can be 
randomly generated as follows:

mc¼ 1 if the component is available to operate
0 otherwise

�
8componentAfΞ; FDg

ð20Þ

f mcðmcÞ ¼ ð1�mcÞλFþmcλR

λFþλR
8mcAf0;1g ð21Þ

f Li ðLi; tdÞ ¼
1

si ðtd Þ
ϕððLi �μiðtdÞÞ=siðtdÞÞ

1�Φð�μiðtdÞ=siðtdÞÞ 8 iAN; LiA ½0;1�
0 otherwise

8<
: ð22Þ

where td—hour of the day [h], Li—power demand in node i [kW],
μi—normal distribution mean of power demand in node i, si—

normal distribution standard deviation of power demand in node 
i, fLi—normal probability density function of power demand in 
node i.

2.3. Monte Carlo simulation

Most of the techniques used for evaluating the performance of 
renewable DG-integrated distribution networks are of two classes: 
analytical methods and MCS [28]. The implementation of analy-
tical methods is always preferable, in theory, because of the 
possibility of achieving closed exact solutions, but in practice; it 
often requires strongly simplifying assumptions that may lead to 
unrealistic results: power network applications exist but for non-
fluctuating or non-intermittent generation and/or load profiles, 
and low dimensionality of the network, gaining traceability with 
reduced computational efforts [32]. Different, MCS techniques 
allow considering more realistic models that analytical methods 
do, because simplifying assumptions are not necessary to solve the 
model, since de facto the model is not solved but simulated and the 
quantities of interest are estimated from the statistics of the virtual 
simulation runs [46]. For this reason MCS is quite adequate for 
application on the analysis of distribution networks with significant 
randomness or variability in the sources of power supply and 
loads, failure occurrence and strong dependence on the power 
flows as a consequence of congestion conditions in the feeders, etc.

Fig. 3. Daily load profile. Hourly normally distributed load.

where mc—binary mechanical state variable, λF—failure rate [fail-
ures/h], λR—repair rate [repairs/h,], fmc—mechanical state probability 
mass function.

2.2.7. Demand of power
Overall demands of power, as well as single load profiles in the 

nodes of the distribution network, can be obtained as daily load 
curves in which to each hour corresponds one specific level of load, 
inferred from historical data [1,14,19]. In addition, power demands 
profiles can be considered uncertain following normal distributions 
[34].

Within the proposed modeling framework, the nodal demands 
of power are defined by integrating the two models mentioned 
above, i.e., adopting the general daily load profile and considering 
the hourly levels of load as normally distributed. Fig. 3 schema-tizes 
the previous assumption for a generic node i.

In this manner, the nodal demand of power is deducted from 
the overall demand in the network, and modeled as:

Fig. 2. Hourly probability distribution of EV operating states per day.



;mci;j;mcði;i0 Þ� 8 i; i0AN; jAMS [ DG; ði; i0ÞAFD

ð23Þ

where td—hour of the day [h], randomly sampled from a discrete
uniform distribution U(1,24).

Fig. 4 shows an example of the matrix form construction of the
DG-integrated distribution network, considering a simple case of
n¼3 nodes. The network contains one MS spot at node i¼1,
defining the fixed part ΞMS of the configuration matrix, whereas,
the decision variable ΞDG proposes a renewable DG integration
plan ΞDG that built from the number of units ξ of each DG
technology allocated. In this way, the network configuration
{Ξ,FD} is composed by the matrix Ξ¼[ΞMS | ΞDG] and the
deployment of feeders. Then, given the spatial representation {Ξ,
FD}, the sampling of the scenario ϑ determines the operational
conditions to perform power flow analysis, i.e., distribute the
power available PϑGa to supply appropriately the demands Li.

The available power in the power source type j at node i, PϑGai;j , is
function of the number of units allocated ξi,j, the mechanical state
mci,j and the specific unitary power output function Gjassociated to

the generation unit j, formulated  in Eqs. (24) and (25).

PϑGai;j ¼ ξi;jmci
ϑ
;jGjðϑÞ ð24Þ

GjðϑÞ ¼

Pms;ϑ
j if jAMS

Ppv
j ðsϑi Þ if jAPV

Pw
j ðwsϑi Þ if jAW

Pev
j ðopϑi;jÞ if jAEV

Pst
j ðQst;ϑ

i;j Þ if jAST

8>>>>>>>>><
>>>>>>>>>:

8 iAN ð25Þ

In the proposed non-sequential MCS procedure, the intermit-
tency in the solar irradiation is taken into account defining a night 
interval between 22.00 and 06.00 h, i.e., if the value of the hour of 
the day td (h), sampled from a discrete uniform distribution U 
(1,24), falls in the night interval, there is no solar irradiation. 
Regarding the wind speed, its variability is considered by sampling 
positive values from a Rayleigh probability density function fitted 
on historical data and whose parameters as such that the prob-
ability of absence of wind is zero. Since it is not reasonable to force 
the historical profile of the wind speed to follow a distribution that 
admits intermittency, a common alternative technique is to model 
the wind by a Markov Chain. Indeed, it is possible to accurately 
represent the wind speed by a stationary Markov process if the 
historical profile of wind speed data is sufficiently large e.g., years 
[28]. The intermittency is, then, represented by the first state of the 
chain with wind speed equals to zero, and the sampling of the wind 
speed states in the non-sequential MCS of the proposed 
framework, can be performed using the steady-state probabilities 
of the Markov Chain.

An important issue in modeling the operation of power systems 
is how to represent the evolution of uncertain operating 
conditions, such as solar irradiation, wind speed, load profiles, 
energy prices, among others. As an example, the load forecast 
implies the prediction of future power demands given specific 
previous conditions. Therefore, to consider load forecast uncer-
tainty within the proposed MCS framework, it would be necessary 
to change to a sequential simulation model, in which the uncertain 
renewable energy resources, main power supply and loads must be 
sampled at each time step. In particular, load forecast uncer-tainty 
can be integrated properly building consecutive load sce-narios 
and assigning corresponding probabilities of occurrence as 
presented by [7,48]. Another interesting approach for load forecast 
uncertainty modelling is the geometric Brownian motion (GBM) 
stochastic process [31,49].

2.4. Optimal power flow

Power flow analysis is performed by DC OPF [50] which takes 
into account the active power flows, neglecting power losses, and 
assumes a constant value of the voltage throughout the network. 
This allows transforming to linear the classic non-linear power 
flow formulation, gaining simplicity and computational tractabil-
ity. For this reason, DC power flow is often used in techno-
economic analysis of power systems, more frequently in transmis-
sion [50,51] but also in distribution networks [51].

The DC power flow generic formulation is:

Pi ¼ ∑
i0 AN

Bi;i0 ðδi�δi'Þ 8 i; i0AN; ði; i0ÞAFD ð26Þ

∑
iAN

ðPGi�Li�PiÞ ¼ 0 8 iAN ð27Þ

where, Pi—active power leaving node i [kW]; Bi,i’ susceptance of
the feeder (i,i0) [1/Ω]; δi—voltage angle at node i; PGi—active power

Fig. 4. Example of the matrix form construction of a DG-integrated network (A) and 
schema of the operating state definition from the sampled variables (B).

[3,31,33,41,42,47]; the price to pay for this is the possibly 
consider-able increment in the use of computational resources, 
and various methods exist to tackle this problem [46].

Given the multiple sources of uncertainties considered in the 
proposed framework and the proven advantages of MCS for 
adequacy assessment of power distribution networks with uncer-
tainties [3,31,33,41,42,47], we adopt a non-sequential MCS to 
emulate the operation of a distribution network, sampling the 
uncertain variables without considering their time dependence, so 
as to reduce the computational problem.

For a given structure and configuration of the distribution 
network {Ξ,FD}, i.e., for the fixed ΞMS and FD deployments and the 
proposed renewable DG integration plan denoted by ΞDG, each 
uncertain variable is randomly sampled. The set ϑ of sampled 
variables constitutes an operational scenario, in correspondence of 
which the distribution network operation is modeled by OPF and 
its performance evaluated. The two inputs to the OPF model are the 
network configuration {Ξ,FD} and the operational conditions 
scenario ϑ.

ϑ ¼ ½td; Pi;ms
j ; Li; si; wsi; Q i

st
;j



injected or generated at node i [kW]; Li—load at node i [kW].The
assumptions are:

� the difference between voltage angles are small, i.e., sin(Δδ)
Eδ, cos(Δδ)E1

� the feeders resistance are neglected, i.e., R«X, which implies
that power losses in the feeder are also neglected

� the voltage profile is flat (constant V, set to 1 p.u.)

Then, for a given configuration {Ξ,FD} and operational scenario
ϑ the formulation of the OPF problem is:

min Cnet;ϑ
O&M ðPϑGuÞ ¼ ∑

iAN
∑

jAMS[DG
CO&Mv

j
PϑGui;j

tS ð28Þ

s.t.

Lϑi � ∑
jAMS[DG

PϑGui;j
� ∑

i'AN

mcϑði;i0 ÞBði;i0 Þðδϑi �δϑi0 Þ�LSϑi ¼ 0 8 i; i0AN; ði; i0ÞAFD

ð29Þ

PϑGui;j
rPϑGai;j 8 iAN; jAMS [ DG ð30Þ

0rPϑGui;j
8 iAN; jAMS [ DG ð31Þ

mcϑði;i0 ÞBði;i0 Þðδϑi �δϑi0 ÞrV � Ampði;i0 Þ 8 i; iAN; ði; i0ÞAFD ð32Þ

�mcϑði;i0 ÞBði;i0 Þðδϑi �δϑi0 ÞrV � Ampði;i0 Þ 8 i; i0AN; ði; i0ÞAFD ð33Þ

where, tS—duration of the scenario [h]; Cnet;ϑ
O&M—operating and

maintenance costs of the total power supply and generation
[$];CO&Mv

j
—operating and maintenance variable costs of the power

source j [$/kW h]; mcϑði;i0 Þ—mechanical state of the feeder (i,i0);
Bi,i0—susceptance of the feeder (i,i0), [1/Ω]; mcϑi;j, mechanical state
of the power source j at node i; PϑGa —available power in the source 
j at node i [kW]; PϑGui;j 

; power produced
i;j 

by source j at node i [kW];
LSi

ϑ—load shedding at node i [kW]; V—nominal voltage of the 
network [kV]; Amp(i,i’)—ampacity of the feeder (i,i0), [A].

The load shedding in the node i, LSi, is defined as the amount of 
load(s) disconnected in node i to alleviate overloaded feeders and/
or balance the demand of power with the available power supply 
[52].

The OPF objective is the minimization of the operating and 
maintenance costs associated to the generation of power for a 
given scenario ϑ of duration tS. Eq. (29) corresponds to the power 
balance equation at node i, while Eqs. (30) and (31) are the bounds 
of the power generation and Eqs. (32) and (33) account for the 
technical limits of the feeders.

2.5. Performance indicators

Given a set ϒ of ns sampled operational scenarios ϑℓ, ℓA{1,…,ns}, 
the OPF is solved for each scenario ϑℓ Aϒ , giving in output the values 
of ENS and global cost.

2.5.1. Energy not supplied
ENS is a common index for reliability evaluation in power 

systems [1,10,11,48,49,52–55]. In the present work, its value is 
obtained directly from the OPF output in the form of the aggrega-
tion of all-nodal load sheddings per scenario ϑℓ:

ENSϑℓ ¼ ∑
iAN

LSϑℓ

i � tS 8ϑℓAϒ ð34Þ

ENSϒ ¼ fENSϑ1 ;…; ENSϑℓ ;…; ENSϑns g ð35Þ

2.5.2. Global cost
The Cg of the distribution network is formed by two terms, fixed 

and variable costs. The former term includes those costs paid at the 
beginning of the operation after the installation of the DG 
(conception of ΞDG). They are the investment-installation cost and 
the operation-maintenance fixed cost. The variable term refers to 
the operating and maintenance costs. Note that these costs are 
dependent on the power generation and supply, which are a direct 
output of the OPF (Eq. (28)). In addition, this term considers 
revenues associated to the renewable sources incentives. Consid-
ering the distribution network as a ‘price taker’ entity, the profits 
depend on the value of the energy price that is correlated with the 
total load in the network. Three different ranges of load are 
considered for the daily profile. For each range, a correlation value 
of energy price is considered as shown in Fig. 5(A).

In Fig. 5(B) the correlation between energy price and total load 
is presented as the proportion of their maximum values. As an 
intermediate approximation of existing studies (e.g., [13,19,20]), 
the line with square-markers represents the proportional correla-
tion used in this study, which can be expressed as:

ep¼ eph �0:38
LT ðtdÞ
LTh

� �2

þ1:38
LT ðtdÞ
LTh

!
ð36Þ

Thereby, the global cost function for a scenario ϑℓ is given by:

Cϑℓ
g ¼ ∑

iAN
∑

jADG
ðCinvj þCO&Mf

j
Þ tS

th

� �
þCnet;ϑℓ

O&M

�ðincþepðLϑℓ
T ÞÞ ∑

iAN
∑

jADG
Pϑℓ
Gui;j

tS 8ϑℓAϒ ð37Þ

Cϒg ¼ fCϑ1
g ;…;Cϑℓ

g ;…;Cϑns
g g ð38Þ

where Cinvj—investment cost of the DG technology j [$]; CO&Mf
j
—

operating and maintenance fixed costs of the DG technology 
j [$]; th—horizon of analysis [h]; inc—incentive for generation from 
renewable sources [$/kW h]; ep—energy price [$/kW h]; Cg

ϑℓ —
global cost [$].

2.5.3. Risk
In [38], the importance of measuring risk when optimizing 

under uncertainty and including it as part of the objective function 
(s) or constraints is emphasized. The proposed MOO framework 
introduces the CVaR as a coherent measure of the risk associated to 
the objective functions of interest. The CVaR has been broadly used 
in financial portfolio optimization either to reduce or mini-mize 
the probability of incurring in large losses [37,38]. This risk 
measurement allows evaluating how ‘risky’ is the selection of a 
solution leading to a determined value of expected losses.
We can consider a fixed configuration of the distribution network 
{Ξ,FD} including the integration of DG units as a ‘portfolio’. The 
assessed expectations of ENSϒ and Cg

ϒ , found from the MCS-OPF 
applied to the set of scenarios ϒ , are estimations of the ‘losses’; 
then, CVaRðENSϒ Þ and CVaRðCg

ϒ Þ represent the risk associated to 
the solutions with these expectations.

The definition of CVaR for continuous and discrete general loss 
functions is given in detail in [38]. Here a simplified and intuitive 
manner to understand the CVaR definition and its derivation 
according to [56] is presented.

As shown in Fig. 6(A), for a discrete approximation of the 
probability of the losses, given a confidence level or α-percentile, 
the value-at-risk VaRα represents the smallest value of losses for 
which the probability that the losses do not exceed the value of
VaRα is greater than or equal to α. Thus, from the cumulative 

distribution function F(losses) is possible to construct the α-tail 
cumulative distribution function Fα(losses) for the losses, such that



(Fig. 6(B)):

FαðlossesÞ ¼
FðlossesÞ�α

1�α if VaRαr losses

0 otherwise

(
ð39Þ

   The α-tail cumulative distribution function represents the risk
‘beyond the VaR’ and its mean value corresponds to the CVaRα.

Among other risk measures, the CVaR has been commonly used 
to assess the financial impact associated to different sources of 
uncertainty on electricity markets behavior. Some interesting 
approaches in the use of diverse risk measures for electricity 
markets modelling can be found in [49,57,58]

3. DG units selection, sizing and allocation

This section presents the general formulation of the MOO
problem considered previously. As introduced, the practical aim
of the MOO is to find the optimal integration of DG in terms of
selection, sizing and allocation of the different renewable genera-
tion units (including EV and ST). The corresponding decision
variables are contained in ΞDG of the configuration matrix Ξ.

The MOO problem consists in the concurrent minimization of
the two objective functions measuring the Cg and ENS, and their
associated risk. Specifically, their expected values and their CVaR
values are combined, weighted by a factor βA[0,1], which allows
modulating the expected performance of the distribution network
and its associated risk.

3.1. MOO problem formulation

Considering a set of randomly generated scenarios ϒ , the
optimization problem is formulated as follows:

min f 1 ¼ βECϒg þ ð1�βÞCVaRαðCϒg Þ ð40Þ

min f 2 ¼ βEENSϒ þ ð1�βÞCVaRαðENSϒ Þ ð41Þ

s.t.

ξi;j ¼
ζ number of units of the MS type or DG technology j allocated at node i

0 otherwise

(

8 iAN; jAMS [ DG; ζAΖn

ð2Þ

∑
iAN

∑
jADG

ξi;jðCinvj þCO&Mf
j
ÞrBGT ð42Þ

∑
iAN

ξi;jrτj 8 jADG ð43Þ

OPFðfΞ; FDg;ϒ Þ ð28Þ–ð33Þ
where ECg and EENS denote the expected values of Cg and ENS, 
respectively.

The meaning of each constraint is, (2)—the decision variable ξi,j 
is a non-negative integer number; (42)—the total costs of invest-
ment and fixed operation and maintenance of the DG units must be 
less or equal to the available budget BGT; (43)—the total number of 
DG units to allocate of each technology j must be less or equal to 
the maximum number of units available τj to be

Fig. 5. Example of load ranges definition for a generic daily load profile (A) and correlation energy price-total load (B) [13,19,20].

Fig. 6. Graphic representation of the CVaR.



Fig. 7. Flow chart of NSGA-II MCS-OPF MOO framework.



integrated; (28)–(33)—all the equations of OPF must be satisfied for 
all scenarios in ϒ .

Constraint (43) can be translated into maximum allowed 
penetration factor PFDGmaxj of each DG technology j. Defining PF as 
‘the output active power of total capacity of DG divided by the total 
network load’ [59], constraint (43) can be rewritten as follows:

∑
iAN

ξi;jEP
DG
j

ELT|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
PFDGj

r
τjEP

DG
j

ELT|fflfflffl{zfflfflffl}
PFDGmaxj

8 jADG ð44Þ

where ∑
iAN

ξi;j—is the total number of units of DG technology j

Fig. 8. Radial 11-nodes distribution network.

Table 1
Feeders characteristic and technical data [40].

Type Node i Node i0 Length [km] X [Ω/km] Amp [A]

T1 1 2 0.61 0.37 365
T2 2 3 0.15 0.47 170
T3 2 4 0.15 0.56 115
T1 2 6 0.61 0.37 365
T3 4 5 0.09 0.56 115
T6 6 7 0.15 0.25 165
T4 6 8 0.09 0.56 115
T1 6 11 0.31 0.37 365
T5 8 9 0.09 0.56 115
T7 8 10 0.24 0.32 115

Table 2
Main power supply parameters.

Node i Pms
cap [kW] Normal distribution parameters

μms sms

1 1600 1200 27.5

Fig. 9. Mean (A) and variance (B) values of nodal power demand daily profiles.

integrated in the network; EPj
DG—is the expected power output of

one unit of DG technology j [kW]; ELT—is the expected total 
load [kW].

The MOO optimization problem is non-linear and non-convex, 
i.e., a non-convex mixed-integer non-linear problem or non-
convex MINLP. It is non-linear because the objective functions 
given by Eqs. (40) and (41) cannot be written in the canonical form 
of a linear program, i.e., CTX, where C a vector of known coefficients 
and X the decision vector. In the present case, the decision matrix 
ΞDG enters the MCS-OPF flow simulation to obtain the probability 
mass functions of Cg and ENS and, then, the objective functions are 
formed from the corresponding expected and CVaR values. Thus, 
the operations applied on ΞDG through MCS-OPF, expectation and 
CVaR cannot not be represented as the product CTΞDG. The problem 
is non-convex because the decision matrices ΞDG are integer-
valued (constraint (2)) and, as it is known, the set of non-negative 
integers is non-convex.

Given the class of optimization problems in the proposed 
framework (non-convex MINLP), it is most likely to have multiple 
local minima. Moreover, the dimension of the distribution net-
work can lead to a combinatorial explosion of the feasible space of 
the decision matrices ΞDG [7,10], incrementing the number of 
possible local minima and hindering the possibility of benchmark-
ing the optimal solutions obtained. However, an approximated but 
straightforward alternative is to perform several realizations of the 
framework obtaining different optimal solutions under the same 
optimization and simulation conditions (parameters) and, thus, 
compare them regarding the optimal decision matrices and their 
associated value of the objective functions.

Table 3
Parameters of PV, W, EV and ST technologies [11,13,42].

PV W

Beta distribution α 0.26 Rayleigh distribution s 7.96
Beta distribution β 0.73 Pw

RTD [kW] 50
Ta [1C] 30 wsci [m/s] 3.8
NoT [1C] 43 wsa [m/s] 9.5
Isc [A] 1.8 wsco [m/s] 23.8

ki [mA/1C] 1.4 EV

Voc [V] 55.5 Pev
RTD [kW] 6.3

kv [mV/1C] 194 ST

VMPP [V] 38 Pst
RTD [kW] 0.275

IMPP [A] 1.32 SE [kJ/kg] 0.042



This process was performed for the proposed case study. 
Indeed, the optimal decision matrices ΞDG are different in all the 
cases, when the optimization and simulation framework is per-
formed under the same conditions but, nonetheless, practically the 
same Pareto optimal values of ECg and EENS are eventually 
obtained. This reflects that equally expected performances (ECg, 
EENS) can be obtained for different ΞDG considering the large 
amount of feasible combinations, which is what is of interest for 
practical applications.

3.2. NSGA-II with nested MCS-OPF

The combinatorial MOO problem under uncertainties is solved 
by the NSGA-II algorithm [39], in which the evaluation of the 
objective functions is performed by the developed MCS-OPF. The 
NSGA-II is one of the most efficient evolutionary algorithms to 
solve MOO problems [60]. The extension to MOO entails the 
integration of Pareto optimality concepts. In general terms, solving 
a MOO problem of the form:

min ff 1ðXÞ; f 2ðXÞ;…; f kðXÞg
subject to XAΛ

ð45Þ

with at least two conflicting objectives functions (fi: ℜn-ℜ) 
implies to find, within a set of acceptable solutions that belong
to the non-empty feasible region ΛCℜn, the decision vectors 
XAΛ that satisfy the following [61]:

:(X AΛ=f iðXÞrf iðX0Þ 8 i ¼ 1; …; k and f iðXÞ o f iðX0Þ for at least one i

+
f ðXÞ! f ðX0Þ i:e: f ðXÞ dominates f ðX0Þ ð46Þ

X is called a Pareto optimal solution and the Pareto front PF is 
defined as {f(X)Aℜ/X is Pareto optimal solution}.

The process of searching the non-dominated solutions set PF, 
carried out by the NSGA-II MCS-OPF, can be summarized as shown 
in Fig. 7.

The interested reader can consult [62–64] to compare the 
proposed framework to alternative MOO analytical approaches in 
energy applications.

4. Case study

We consider a distribution network adapted from the IEEE 13 
nodes test feeder [40,65]. The spatial structure of the network has 
not been altered but we neglect the regulator, capacitor and switch, 
and remove the feeders of zero length. The network is chosen 
purposely small, but with all relevant characteristics for the 
analysis, e.g., comparatively low and high spot and distributed load 
values and the presence of a power supply spot [65]. The original 
IEEE 13 nodes test feeder is dimensioned such that the total power 
demand is satisfied without lines overloading. We modify it so that 
it becomes of interest to consider the integration of renewable DG 
units. Specifically, the location and values of some of the load spots 
and the ampacity values of some feeders have been modified in 
order to generate conditions of power congestion of the lines, 
leading to shortages of power supply to specific portions of the 
network.

4.1. Distribution network description

The distribution network presents a radial structure of n¼11 
nodes and fd¼(n�1)¼10 feeders, as shown in Fig. 8. The nominal 
voltage is V¼4.16 [kV], constant for the resolution of the DC 
optimal power flow problem.
    Table 1 contains the technical characteristics of the different 
types of feeders considered: specifically, the indexes of the pairs of

nodes that are connected by each feeder of the network, their 
length, reactance X and their ampacity Amp.

Concerning the main power supply spot, the maximum active 
power capacity of the transformer and the parameters of the normal 
distribution that describe its variability are given in Table 2.

The nodal power demands are reported as daily profiles,
normally distributed on each hour. The mean μ and variance s 
values of the nodal daily profiles of the power demands are shown 
in Fig. 9(A) and (B), respectively.

The technical parameters of the four different types of DG 
technologies available to be integrated into the distribution net-
work (PV, W, EV and ST) are given in Table 3. The values of the 
parameters of the Beta and Rayleigh distributions describing the 
variability of the solar irradiation and wind speed, are assumed 
constant in the whole network, i.e., the region of distribution is 
such that the weather conditions are the same for all nodes.

The hourly per day operating states probability profile of the EV 
is presented in Fig. 10 and failures and repair rates of the 
components of the distribution network are provided in Table 4.

The values of the investment (Cinv) and fixed and variable
Operational and Maintenance (CO&Mf and CO&Mv ) costs of the MS 
and DG units are reported in Table 5. Consistently with the
constraints (42) and (43) of the MOO problem, the total invest-
ment associated to a decision variable ΞDG (proposed by the NSGA-
II) must be less than or equal to the limit budget; which is
set to BGT¼4500000 [$], and the total number of units of each
type of DG (following the order [PV, W, EV, ST]) must be less than

Fig. 10. Hourly per day probability data of EV operating states.

Table 4
Failure rates of feeders, MS and DG units [11,13,42,66].

Type λF [failures/h] λR [repairs/h]

MS[DG FD MS[DG FD MS[DG FD

MS T1 3.33E�04 3.33E�04 0.021 0.198
PV T2 4.05E�04 4.05E�04 0.013 0.162
W T3 3.55E�04 3.55E�04 0.015 0.185
EV T4 3.55E�04 3.55E�04 0.105 0.185
ST T5 3.55E�04 3.55E�04 0.073 0.185
– T6 – 4.00E�04 – 0.164
– T7 – 3.55E�04



or equal to τ¼[15000, 5, 200, 8000]. The value of the incentive for
renewable kW h supplied is taken as 0.024 [$/kW h] [34]. The
maximum value of the energy price eph is 0.11 [$/kW h] [19,20].
Concerning the calculation of the CVaR, the alpha-percentile is
taken as α¼0.80.

Five optimizations runs of the NSGA-II with the nested MCS-PF
algorithm have been performed, each one with a different value of
the weight parameter βA{1, 0.75, 0.5, 0.25, 0}, to analyze different
tradeoffs between optimal average performance and risk. From
Eqs. (40) and (41), note that the value β¼1 corresponds to
optimizing only the expected values of ENS and Cg, whereas β¼0
corresponds to the opposite extreme case of optimizing only the
CVaR values. Each NSGA-II run is set to perform g¼300 genera-
tions over a population of sz¼100 chromosomes and, for the
reproduction, the single-point crossover and mutation genetic
operators are used. The crossover probability is pco¼1, whereas
the mutation probability is pmu¼0.1; the mutation can occur
simultaneously in any bit of the chromosome.

Finally, sn¼250 random scenarios are simulated by the MCS-OPF
with time step ts¼1 [h]. Over an horizon of analysis of 10 years
(th¼87600 [h]), in which the investment and fixed costs are prorated
hourly.

4.2. Results and discussion

The Pareto fronts resulting from the NSGA-II MCS-OPF are 
presented in Fig. 11 for the different values of β. The ‘last 
generation’ population is shown and the non-dominated solutions 
are marked in bold.

Each non-dominated solution in the different Pareto fronts 
corresponds to an optimal decision matrix ΞDG for the sizing and 
allocation of DG, i.e., an optimal DG-integrated network config-
uration {Ξ,FD} where Ξ¼[ΞMS|ΞDG].

In the Pareto fronts obtained, we look of three representative non-
dominated solutions for the analysis: those with minimum values of the 
objective functions f1 and f2 independently (ΞDG

min f 1 
and Ξmi

DG
n f 2 

, 
respectively) and an intermediate solution at the ‘elbow’ of the Pareto 
front. Table 6 presents the values of the objective functions, EENS, ECg and 
their respective CVaR values for the selected solutions. The EENS, ECg 

and CVaR values of the case in which no DG is integrated in the network 
(MS case) is also reported.

Fig. 12 shows a bubble plot representation of the selected 
optimal solutions. The axes report the EENS and ECg values while 
the diameters of the bubbles are proportional to their respective 
CVaR values. The MS case is also plotted.

From Table 6 and Fig. 12 it  can be seen that, the MS case has an
expected performance (EENS¼1109.21 [kW h] and ECg¼170.27 [$])
inferior (high EENS and ECg) to any case for which DG is optimally
integrated. Furthermore, the CVaR(ENS)¼1656.53 [kW h] for the MS
case is the highest, indicating the high risk of actually achieving the
expected performance of energy not supplied. This confirms that DG is
capable of providing a gain of reliability of power supply and economic
benefits, the risk of falling in scenarios of large amounts of energy not
supplied being reduced.

Comparing among the selected optimal DG-integrated networks, in
general the expected performances of EENS and ECg are progressively

Fig. 11. Pareto fronts for different values of β.

Table 5
Investment, fixed O&M and variable O&M costs of MS and DG [27,34,66].

Type CinvþCO&Mf ½$� CO&Mv ½kW h�

MS – 1.45E�01
PV 48 3.76E�05
W 113750 3.90E�02
EV 17000 2.20E�02
ST 135.15 4.62E�05



lower for increasing β. This to be expected: lowering the values of β, the 
MOO tends to search for optimal allocations and sizing ΞDG that sacrifice 
expected performance at the benefit of decreasing the level of risk 
(CVaR). These insights can serve the decision making process on the 
integration of renewable DG into the network, looking not only at the 
give-and-take between the values of EENS and, but also at the  level  of 
risk of not achieving such expected performances due to the high 
variability.

Fig. 13 shows the average total DG power allocated in the distribution 
network and its breakdown by type of DG technology for the optimal 
ΞDG as a function of β. It can be pointed out that the contribution of EV is 
practically negligible if compared with the other technologies. This is 
due to the fact that the probability that the EV is in a discharging state is 
much lower than that of being in the other two possible operating states, 
charging and disconnected (see Fig. 10), combined with the fact that 
when EV is charging the effects are opposite to those desired.

The analysis of the results for different β values also allows 
highlighting the impact that each type of renewable DG technology 
has on the network performance. As can be noticed in Fig. 13(A), the 
average total renewable DG power optimally allocated, increases 
progressively for increasing values of β: this could mean that to

obtain less ‘risky’ expected performances less renewable DG power 
needs to be installed. However, focusing on the individual fractions of 
average power allocated by PV, W and ST (Fig. 13(B), (C) and (E), 
respectively), show that a reduction of the risk in the EENS and ECg is 
achieved specifically diminishing the proportion of PV power (from 
0.29β¼1 to 0.11β¼0) while increasing the W and ST (from 0.38β¼1 to 
0.48β¼0 and from 0.31β¼1 to 0.39β¼0, respectively), but this 
increment of W and ST power is not enough to balance the loss of 
PV power due to the limits imposed by the constraints in the 
number of each DG technology to be installed given by τj. Thus, PV 
power supply is shown to most contribute to the achievement of 
optimal expected performances, but with higher levels of risk. On 
the other hand, privileging the integration of W and ST power supply 
provides more balanced optimal solutions in terms of expectations 
and of achieving these expectations.

Table 7 summarizes the minimum, average and maximum 
total renewable DG power allocated per node. The tendency is to 
install more localized sources (mainly nodes 4 and 8) of renew-
able DG power when the MOO searches only for the optimal
expected performances (β¼1) and to have a more uniformly 
allocation of the power when searches for minimizing merely the
CVaR (β¼0).

Fig. 12. Bubble plots EENS v/s ECg. Diameter of bubbles proportional to CVaR(ENS) (A) and CVaR(Cg) (B).

Table 6
Objective functions: expected and CVaR values of selected Pareto front solutions.

β f1 [kW h] f2 [kW h] EENS [kW h] CVaR(ENS) [kW h] ECg [$] CVaR(Cg) [$]

MS – – – 1109.21 1656.53 170.27 179.24
ΞDG
min f 1

1.00 666.95 160.91 666.95 1093.12 160.91 185.11

ΞDG
elbow

671.05 150.83 671.05 1185.53 150.83 179.47

ΞDG
min f 2

726.57 148.68 726.57 1279.37 148.68 178.23

ΞDG
min f 1

0.75 797.07 166.41 677.74 1155.11 160.68 183.62

ΞDG
elbow

805.27 159.35 697.17 1129.62 153.09 178.15

ΞDG
min f 2

867.08 155.61 729.81 1278.94 147.66 179.45

ΞDG
min f 1

0.50 868.61 171.54 641.68 1095.52 159.43 183.64

ΞDG
elbow

936.58 166.67 701.72 1171.47 154.67 178.53

ΞDG
min f 2

1131.64 162.99 843.53 1419.79 150.45 175.58

ΞDG
min f 1

0.25 1033.65 172.95 723.19 1137.18 156.55 178.42

ΞDG
elbow

1076.53 171.25 743.61 1187.43 156.32 176.24

ΞDG
min f 2

1207.33 169.07 835.23 1331.34 158.64 173.47

ΞDG
min f 1

0.00 1144.36 179.03 744.71 1144.31 163.82 179.03

ΞDG
elbow

1197.79 176.62 749.21 1197.74 160.93 176.62

ΞDG
min f 2

1307.33 172.87 828.55 1307.35 159.78 172.87



5. Conclusions

We have presented a risk-based simulation and multi-objective
optimization framework for the integration of renewable generation
into a distribution network. The inherent uncertain behavior of

renewable energy sources and variability in the loads are taken into
account, as well as the possibility of failures of network components.
For managing the risk of not achieving expected performances due to
the multiple sources of uncertainty, the conditional value-at-risk is
introduced in the objective functions, weighed by a β parameter

Table 7
Average, minimum and maximum total DG power allocated per node.

PT ½kW � β

1.00 0.75 0.50 0.25 0.00

Node Min Mean Max Min Mean Max Min Mean Max Min Mean Max Min Mean Max

1 12.08 34.44 54.77 1.15 22.40 38.56 0.00 19.23 40.98 0.00 39.03 121.00 3.00 17.33 34.71
2 2.30 40.72 69.73 0.00 49.95 77.70 36.50 58.40 123.36 3.00 63.61 132.93 0.00 42.54 84.09
3 0.00 24.83 46.45 14.80 41.79 85.03 0.00 37.94 105.11 4.00 36.87 98.53 1.00 32.84 77.78
4 76.00 110.00 133.41 1.15 67.40 133.63 0.58 38.04 80.13 6.15 20.73 61.85 0.00 39.85 85.86
5 22.60 52.39 77.08 28.90 60.66 98.59 12.63 89.39 143.50 3.30 23.49 54.25 1.00 24.97 79.64
6 12.33 55.56 85.46 10.45 21.22 38.95 2.00 27.68 106.26 12.15 53.78 84.43 0.00 50.64 116.85
7 8.00 16.52 35.38 39.38 64.07 104.05 0.00 52.03 159.73 0.00 34.09 92.81 5.00 18.51 39.23
8 79.03 111.20 146.63 30.00 74.57 114.41 0.00 40.60 146.06 4.00 37.94 102.60 1.00 39.49 119.38
9 0.00 20.03 68.73 4.00 74.07 107.88 0.00 46.72 85.61 0.00 44.06 94.08 0.00 32.86 74.53

10 0.00 9.07 25.35 0.00 1.58 7.88 0.00 11.88 58.69 0.00 8.58 43.40 0.00 30.12 83.45
11 0.00 9.98 17.68 0.00 3.04 13.20 0.00 4.74 23.45 0.00 8.99 45.95 0.00 7.31 51.17

Fig. 13. Average total DG power allocated (A) and its breakdown by type of DG: PV (B), W (C), EV (D) and ST (E).



which allows trading off the level of risk. The proposed framework
integrates the Non-dominated Sorting Genetic Algorithm II as a
search engine, Monte Carlo simulation to randomly generate realiza-
tions of the uncertain operational scenarios and Optimal Power Flow
to model the electrical distribution network flows. The optimization
is done to simultaneously minimize the energy not supplied and
global cost, combined with their respective conditional value-at-risk
values in an amount controlled by β.

To exemplify the proposed framework, a case study has been
analyzed derived from the IEEE 13 nodes test feeder. The results
obtained show the capability of the framework to identify Pareto
optimal sets of renewable DG units allocations. Integrating the
conditional value-at-risk into the framework and performing
optimizations for different values of β has shown the possibility
of optimizing expected performances while controlling the uncer-
tainty in its achievement. The contribution of each type of renew-
able DG technology can also be analyzed, indicating which is more
suitable for specific preferences of the decision makers.

References

[1] Atwa YM, El-Saadany EF, Salama MMA, Seethapathy R. Optimal renewable 
resources mix for distribution system energy loss minimization. IEEE Trans 
Power Syst 2010;25:360–70.

[2] Celli G, Ghiani E, Mocci S, Pilo F. A multiobjective evolutionary algorithm for 
the sizing and siting of distributed generation. IEEE Trans Power Syst 
2005;20:750–7.

[3] Liu Z, Wen F, Ledwich G. Optimal siting and sizing of distributed generators in 
distribution systems considering uncertainties. IEEE Trans Power Delivery 
2011;26:2541–51.

[4] Akorede MF, Hizam H, Pouresmaeil E. Distributed energy resources and 
benefits to the environment. Renewable Sustainable Energy Rev 2010;14:724–
34.

[5] Alanne K, Saari A. Distributed energy generation and sustainable develop-
ment. Renewable Sustainable Energy Rev 2006;10:539–58.

[6] Karger CR, Hennings W. Sustainability evaluation of decentralized electricity 
generation. Renewable Sustainable Energy Rev 2009;13:583–93.

[7] Martins VF, Borges CLT. Active distribution network integrated planning 
incorporating distributed generation and load response uncertainties. IEEE 
Trans Power Syst 2011;26:2164–72.

[8] Viral R, Khatod DK. Optimal planning of distributed generation systems in 
distribution system: a review. Renewable Sustainable Energy Rev 2012;16: 
5146–65.

[9] Koutroumpezis GN, Safigianni AS. Optimum allocation of the maximum 
possible distributed generation penetration in a distribution network. Electr 
Power Syst Res 2010;80:1421–7.

[10] Alarcon-Rodriguez A, Ault G, Galloway S. Multi-objective planning of distrib-
uted energy resources: a review of the state-of-the-art. Renewable Sustainable 
Energy Rev 2010;14:1353–66.

[11] Raoofat M. Simultaneous allocation of DGs and remote controllable switches 
in distribution networks considering multilevel load model. Int J Electr Power 
Energy Syst 2011;33:1429–36.

[12] Lee S-H, Park J-W. Selection of optimal location and size of multiple 
distributed generations by using Kalman Filter algorithm. IEEE Trans Power 
Syst 2009;24:1393–400.

[13] Falaghi H, Singh C, Haghifam M-R, Ramezani M. DG integrated multistage 
distribution system expansion planning. Int J Electr Power Energy Syst 
2011;33:1489–97.

[14] Celli G, Mocci S, Pilo F, Soma GG. A multi-objective approach for the optimal 
distributed generation allocation with environmental constraints. In: Prob-
abilistic methods applied to power systems, 2008 PMAPS ’08 proceedings of 
the 10th international conference on; 2008. p. 1–8.

[15] Mohammed YS, Mustafa MW, Bashir N, Mokhtar AS. Renewable energy 
resources for distributed power generation in Nigeria: a review of the 
potential. Renewable Sustainable Energy Rev 2013;22:257–68.

[16] Borges CLT, Martins V-cF. Multistage expansion planning for active distribution 
networks under demand and distributed generation uncertainties. Int J Electr 
Power Energy Syst 2012;36:107–16.

[17] Celli G, Pilo F, Soma GG, Gallanti M, Cicoria R. Active distribution network cost/
benefit analysis with multi-objective programming. In: Electricity distribution
—Part 1, 2009 CIRED 2009 20th international conference and exhibition on; 
2009. p. 1–5.

[18] Hejazi HA, Hejazi MA, Gharehpetian GB, Abedi M. Distributed generation site 
and size allocation through a techno economical multi-objective differential 
evolution algorithm. Power and energy (PECon), 2010 IEEE international 
conference on; 2010. p. 874–849.

[19] Ren H, Gao W. A MILP model for integrated plan and evaluation of distributed 
energy systems. Appl Energy 2010;87:1001–14.

[20] Ren H, Zhou W, Kat Nakagami, Gao W, Wu Q. Multi-objective optimization for 
the operation of distributed energy systems considering economic and 
environmental aspects. Appl Energy 2010;87:3642–51.

[21] El-Khattam W, Bhattacharya K, Hegazy Y, Salama MMA. Optimal investment 
planning for distributed generation in a competitive electricity market. IEEE 
Trans Power Syst 2004;19:1674–84.

[22] El-Khattam W, Hegazy YG, Salama MMA. An integrated distributed generation 
optimization model for distribution system planning. IEEE Trans Power Syst 
2005;20:1158–65.

[23] Ganguly S, Sahoo NC, Das D. A novel multi-objective PSO for electrical 
distribution system planning incorporating distributed generation. Energy 
Syst 2010;1:291–337.

[24] Gomez-Gonzalez M, LÃ³pez A, Jurado F. Optimization of distributed generation 
systems using a new discrete PSO and OPF. Electr Power Syst Res 
2012;84:174–80.

[25] Harrison GP, Piccolo A, Siano P, Wallace AR. Hybrid GA and OPF evaluation of 
network capacity for distributed generation connections. Electr Power Syst 
Res 2008;78:392–8.

[26] Ouyang W, Cheng H, Zhang X, Yao L. Distribution network planning method 
considering distributed generation for peak cutting. Energy Convers Manage 
2010;51:2394–401.

[27] Zou K, Agalgaonkar AP, Muttaqi KM, Perera S. Multi-objective optimisation for 
distribution system planning with renewable energy resources. In: Energy con-
ference and exhibition (EnergyCon), 2010 IEEE international; 2010. p. 670–675.

[28] Borges CLT. An overview of reliability models and methods for distribution 
systems with renewable energy distributed generation. Renewable Sustain-
able Energy Rev 2012;16:4008–15.

[29] Wang L, Singh C. Multicriteria design of hybrid power generation systems 
based on a modified particle swarm optimization algorithm. IEEE Trans Energy 
Convers 2009;24:163–72.

[30] Ochoa LF, Harrison GP. Minimizing energy losses: optimal accommodation 
and smart operation of renewable distributed generation. IEEE Trans Power 
Syst 2011;26:198–205.

[31] Zhao J, Foster J. Flexible transmission network planning considering distrib-
uted generation impacts. IEEE Trans Power Syst 2011;26:1434–43.

[32] Tan W-S, Hassan MY, Majid MS, Abdul Rahman H. Optimal distributed 
renewable generation planning: a review of different approaches. 
Renewable Sustainable Energy Rev 2013;18:626–45.

[33] Alarcon-Rodriguez A, Haesen E, Ault G, Driesen J, Belmans R. Multi-objective 
planning framework for stochastic and controllable distributed energy 
resources. Renewable Power Gener IET 2009;3:227–38.

[34] Pilo F, Celli G, Mocci S, Soma GG. Active distribution network evolution in 
different regulatory environments. In: Power generation, transmission, dis-
tribution and energy conversion (MedPower 2010), seventh Mediterranean 
conference and exhibition on; 2010. p. 1–8.

[35] Soroudi A, Ehsan M. A possibilistic‚ Äìprobabilistic tool for evaluating the 
impact of stochastic renewable and controllable power generation on energy 
losses in distribution networks‚ ÄîA case study. Renewable Sustainable Energy 
Rev 2011;15:794–800.

[36] Hejazi HA, Araghi AR, Vahidi B, Hosseinian SH, Abedi M, Mohsenian-Rad H. 
Independent distributed generation planning to profit both utility and DG 
investors. IEEE Trans Power Syst 2013;28:1170–8.

[37] Melnikov A, Smirnov I. Dynamic hedging of conditional value-at-risk. Insuran: 
Math Econ 2012;51:182–90.

[38] Rockafellar RT, Uryasev S. Conditional value-at-risk for general loss distribu-
tions. J Bank Finance 2002;26:1443–71.

[39] Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multiobjective 
genetic algorithm: NSGA-II. IEEE Trans Evol Comput 2002;6:182–97.

[40] IEEE power and energy society. Distribution test feeders.
[41] Li Y, Zio E. Uncertainty analysis of the adequacy assessment model of a 

distributed generation system. Renewable Energy 2012;41:235–44.
[42] Li Y-F, Zio E. A multi-state model for the reliability assessment of a distributed 

generation system via universal generating function. Reliab Eng Syst Saf 
2012;106:28–36.

[43] Clement-Nyns K, Haesen E, Driesen J. The impact of vehicle-to-grid on the 
distribution grid. Electr Power Syst Res 2011;81:185–92.

[44] Diaz-Gonzalez F, Sumper A, Gomis-Bellmunt O, Villafafila-Robles R. A review of 
energy storage technologies for wind power applications. Renewable 
Sustainable Energy Rev 2012;16:2154–71.

[45] Thornton A, Monroy CRg. Distributed power generation in the United States. 
Renewable Sustainable Energy Rev 2011;15:4809–17.

[46] Zio E. The Monte Carlo simulation method for system reliability and risk 
analysis. London: Springer; 2013.

[47] Hegazy Y. Adequacy assessment of distributed generation systems using 
Monte Carlo simulation. IEEE Trans Power Syst 2003;18:48–52.

[48] Shaaban MF, Atwa YM, El-Saadany EF. DG allocation for benefit maximization 
in distribution networks. IEEE Trans Power Syst 2013;28:639–49.

[49] Samper ME, Vargas A. Investment decisions in distribution networks under 
uncertainty with distributed generation-Part II: Implementation and results. 
IEEE Trans Power Syst 2013;28:2341–51.

[50] Purchala K, Meeus L. Usefulness of DC power flow for active power flow 
analysis. Power Eng Optimiz 2005.

[51] Hertem DV. Usefulness of DC power flow for active power flow analysis with 
flow controlling devices. AC and DC power transmission. IEEE Int Conf 2006.

[52] Billinton R, Allan R. Reliability evaluation of power systems. 2nd Ed.Springer; 
1996.

http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref1
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref1
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref1
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref2
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref2
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref2
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref3
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref3
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref3
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref4
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref4
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref5
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref5
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref6
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref6
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref7
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref7
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref7
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref8
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref8
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref8
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref9
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref9
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref9
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref10
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref10
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref10
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref11
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref11
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref11
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref12
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref12
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref12
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref13
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref13
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref13
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref14
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref14
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref14
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref15
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref15
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref15
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref16
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref16
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref17
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref17
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref17
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref18
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref18
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref18
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref19
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref19
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref19
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref20
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref20
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref20
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref21
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref21
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref21
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref22
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref22
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref22
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref23
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref23
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref23
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref24
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref24
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref24
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref25
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref25
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref25
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref26
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref26
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref26
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref27
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref27
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref28
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref28
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref28
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref29
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref29
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref29
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref30
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref30
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref30
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref30
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref31
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref31
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref31
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref32
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref32
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref33
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref33
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref34
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref34
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref35
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref35
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref36
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref36
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref36
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref37
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref37
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref38
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref38
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref38
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref39
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref39
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref40
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref40
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref41
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref41
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref42
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref42
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref43
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref43
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref43
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref44
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref44
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref45
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref45
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref46
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref46


[53] Haffner S, Pereira LFA, Pereira LA, Barreto LS. Multistage model for distribution 
expansion planning with distributed generation—Part I: Problem formulation. 
IEEE Trans Power Delivery 2008;23:915–23.

[54] Haffner S, Pereira LFA, Pereira LA, Barreto LS. Multistage model for distribution 
expansion planning with distributed generation—Part II: Numerical results. 
IEEE Trans Power Delivery 2008;23:924–9.

[55] Wang LF, Singh C. Multicriteria design of hybrid power generation systems 
based on a modified particle swarm optimization algorithm. IEEE Trans Energy 
Convers 2009;24:163–72.

[56] Uryasev S. VaR vs CVaR in risk management and optimization. CARISMA 
conference; 2010 (presentation).

[57] Ahmadi A, Charwand M, Aghaei J. Risk-constrained optimal strategy for 
retailer forward contract portfolio. Int J Electr Power Energy Syst 2013;53: 
704–13.

[58] Gitizadeh M, Kaji M, Aghaei J. Risk based multiobjective generation expansion 
planning considering renewable energy sources. Energy 2013;50:74–82.

[59] Ugranli F, Karatepe E. Multiple-distributed generation planning under load 
uncertainty and different penetration levels. Int J Electr Power Energy Syst 
2013;46:132–44.

[60] Ak R, Li Y, Vitelli V, Zio E, López Droguett E, Magno Couto Jacinto C. NSGA-II-
trained neural network approach to the estimation of prediction intervals of 
scale deposition rate in oil & gas equipment. Expert Syst Appl 2013;40: 
1205–12.

[61] Branke J. Multiobjective optimization: interactive and evolutionary approaches. 
Berlin; New York: Springer; 2008.

[62] Aghaei J, Amjady N. A scenario-based multiobjective operation of electricity 
markets enhancing transient stability. Int J Electr Power Energy Syst 
2012;35:112–22.

[63] Aghaei J, Amjady N, Shayanfar HA. Multi-objective electricity market clearing 
considering dynamic security by lexicographic optimization and augmented 
epsilon constraint method. Appl Soft Comput 2011;11:3846–58.

[64] Aghaei J, Akbari MA, Roosta A, Baharvandi A. Multiobjective generation 
expansion planning considering power system adequacy. Electr Power Syst 
Res 2013;102:8–19.

[65] Kersting WH. Radial distribution test feeders. IEEE Trans Power Syst 
1991;6:975–85.

[66] Webster R. Can the electricity distribution network cope with an influx of 
electric vehicles? J Power Sources 1999:217–25. 

http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref47
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref47
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref47
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref48
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref48
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref48
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref49
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref49
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref49
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref50
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref50
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref50
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref51
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref51
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref52
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref52
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref52
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref53
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref53
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref53
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref53
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref53
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref54
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref54
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref55
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref55
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref55
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref56
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref56
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref56
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref57
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref57
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref57
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref58
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref58
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref59
http://refhub.elsevier.com/S1364-0321(14)00371-2/sbref59

	A risk-based simulation and multi-objective optimization framework for the integration of distributed renewable...
	Introduction
	Distributed generation network simulation model
	Distributed generation network structure and configuration
	Uncertainty modeling
	Photovoltaic generation
	Wind generation
	Electric vehicles
	Storage devices
	Main power supply
	Mechanical states of the components
	Demand of power

	Monte Carlo simulation
	Optimal power flow
	Performance indicators
	Energy not supplied
	Global cost
	Risk


	DG units selection, sizing and allocation
	MOO problem formulation
	NSGA-II with nested MCS-OPF

	Case study
	Distribution network description
	Results and discussion

	Conclusions
	References




