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Abstract. Quite unexpectedly with respect to the numerical and analyti-
cal results found in literature, we establish a new range for the existence of

2π−periodic solutions of the Brillouin focusing beam equation

ẍ+ b(1 + cos t)x =
1

x
.

This is possible thanks to suitable nonresonance conditions acting on the ro-

tation number of the solutions in the phase plane.

1. Introduction and main results. This note deals with the 2π-periodic bound-
ary value problem for the equation

ẍ+ b(1 + cos t)x =
1
, (1)
x

where b is a positive constant. We will be interested in the existence of positive 2π-
periodic solutions of (1) (thus avoiding taking into account solutions with collisions).

The physical meaning of equation (1) arises in the context of Electronics, since it 
governs the motion of a magnetically focused axially symmetric electron beam under 
the influence of the Brillouin flow, as shown in [1]. From a mathematical point of 
view, (1) is a singular perturbation of a Mathieu equation, as we will explain below.

Motivated by some numerical experiments realized in [1], where it was conjec-
tured that, if b ∈ (0, 1/4), equation (1) should have a 2π-periodic solution, in the 
last fifty years the work of many mathematicians has given birth to an extensive 
literature about this topic. Although at the moment the conjecture has not been 
correctly proven yet, many advances in this line have been obtained, allowing to un-
derstand that proving the existence of 2π-periodic solutions of (1) when b ∈ (0, 1/4)
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can be a really delicate issue, and arising doubts on the validity of the result con-
jectured in [1].

The first analytic work on the periodic solvability of (1) was realized by T. Ding
in [7]. There, it was proven that if b ∈ (0, 1/16), then equation (1) has at least a
2π-periodic solutions. Later, other works showed that uniqueness holds under the
previous hypothesis (see for instance [14, 15, 21]).

Afterwards, Y. Ye and X. Wang [18] proved the existence of 2π-periodic solutions
of (1) when b ∈ (0, 2/(π2 + 4)) ≈ (0, 0.1442).

To the best of our knowledge, the following step towards the resolution of the
conjecture was done by M. Zhang, extending existence to the interval (0, 0.1532)
using a contraction argument applied to a positive linear operator (see [19]).

A couple of years later, the same author determined in [20] the best range of b ac-
tually known for the 2π-periodic solvability of (1), using a non-resonance hypothesis
for the associated Mathieu equation (a particular Hill type equation)

ẍ+ b(1 + cos t)x = 0. (2)

In order to prove such a result, the author considered there the function K :
[1,+∞]→ R defined by

K(α) =
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with this definition, a sufficient condition in order for the Dirichlet problem (x(0) =
0 = x(2π)) associated with (2) to have a unique solution is that

b < max
α∈[1,+∞]

K(α) ≈ 0.16448.

Under this non-resonance condition, i.e., if b ∈ (0, 0.16448), equation (1) has at least
one 2π-periodic solution. This last result has been extended to equations where the
singularity may be of weak type (see [16]).

Actually, the function K is a powerful tool in order to study the existence of
periodic solutions for more general versions of equation (1) (see [5, 17]).

An important result to understand the difficulty of showing the validity of the
conjecture proposed in [1] was proven in [21]. In that paper, it was established an
unanimous relation between the stability intervals for the Mathieu equation (2) and
the existence of periodic solutions for the Yermakov-Pinney equation

ẍ+ b(1 + cos t)x− 1

x3
= 0. (3)

In particular, [21, Theorem 2.1] ensures that (3) has a positive 2π-periodic solution
if and only if (2) is stable in the sense of Lyapunov. Denoting by λi, i = 0, 1, . . . and
λ′i, i = 1, 2, . . ., respectively, the values of the parameter b for which equation (2)
has, respectively, a genuine π-periodic solution and a genuine 2π-periodic solution,
the stability intervals of the Mathieu equation are given by

(λ0, λ
′
1), (λ′2, λ1), (λ2, λ

′
3), . . . ;

approximately, we have that λ0 = 0, λ′1 ≈ 1/6; λ′2 ≈ 0.4, λ1 ≈ 0.95, . . . (see [12,
Theorem 2.1] and [4, Figure 1]). This suggests that, in order to obtain a correct



proof of the conjecture by V. Bevc, J. L. Palmer and C. Süsskind, one has to take
into account some feature of equation (1) which equation (3) does not have. Indeed,
if we assumed that (3) has at least one 2π−periodic solution whenever b ∈ (0, 1/4),
then one could take b sufficiently close to 1/4 in such a way that it does not belong
to any stability interval of (2), and this would contradict [21, Theorem 2.1].

It has to be said that, in [13, Theorem 3.2], it was obtained that (1) has a periodic
solution when b ∈ (0, 1/4). Unfortunately, the same theorem seems applicable to
equation (3) obtaining the same conclusion, but this it is not possible according to
the previous discussion. This contradiction seems to leave the conjecture in [1] still
open.

However, in this work we are not able to prove or disprove the result which was
conjectured in [1], but we will show that (1) may have periodic solutions also when
the parameter b belongs to intervals other than (0, 1/4). In fact, we will prove the
following.

Theorem 1.1. If b ∈ [0.4705, 0.59165], then (1) has at least one 2π-periodic solu-
tion.

This result seems in some sense unexpected, according to the numerical ones
obtained in [1], where it was observed that when the parameter b begins to cross
the umbral 1/4, the 2π-periodic solvability of (1) is not clear. It seems indeed that
Theorem 1.1 is the first result of existence for (1) when b does not belong to the
first stability interval of equation (2) (notice that we are dealing with values of the
parameter b belonging to the second stability interval of equation (2), agreeing with
[21, Theorem 2.1]). Moreover, as it can be seen in Remark 2.3, our result is in some
sense optimal, when some additional control is required on the nonlinearity.

Theorem 1.1 follows from a general existence result, Theorem 2.1 below, obtained
thanks to suitable nonresonance assumptions which can be traced back to the work
[8] by Fabry, as explained in Remark 2.2. The main abstract tool involved in its
proof is the Poincaré-Bohl fixed point theorem.

The structure of this short note is as follows: in Section 2, we will prove Theorem
2.1 concerning strong singular perturbations of a Mathieu equation. As a conse-
quence, in Section 3 we will prove a general proposition (Proposition 3.1) allowing
to prove Theorem 1.1.

2. A non-resonance theorem for singular perturbations of a Mathieu
equation. The proof of Theorem 1.1 is based on a non-resonance result which
involves nonlinearities with “atypical” linear growth, and could have interest by
itself.

Theorem 2.1. Let us assume that there exist positive constants A+, B+ such that

1

2π

∫ 2π

0
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, 1

}
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2
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, (4)
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max
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}
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2
√
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for some natural number n. Then (1) has at least one 2π-periodic solution.

Before introducing the main tools to prove the theorem, a couple of remarks are
in order.



Remark 2.1. With the aim of keeping the exposition at a rather simple level,
and taking into account that we mainly want to study the existence of 2π-periodic
solutions of (1), we will always consider equation (1) as a starting point. However,
the result can be extended, with the same approach and similar computations, to
more general equations like

ẍ+ a(t)x+ g(t, x) = 0, (6)

where a(t) is continuous and 2π-periodic, and g : [0, 2π] × (0,+∞) → R has a
similar behavior as −1/xγ , with γ ≥ 1, near x = 0, being allowed to grow at most
sublinearly at infinity. For instance, as in [11], one can assume that there exist σ > 0
and a continuous function f : (0, σ] → R such that g(t, x) ≤ f(x), for x ∈ (0, σ],
and

lim
r→0+

f(r) = −∞,
∫ σ

0

f(r) dr = −∞.

Of course, in this case a(t) will replace b(1 + cos t).

Remark 2.2. Conditions (4) and (5) were introduced by Fabry in [8] for the equa-
tion

ẍ+ g(t, x) = 0,

with

p(t) ≤ lim inf
|x|→+∞

g(t, x)

x
≤ lim sup
|x|→+∞

g(t, x)

x
≤ q(t),

asking that√
λj < sup

ξ>0

1
2π

∫ 2π

0
min{p(t), ξ} dt
√
ξ

, inf
ξ>0

1
2π

∫ 2π

0
max{q(t), ξ} dt
√
ξ

<
√
λj+1,

where λj is the j-th eigenvalue of the considered 2π-periodic problem. Such condi-
tions are usually coupled with the sign assumption

lim inf
|x|→+∞

sgnx g(t, x) > 0

(see for instance [9]), which, however, in the model case g(t, x) = b(1 + cos t)x +
f(t, x), with lim|x|→+∞ f(t, x) = 0, is not satisfied. This is one of the main difficul-
ties of the problem considered in the present paper.
As it is easy to see, (4) and (5) are the counterpart of Fabry’s conditions for the
Dirichlet spectrum (which is the natural one to consider when dealing with problems
with a singularity, see [20]).

Remark 2.3. As a consequence of Theorem 2.1, we can obtain the main results in
[6, 11]. Indeed, assume that there exist positive constants A+, B+ such that

B+ ≤ a(t) ≤ A+ for every t ∈ [0, 2π]. (7)

Then, according to [6, 11], there exists at least one 2π-periodic solution of (6) under
the nonresonance assumption(n

2

)2
< B+ ≤ A+ <

(
n+ 1

2

)2

,

where n ∈ N. It is easy to obtain this result from Theorem 2.1, since from (7) we
deduce that

a(t)

A+
≤ 1 ≤ a(t)

B+
for every t ∈ [0, 2π]. (8)



Under (7), from the point of view of resonance, the results in [6, 11] are optimal, in
view of the counterexample produced in [2], according to which there exist forcing
terms e(t) such that the equation

ẍ− 1

x3
+

1

4
x = e(t)

has no 2π-periodic solutions. Thus, Theorem 2.1 seems to be optimal whenever we
are able to control a(t) with estimates like (7) and (8), essentially requiring, in this
case, a nonresonance assumption. On the other hand, the mean conditions (4) and
(5) do not ask that a(t) is controlled like in (7) and (8), allowing it to possibly cross
some eigenvalues (cf. [3]) as in our case, being 0 ≤ a(t) ≤ 2b.

We are now going to prove Theorem 2.1. As it was mentioned previously, we
will have to overcome the difficulty of working with nonlinearities with atypical
linear growth, since, in our concrete case, the nonlinearity grows linearly towards
the function b(1 + cos t)x, which vanishes at some times. For this reason, classical
arguments in literature (like the ones in [9, 10, 11]) do not extend as they are to (1),
because it is not possible to construct an admissible spiral which allows to control
the dynamics of the solutions.

We will prove Theorem 2.1 by means of some preliminary lemmas. To this aim,
denoting by Λ the half-plane with positive abscissa, i.e. Λ = {(x, y) ∈ R2 : x > 0},
it will be convenient to define the application

N : Λ→ R, N (x, y) := bx2 + y2 − 2 lnx.

Moreover, for a fixed number c, we will denote the corresponding level curve of
N (x, y) by γc, i.e.,

γc = {(x, y) ∈ Λ : N (x, y) = c}.
It is worth observing that the function N (x, y) reaches its minimum in the point

P0 = (1/
√
b, 0), where it takes the value 1− 2 ln(1/

√
b) (possibly negative for some

values of the parameter b). For values of the energy greater than 1−2 ln(1/
√
b), the

level curves of N turn around P0, being the union of two symmetric arcs joining on
the x-axis.

For our problem, the function N (x, y) is the analogue of a norm, as usual in
problems with a singularity (see, for instance, [11]). In particular, a solution of
equation (1) is considered ”large” if N (x, ẋ) is ”large”, and this can happen if the
C1-norm of x(t) is large, or if x(t) approaches the singularity. Usually, functions
similar as N (x, y) are involved in proving the validity of some elastic property,
thanks to the construction of a suitable spiral-like curve controlling the solutions;
this is strictly connected to the possibility of giving precise estimates on the rotation
number (in the phase plane) of the solutions having large norm. In our problem
the situation is slightly more complicated, but through the use of N (x, y) we still
reach useful estimates on the solutions of (1), as we are going to see.

We will look at the solutions of (1) in the phase plane, considering thus the
couple (x, ẋ). As already mentioned, we are interested in positive solutions, so that
we will take into account the dynamics of the solutions in the right half-plane. The
first lemma ensures the global continuability, i.e., shows that the maximal domain
of every solution of (1) is [0,+∞).

Lemma 2.2. Let x(t) be a solution of (1) (not necessarily periodic). Then

N (x(t), ẋ(t)) < +∞ for every t ≥ 0.



Proof. Since

lim
x→+∞

bx2

bx2 − 2 lnx
= 1,

taking C > max{1, b} there exists K0 > 1 such that

b

2
(x2 + y2) ≤ C

2
(bx2 + y2 − 2 lnx) for every x ≥ K0, y ∈ R. (9)

For every solution x(t) of (1), we define the function

U : I → R, U(t) =
N (x(t), ẋ(t))

2
=

1

2
(bx(t)2 + ẋ(t)2 − 2 lnx(t)),

where I is the maximal domain of x(t). We are going to prove that I = [0,+∞).
Since

U ′(t) = −bx(t)ẋ(t) cos t,

for t ∈ I we have that

U ′(t) ≤ b(x(t)2 + ẋ(t)2)

2
,

from which it can be deduced that

U ′(t) ≤ CU(t) + C lnK0 for every t ∈ I. (10)

Indeed, if t ≥ 0 is such that x(t) ≥ K0, then (9) implies that U ′(t) ≤ CU(t). On
the contrary, if x(t) ≤ K0, we deduce that either x(t) ≤ 1, and then U ′(t) ≤ CU(t),
or 1 ≤ x(t) ≤ K0, and thus (10) holds. Now, according to the Gronwall-Bellman
Lemma, the result is proven.

As it was mentioned in the previous discussion, equations like (1) do not admit the
existence of an admissible spiral controlling the solutions. However, the following
result ensures that (1) has the “property of elasticity”, at least locally. Roughly
speaking, this means that if there is a time when the norm of the solution is large
enough, then, for every preceding time instant, the solution had to be large (in
norm). Precisely, we have the following.

Lemma 2.3. Let ρ0 > 0 be sufficiently large. Then, there exists R1 > ρ0 such that,
for every solution x(t) of (1) satisfying

N (x(t1), ẋ(t1)) ≥ R1

for some t1 > 0, it holds

N (x(t), ẋ(t)) ≥ ρ0 for every t ∈ [0, t1].

Proof. We first observe that there exists a constant M > 0 such that

b(x2 + y2)

N (x, y)
< M, (11)

for every (x, y) ∈ Λ. Now, choosing ρ0 > 0 sufficiently large, there exist u−0 < 1 <
u+0 such that

γρ0 = Graph(F0) ∪Graph(−F0),

where F0 : (0,+∞) → R is a function such that F0(u−0 ) = F0(u+0 ) = 0, having
constant sign on (u−0 , u

+
0 ).

Let us fix L1 satisfying

2L1 ≥ max
x∈[u−

0 ,u
+
0 ]
bx2 − 2 lnx+ 2ρ0,



and consider γ2L1 : explicitly,

γ2L1 =
{

(x, y) ∈ Λ : y = ±
√

2L1 − (bx2 − 2 lnx)
}
.

Thus, there exist u−1 < u−0 < u+0 < u+1 such that, similarly as before,

γ2L1
= Graph(F1) ∪Graph(−F1),

where F1 : (0,+∞) → R is defined by F1(x) =
√

2L1 − (bx2 − 2 lnx) (and con-

sequently vanishes in u−1 , u
+
1 ). On the other hand, we take L2 > e2πM L1, and

consider the level curve γ2L2 , which is explicitly given by

γ2L2 =
{

(x, y) ∈ Λ : y = ±
√

2L2 − (bx2 − 2 lnx)
}
.

Finally, we fix R1 > 2L2, so that

γ2L2
⊂ {(x, y) ∈ Λ : N (x, y) ≤ R1} .

Assume that there exists x(t) solving (1) such that N (x(t1), ẋ(t1)) ≥ R1, but there
is t∗ ∈ [0, t1) such that N (x(t∗), ẋ(t∗)) ≤ ρ0. By continuity, we can assume that
there exist t∗ < t∗ such that (x(t∗), ẋ(t∗)) ∈ γ2L1 and (x(t∗), ẋ(t∗)) ∈ γ2L2 ; setting,
as in Lemma 2.2, U(t) = N (x(t), ẋ(t))/2, this explicitly means that

L1 < U(t) < L2 for every t ∈ (t∗, t
∗), U(t∗) = L1, U(t∗) = L2. (12)

According to (11) and (12), from the definition of U(t) we deduce that

U ′(t) ≤MU(t), for every t ∈ [t∗, t
∗],

which implies, thanks to the Gronwall-Bellman Lemma, that

U(t) ≤ e2πM L1 for every t ∈ [t∗, t
∗].

This, however, contradicts (12), in view of the definition of L2.

Now, intuitively speaking, we will prove that either the solutions of (1) have the
global elasticity property, or their norm in the instant t = 2π is lower than in the
initial one. This useful property is similar to the one introduced in [10].

Lemma 2.4. Let ρ0 > 0 be sufficiently large. Then, there exists R2 > ρ0 such that,
for every solution x(t) of (1) fulfilling

max
t∈[0,2π]

N (x(t), ẋ(t)) ≥ R2, (13)

it is either
N (x(t), ẋ(t)) ≥ ρ0 for every t ∈ [0, 2π], (14)

or
N (x(0), ẋ(0)) > N (x(2π), ẋ(2π)). (15)

Proof. Let us take R1 as in the statement of Lemma 2.3, for the fixed ρ0. In the
same way, we apply again Lemma 2.3, this time with R1 playing the role of ρ0,
finding the corresponding R2 for which the statement holds.
Assume now that there exists a solution x(t) of (1) satisfying (13), for which it is

N (x(0), ẋ(0)) ≤ N (x(2π), ẋ(2π)). (16)

Since there exists t2 ∈ [0, 2π] such that N (x(t2), ẋ(t2)) ≥ R2, Lemma 2.3 im-
plies that N (x(0), ẋ(0)) ≥ R1, so that, in view of (16), N (x(2π), ẋ(2π)) ≥ R1.
Consequently, using again Lemma 2.3, we obtain that N (x(t), ẋ(t)) ≥ ρ0 for t ∈
[0, 2π].



We are now able to show that an adaptation of the arguments in [9, 11] to our
equation allows to prove that the global elasticity property cannot be fulfilled for
solutions of (1) with large norm which perform an integer number of revolutions
when t goes from 0 to 2π.

Lemma 2.5. Under the hypotheses of Theorem 2.1, there exists R2 > 0 such that,
if x(t) is a solution of (1) which satisfies

max
t∈[0,2π]

N (x(t), ẋ(t)) ≥ R2

and (x(t), ẋ(t)) performs an integer number of turns around (1, 0) in the time in-
terval [0, 2π], then (15) holds.

Proof. In view of (4) and (5), there exists a positive number δ such that

1

2π

∫ 2π

0

min

{
b(1 + cos t)− δ

B+
, 1

}
dt >

n

2
√
B+

,

1

2π

∫ 2π

0

max

{
b(1 + cos t) + δ

A+
, 1

}
dt <

n+ 1

2
√
A+

.

In correspondence of δ, we can find Kδ > 0 such that, for every x ∈ [1,+∞) and
every t ≥ 0,

[b(1 + cos t)− δ)](x− 1)2 −Kδ <

[
b(1 + cos t)x− 1

x

]
(x− 1)

< [b(1 + cos t) + δ)](x− 1)2 +Kδ.

(17)

Moreover, we choose ρ1 and B′+ large, in such a way that the following relations
hold:(

1√
B+

+
1√
B′+

)−1 [
1

2π

∫ 2π

0

min

{
b(1 + cos t)− δ

B+
, 1

}
dt− Kδ

ρ1

]
>
n

2
, (18)

√
A+

[
1

2π

∫ 2π

0

max

{
b(1 + cos t) + δ

A+
, 1

}
dt+

Kδ

ρ1

]
<
n+ 1

2
. (19)

In order to perform the estimates leading to the result, we first fix ρ0 > 0 sufficiently
large and apply Lemma 2.4 in order to find R2 > ρ0 such that the statement therein
holds. Then, we fix a solution x(t) of (1) satisfying (13) and such that, in the phase
plane, the couple (x(t), ẋ(t)) performs an integer number of revolutions around (1, 0)
- say k ∈ N - during the time interval [0, 2π].
Thus, assume by contradiction that (15) is not satisfied; then, in view of Lemma 2.4,
x(t) fulfills (14). We are now going to estimate the time needed by (x(t), ẋ(t)) to
rotate k times around the point (1, 0), by dividing the half-plane Λ in vertical strips
and analyzing the behavior of (x(t), ẋ(t)) in each strip, following the procedure used
in [11].
As a first step, we perform our estimates in the strip {x > 1}. Passing to modified
polar coordinates around (1, 0) by writing

−µx = −µ+ ρ sinϑ, ẋ = ρ cosϑ,

where µ > 0, we obtain

− ϑ̇(t) = µ
ẋ(t)2 − ẍ(t)(x(t)− 1)

µ2(x(t)− 1)2 + ẋ(t)2
for every t ∈ [0, 2π]. (20)



Setting

J+ = {t ∈ [0, 2π] : x(t) ≥ 1} , J− = {t ∈ [0, 2π] : x(t) < 1} ,
in view of the properties of the modified rotation numbers (see, for instance, [8])
we have that

2π · k
2

= −
∫
J+

θ̇(t) dt.

Consequently, in view of (17),

k

2
≥ µ

2π

∫
J+

ẋ2 + [b(1 + cos t)− δ](x− 1)2

µ2(x− 1)2 + ẋ2
dt− µ

2π

∫
J+

Kδ

µ2(x− 1)2 + ẋ2
dt

≥ µ

2π

∫
J+

min
{
b(1+cos t)−δ

µ2 , 1
}

(x− 1)2 + (ẋ/µ)2

(x− 1)2 + (ẋ/µ)2
dt− µ

2π

∫
J+

Kδ

µ2(x− 1)2 + ẋ2
dt.

Taking into account that the function

Ψ : [0,+∞)→ R, Ψ(y) =
α+ y

β + y
(21)

is non-decreasing for α ≤ β, choosing µ =
√
B+, α = min

{
b(1+cos t)−δ

µ2 , 1
}

(x− 1)2,

β = (x− 1)2 and y = (ẋ/µ)2 we have

k

2
≥
√
B+

2π

∫
J+

min

{
b(1 + cos t)− δ

B+
, 1

}
dt−

√
B+

2π

∫
J+

Kδ

B+(x− 1)2 + ẋ2
dt. (22)

Without loss of generality, we can assume (up to enlarging ρ0) that R2 is sufficiently
large, so that

B+(x− 1)2 + ẋ2 ≥ ρ1, for every t ∈ J+.
Therefore, (22) implies

k

2
√
B+

≥ 1

2π

∫
J+

min

{
b(1 + cos t)− δ

B+
, 1

}
dt− Kδ

ρ1
. (23)

We now pass to compute the time spent by (x(t), ẋ(t)) to perform k/2 revolutions
on the “left” half phase plane, i.e. when x ∈ (0, 1]. Preliminarily, we fix

η̃ <
2π√
B′+

, K =

(
2π

η̃

)2

(24)

and observe that, since

lim
x→0+

b(1 + cos t)x− 1

x
= −∞,

there exists 0 < d < 1 such that

b(1 + cos t)x− 1

x
< −K for every x ∈ (0, d]. (25)

In this way it is possible to define both the sets

J−d = {t ∈ J− | x(t) ≤ d} , J+
d = {t ∈ J− | d < x(t) < 1}

and, correspondingly, the time instants t1, t2, t3 and t4 (as in Figure 1) such that,
in the time t4 − t1, the couple (x(t), ẋ(t)) performs half a turn in the “left” half
phase plane (x ∈ (0, 1]), and

x(t1) = 1 = x(t4), x(t2) = d = x(t3), (t1, t2) ∪ (t3, t4) ⊆ J+
d , [t2, t3] ⊆ J−d .



x

y

1d

(x(t), ẋ(t))

t = t4

t = t1

t = t2

t = t3

Figure 1. Defining the time instants t1, t2, t3, t4.

Passing to usual polar coordinates around (1, 0), i.e.,

x = 1 + ρ cosϑ, ẋ = ρ sinϑ,

we arrive at

− ϑ̇(t) =
ẋ(t)2 − ẍ(t)(x(t)− 1)

(x(t)− 1)2 + ẋ(t)2
. (26)

In view of (25), we deduce that

−ϑ̇(t) > K cos2 ϑ(t) + sin2 ϑ(t), t ∈ [t2, t3],

so that

t3 − t2 =

∫ ϑ(t2)

ϑ(t3)

ds

K cos2 s+ sin2 s
ds

=
1√
K

[
arctan

(
tanϑ(t2)

K

)
− arctan

(
tanϑ(t3)

K

)]
≤ π

2
√
K
.

According to (24), it follows that t3 − t2 < η̃/2; repeating the argument for every
revolution made by (x, ẋ) around (1, 0) yields

meas
(
J−d
)
<
k

4
η̃. (27)

In order to compute t2 − t1, we observe that, thanks to (26), it holds

−ϑ̇(t) ≥ ẋ(t)2 − C̃|1− d|
(1− d)2 + ẋ(t)2

for every t ∈ [t1, t2],



where C̃ = maxx∈[d,1] 2bx + 1/x. Again, we assume that ρ0 is large enough, so

that −ϑ̇(t) > 1/2 on [t1, t2], and t2 − t1 < η̃/4. Analogously, one can prove that
t4 − t3 < η̃/4, having thus that

meas(J+
d ) <

k

2

η̃

2
.

Thus, in view of (24) and (27), we deduce that

meas(J−) = meas(J+
d ) + meas(J−d ) <

k

2
η̃ < k

π√
B′+

,

from which
k

2
√
B′+

>
1

2π
meas(J−).

This relation, together with (23), gives

k

2

(
1√
B+

+
1√
B′+

)
≥ 1

2π

∫ 2π

0

min

{
b(1 + cos t)− δ

B+
, 1

}
dt− Kδ

ρ1
. (28)

On the other hand, reasoning on (20) with a similar argument and taking (17) into
account, we have

k

2
≤ µ

2π

∫
J+

max{ b(1+cos t)+δ
A+

, 1}(x− 1)2 + (ẋ/µ)2

(x− 1)2 + (ẋ/µ)2
dt+

µ

2π

∫
J+

Kδ

µ2(x− 1)2 + ẋ2
dt.

Since the function Ψ defined in (21) is non-increasing whenever α ≥ β, choosing

µ =
√
A+ and taking α = max

{
b(1+cos t)+δ

A+
, 1
}

(x−1)2 and β = (x−1)2, we obtain

k

2
≤
√
A+

2π

∫
J+

max{b(1 + cos t) + δ

A+
, 1}dt+

√
A+

2π

∫
J+

Kδ

A+(x− 1)2 + ẋ2
dt.

Again, we can assume ρ0 (and thus R2) so large that√
A+(x(t)− 1)2 + ẋ(t)2 ≥ ρ1, t ∈ J+.

Hence,
k

2
√
A+

≤ 1

2π

∫
J+

max

{
b(1 + cos t) + δ

A+
, 1

}
dt+

Kδ

ρ1
. (29)

We are now able to conclude the proof. Assume first that x(t)− 1 has at most 2n
zeros. Then k ≤ n, but this contradicts (18) and (28). On the contrary, if x(t)− 1
has at least 2n + 2 zeros (notice that, in any case, the number of zeros is even),
since k ∈ N it has to be k ≥ n + 1. However, this contradicts (19) and (29). The
proof is completed.

Remark 2.4. In [3], the relationships between conditions (4) and (5) and the
rotation number of “large” solutions of a first order planar system were highlighted.
This perfectly agrees with what we have seen in the proof which has just been
performed; indeed, conditions (4) and (5) force “large” solutions of the Cauchy
problems associated with (1) not to perform an integer number of turns around
(1, 0) in the time interval [0, 2π]. Thus, they turn to be hypotheses on the number
of rotations made by the solutions of equation (1) in the phase plane.

Using the previous results, a basic application of the Poincaré-Bohl Theorem
allows to prove Theorem 2.1.



Proof of Theorem 2.1. Let us take R2 sufficiently large as in Lemma 2.5 and set
B = {(x, y) ∈ Λ : N (x, y) ≤ R2}. In view of Lemma 2.2, the Poincaré map

P : B → R2, P (x0, y0) = (x(2π), ẋ(2π)),

where (x(t), ẋ(t)) is the unique solution of the problem

ẍ+ b(1 + cos t)x− 1

x
= 0, x(0) = x0 > 0, ẋ(0) = y0,

is well defined. Moreover, if (x0, y0) is a fixed point of P , then it is (x(0), ẋ(0)) =
(x(2π), ẋ(2π)), i.e., x(t) is a 2π-periodic solution of (1). Therefore, to get the
conclusion it is sufficient to prove that P has a fixed point. However, if we denote
by τ1 (resp. τ−1) the unitary right (resp. left) translation in the plane (x, ẋ), the
map Φ := τ−1 ◦ P ◦ τ1 : τ−1(B) → R2 satisfies all the hypotheses of the Poincaré-
Bohl fixed point theorem, since 0 ∈ τ−1(B) and Φ(u) 6= λu for every λ > 1 and
every u ∈ ∂τ−1(B) = τ−1∂B, in view of Lemma 2.5. Consequently, denoting by x̄
such a fixed point, τ1x̄ is a fixed point for P and the statement is proved.

3. Proof of Theorem 1.1. In order to prove Theorem 1.1 it will be convenient,
for any n ∈ N, to define the absolutely continuous functions Fn, Gn : (0,+∞) ×
(0,+∞)→ R by

Fn(b, x) =
1

2π

∫ 2π

0

min

{
b(1 + cos t)√

x
,
√
x

}
dt− n

2
,

Gn(b, x) =
1

2π

∫ 2π

0

max

{
b(1 + cos t)√

x
,
√
x

}
dt− n+ 1

2
.

Such functions are non-decreasing with respect to the variable b. Moreover, if
there exists n ∈ N such that infx>0Gn(b, x) < 0 and supx>0 Fn(b, x) > 0, then
Theorem 2.1 implies that (1) has at least one 2π-periodic solution. Therefore, we
have the following proposition.

Proposition 3.1. Assume that there exists n ∈ N such that

b ∈
(

inf

{
b > 0 : sup

x>0
Fn(b, x) > 0

}
, sup

{
b > 0 : inf

x>0
Gn(b, x) < 0

})
. (30)

Then, (1) has at least one 2π-periodic solution.

Let us first observe that, in view of the continuity and the monotonicity of the
functions Fn, Gn in the variable b, there exist bn0 and bn1 such that{

b > 0 : sup
x>0

Fn(b, x) > 0
}

= (bn0 ,+∞),

and {
b > 0 : inf

x>0
Gn(b, x) < 0

}
= (0, bn1 ).

The point is to prove that these two intervals contain common points, i.e., bn0 < bn1 .
We will show this in the case when n = 0 and n = 1, and the estimates performed
in this last case will allow to achieve the new result consisting in Theorem 1.1.
In particular, a gross estimation of the interval in (30) would lead to prove existence
for

b ∈

(
n2

2
,

(n+ 1)2

4

(
π

1 + π

)2
)
. (31)



Indeed, setting B+ = 2b, since b > n2/2 we have

Fn(b, B+) =
1

2π

√
b

∫ 2π

0

min
{1 + cos t√

2
,
√

2
}
dt− n

2
=

√
b

2
− n

2
> 0.

On the other hand, we choose

A+ =
4b2

(n+ 1)2

(π + 1

π

)2
,

so that, since b < 1
4 (n+ 1)2(π/(1 + π))2,

Gn(b, A+) =
1

2π

∫ 2π

0

max

{
(n+ 1)π(1 + cos t)

2(π + 1)
,

2b

n+ 1

π + 1

π

}
dt− n+ 1

2

<
1

2π

(n+ 1)π

2(π + 1)

∫ 2π

0

max{1 + cos t, 1}dt− n+ 1

2
= 0.

Now, in order for the interval in (31) to be nonempty, we need

n2

2
<

(n+ 1)2

4

(
π

1 + π

)2

,

which approximately requires n < 1.1. Since n ∈ N, we can take either n = 0 or
n = 1, so that the 2π-periodic solvability of (1) is guaranteed whenever

b ∈

(
0,

1

4

(
π

1 + π

)2
)
∪

(
1

2
,

(
π

1 + π

)2
)
.

However, taking into account that F1, G1 are non-decreasing, we can use a nu-
merical approach to estimate the interval in (30) and try to compute approximately,
by means of a numerical software, its endpoints, obtaining

sup
x>0

F1(0.4705, x) > 0 (but sup
x>0

F1(0.47, x) < 0)

and

inf
x>0

G1(0.59165, x) < 0 (but inf
x>0

G1(0.592, x) > 0)

(see Figures 2 and 3), whence the statement of Theorem 1.1.

0.2 0.4 0.6 0.8

-0.0012

-0.0010

-0.0008

-0.0006

-0.0004

-0.0002

0.0002

Figure 2. The plot of F (0.4705, ·).
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Figure 3. The plot of G(0.59165, ·)

Summary

In the present paper, we have studied the 2π-periodic solvability of the Brillouin
focusing beam equation

x′′ − 1

x
+ b(1 + cos t)x = 0. (32)

First, we have obtained a new abstract result of existence (Theorem 2.1); making
use of it with explicit attention on the parameter b, we have found a new range for
b for which equation (32) has a solution (Theorem 1.1).
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