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Abstract— Generalized frequency-division multiplexing
(GFDM) is a non orthogonal multicarrier transmission scheme
proposed for future generation wireless networks. Due to its
attractive properties, it could fulfill the requirements of future
scenarios. Although its characteristics and performance have
been analyzed in many previous works, there is still room for
improvement in some aspects. This paper deals with the design
of receivers for GFDM transmission over a frequency selective
channel. Linear equalization schemes, such as zero-forcing and
minimum mean-squared error, are developed to decide the
transmitted symbols. For the derivation we rely on the discrete
Gabor transform (DGT) interpretation of GFDM, when the
synthesis function, i.e., the pulse shaping filter, and the analysis
function, i.e., the receiving filter, satisfy the Wexler-Raz identity.
Choosing functions that satisfy the Wexler-Raz condition allows
for optimal symbol-by-symbol detection for a DGT-based
receiver in case of transmission over an ideal channel. However,
when transmission takes place over a frequency selective
channel symbol-by-symbol detection is not longer optimal due
to inter-sub-symbol interference generated by sub-symbols
transmitted on the same sub-carrier. Monte Carlo simulations
are used to show the symbol error rate performance achieved
with the proposed design for linear receivers based on DGT
interpretation of GFDM.

I. INTRODUCTION

In the fifth generation (5G) and beyond 5G (B5G) networks,
the scenarios foreseen will require very high spectral effi-
ciency, relaxed synchronization, very low latency, and low out-
of-band (OOB) emission. The look for new waveforms that are
able to support variable and customizable pulse shaping filters
is therefore one of the research priorities in order to achieve
a better trade-off between time-domain and frequency-domain
localization [1], [2]. A main characteristic is the flexibility to
support mixed services with different waveform parameters
within one carrier, which is a key requirement in the physical
layer of future cellular networks [3]–[6].

With this aim, generalized frequency division multiplexing
(GFDM), which is based on the use of circular filtering at sub-
carrier level, was proposed as a new multicarrier modulation
scheme [7], [8]. Compared to orthogonal frequency-division
multiplexing (OFDM), the main advantages of GFDM consist
in a reduction of the OOB emission, achieved by means of
filtering at sub-carrier level [5], and in an increase of the spec-
tral efficiency, obtained through the introduction of tail biting,
which makes the length of the cyclic prefix (CP) independent
from that of pulse shaping filter [9], [10]. Moreover, the flexi-
ble frame structure of GFDM allows, by changing the number

of time slots and of sub-carriers in a frame, covering both
conventional OFDM and discrete Fourier transform (DFT)
spreaded OFDM (DFT-s-OFDM), which results in complete
backward compatibility with long-term evolution (LTE) and
advanced LTE [9].

Radio access technologies for cellular mobile communica-
tions are typically characterized by multiple access schemes.
Among these orthogonal frequency-division multiple access
(OFDMA) was a reasonable choice for achieving good system
level throughput performance in packet-domain services with
single user detection. The engineering community witnessed
the development of wide radio bands such as the millimeter-
waves (mm-waves) frequencies to fulfill the explosive growth
of mobile data demand and pave the way towards 5G networks
[14]. As a result, the introduction of new advanced multicarrier
modulation techniques and the use of massive multiple-input
multiple-output (MIMO) systems are considered as a means
to increase the spectral efficiency, thus achieving higher data
rates. The use of ultra-broadband pulses, just a few hundred
femtoseconds long, has been recently proposed [15]. More-
over, energy efficiency and high data rate are some of the
key advantages driving much of the interest in the novel THz
massive MIMO systems for the new network paradigm. The
high peak-to-average power ratio (PAPR) of the OFDM works
against this advantages and can impede good downlink and
uplink performance [16]. In contrast, the additional degree
of freedom from the adjustable sub-carrier filters in GFDM
allows further control of the PAPR [17] and several advantages
of GFDM have been already brought to MIMO application
without increasing the system complexity [18].

Despite the above mentioned advantages, a main issue
of GFDM compared to OFDM is the need of equalization,
implemented by block-based processing in time or frequency
domain, that is required even in the case of transmission
over an ideal channel [8]. For an efficient implementation of
the GFDM receiver in time-domain, a relationship between
GFDM signal and discrete Gabor transform (DGT) was pro-
posed in [11]. It was shown that GFDM transmission and
reception are equivalent to a finite discrete Gabor expansion
and DGT in critical sampling, respectively. The Gabor inter-
pretation allows an optimal symbol-by-symbol detector, after
the DGT-based receiver, when transmisison takes place over an
ideal channel. An equivalent interpretation of the DGT receiver
in frequency-domain was given in [12], which allows for signal



recovery with lower complexity compared to the time-domain
approach.

However, it is worth observing that when transmission
over a frequency-selective channel is considered the DGT
interpretation with critical sampling looses its validity. In
this case, to restore the condition required for using DGT
at the receiver, the effect of the channel must be taken into
account in the equalization of the whole GFDM symbol. This
aspect was considered in [12], where it was observed that
the performance of the proposed low complexity frequency-
domain equalization approach for the DGT-based GFDM
system was close to that of OFDM only when the number
of sub-symbols transmitted on each sub-carrier is low. When
this number increases the resulting signal-to-interference ratio
is much lower than that of OFDM with a rapid degradation
in the performance. This degradation of performance is due to
the inter-sub-symbol interference (ISSI) that arises from the
sub-symbols transmitted with the same sub-carrier, which is
not properly considered in [12]. The main contribution of this
paper consists in the definition of a model for the received
signal and in the design of time-domain receivers that operate
on a subcarrier basis by counteracting ISSI, which allows
evaluation of the best strategy for the detection of transmitted
symbols according to the desired performance and degree of
complexity. In particular, we will focus on the design of linear
equalization schemes, such as zero-forcing (ZF) and minimum
mean-squared error (MMSE).

The structure of the paper is as follows. In Sec. II we will
introduce the DGT interpretation of GFDM. The design of
the different types of linear receivers will be considered in
Sec. III. Section IV will present the results of Monte Carlo
simulations and, finally, conclusion will be drawn in Sec. V.

II. DGT-BASED GFDM SYSTEM MODEL

With reference to one GFDM symbol, the block of trans-
mitted bits is applied to the input of a mapper that gives
at its output an M ×K data matrix X whose N =MK
elements take values from a complex constellation, e.g., phase-
shift keying [10]. The data matrix X is sent to the GFDM
modulator, based on K sub-carriers, where each sub-carrier is
used to transmit M sub-symbols. According to this model the
data matrix X can be represented as the composition of K
column vectors

X = [X0,X1, · · · ,XK−1], (1)

where

Xk = [Xk(0), Xk(1), · · · , Xk(M − 1)]
T
, (2)

with Xk(m) representing the mth sub-symbol, m =
0, . . . ,M − 1, transmitted on the kth sub-carrier, k =
0, . . . ,K − 1 and (·)T denoting the transposition operation.
The time-duration of each symbol vector Xk is MTs with
sub-carrier spacing equal to 1/(MTs), Ts being the symbol
interval on each sub-carrier. The M sub-symbols of the kth
group are upsampled by a factor K and applied to the input of
a periodic pulse shaping filter with N coefficients. After pulse

shape filtering, the nth sample of the transmitted GFDM signal
is written as

x(n)=

K−1∑
k=0

M−1∑
l=0

Xk(l)gk,l[n]=

K−1∑
k=0

M−1∑
l=0

Xk(l)g [〈n− lK〉N] e
j2πkn
K ,

(3)
where n = 0,1, · · · ,N −1, is the sampling index and 〈·〉N
denotes the modulo N operation that implements the circular
shifting of the periodic prototype discrete-time impulse re-
sponse g [n] of length N .

A. Transmission over an Ideal Channel

As first observed in [11], equation (3) can be interpreted
as an inverse DGT (IDGT), where g[n] represents the synthe-
sis function whose time-domain translations and frequency-
domain shiftings gq,m[n] are weighted by transmitted symbols.
With this interpretation, in case of transmission over an ideal
channel the symbols Xq(m) can be recovered from x(n) at
the receiver by applying DGT as

Xq(m) =

N−1∑
n=0

γ∗q,m[n]x(n), (4)

where γq,m is a periodic discrete function with period N ,
which is defined as the analysis function obtained from time
and frequency shifts of an analysis window γ[n] as

γq,m[n] = γ [〈n−mK〉N ] e
j2πqn
K . (5)

Note that, the identity defined by (4) holds only when the syn-
thesis function g[n] and the analysis function γ[n] satisfy the
Wexler-Raz identity given in [12, eq. (11)]. If this condition is
not satisfied interference arises both from symbols transmitted
on other sub-carriers and from sub-symbols transmitted with
the same sub-carrier.

B. Transmission over a Frequency-selective Channel

When transmission takes place over a frequency-selective
channel, the effect of inter-symbol interference introduced by
the time spread of the channel can be mitigated by inserting
a CP, which consists of NCP samples such that the length
of the CP is at least equal to the length of the channel. The
CP-extended signal is written as

x̃ (n) =

{
x (N + n) , n = −NCP , . . . ,−1,
x (n) , n = 0, . . . , N − 1.

(6)

We consider here the same L-path tapped delay line chan-
nel model defined in [13]. According to this model, the
continuous-time impulse response of the multi-path fading
channel is defined as

h (t) =

L−1∑
i=0

hiδ (t− τi) , (7)

where hi is the complex amplitude, i.e., tap coefficient, of
the ith path associated with the propagation delay τi and
δ (t) is the delta Dirac function. When L = 1 we get the
flat fading Rayleigh channel model. For the particular case
where h0 is constant and equal to 1 we have the ideal channel.



In the following, for simplicity, we consider the case where
τi = i, with i = 0, . . . , L − 1. The tap coefficients hi, i =
0, 1, 2, . . . , L− 1, are modeled as independent and identically
distributed zero mean complex random variables with average
power σ2

i = 1/L, uniform distributed phase in [0, 2π), and
Rayleigh distributed amplitude. According to such a model
we have σ2

0 + σ2
1 + · · ·+ σ2

L−1 = 1.
After passing through the channel the received signal is

written as

y (n) =

L−1∑
i=0

hix̃ (n− i) + w (n) , (8)

where w(n) represents the complex AWGN with zero mean
and variance N0 per dimension. Under the assumption
NCP ≥L− 1, by removing the effect of the cyclic prefix and
by replacing (3) in (8) we get

y(n)=

L−1∑
i=0

hi

K−1∑
k=0

M−1∑
l=0

Xk(l)g[〈n−i−lK〉N ] e
j2πk(n−i)

K +w(n). (9)

In order to recover the transmitted symbols, the DGT defined
in (4) is applied to the received signal as

Yq(m)=

N−1∑
n=0

γ∗q,m[n]y(n)=

N−1∑
n=0

γ∗[〈n−mK〉N ] y (n) e−
j2πqn
K

=

K−1∑
k=0

M−1∑
l=0

Xk(l)

L−1∑
i=0

hiP(q−k)M [(m−l)K,i]e−
j2πki
K +Wq(m), (10)

where Wq(m) is the DGT of the AWGN and

PkM [l, i] =

N−1∑
n=0

γ∗ [n] g [〈n− i+ lK〉N ] e−
j2πkn
K

=
1

N

N−1∑
q=0

Γ∗qG〈q+kM〉N e
− j2π(q+kM)(i−lK)

N

=

(
1

N

N−1∑
q=0

Γ∗qG〈q+kM〉N e
j2πql
M e−

j2πqi
N

)
e−

j2πki
K (11)

with Γq and Gq corresponding to the N -points DFT of γ[n]
and g[n], respectively.

As a function satisfying the Wexler-Raz identity with critical
sampling in what follows we consider a Dirichlet pulse, also
referred discrete sinc, which is characterized by a DFT that is
a rectangular pulse

GDk =

{
1,

(
0≤k≤dM2 e−1

)⋃(
N−bM2 c≤k≤N−1

)
,

0 otherwise,
(12)

where d·e and b·c denote the nearest upper and lower integer,
respectively. With the use of Dirichlet function we have γ[n] =
g[n], and the filtering implemented at the receiver with the
analysis function γ[n] can be therefore interpreted as satisfying
the matched and ZF condition at the same time. By setting
Gk = GDk in (11) we get

PkM [lK, i] = δ[k]
1

N

sin(π(i−lK)
K )

sin
(
π(i−lK)

N

)e jπ(i−lK)(1+(−1)M )
2N , (13)

where δ[k] denotes the Kronecher delta. In the special case
i = 0, (13) converts into eq. (14) of [12], for which we obtain
the Wexler-Raz identity

PkM [lK, 0] =
1

N

N−1∑
q=0

Γ∗qG〈q+kM〉N e
j2πql
M = δ[k]δ[l],

0 ≤ k ≤ K − 1, and 0 ≤ l ≤M − 1. (14)

By substituting PkM [lK, i] given in (13) into (10), after some
mathematical manipulation (10) can we rewritten as

Yq (m)=

M−1∑
l=0

Xq(l)

L−1∑
i=0

hi
sin
(
π(i−(m−l)K)

K

)
sin
(
π(i−(m−l)K)

N

) e−j2πqi
K +Wq(m)

=

M−1∑
l=0

Xq(l)H̄qM ((m− l)K)+Wq(m) , (15)

where the even property of the periodic Dirichlet sinc function
has been used. The above equation shows that in case of
Dirichlet function the interference is generated only by sub-
symbols transmitted on the same sub-carrier and not from sub-
symbols transmitted on other sub-carriers. The “windowed”
channel is given by

H̄q(m) =

N−1∑
i=0

h
(ZP )
i w〈i−m〉N e

−j2πqi
N , (16)

where w〈i−m〉N corresponds to a shifting of m samples of the
periodic windowing function

wn =
sin
(
πn
K

)
sin
(
πn
N

) , n = 0, . . . , N − 1, (17)

and

h
(ZP )
i =

{
hi i = 0, . . . , L− 1,
0 i = L, . . . , N − 1.

(18)

Equation (16) can be rewritten as

H̄q(m) = Hq ⊗N Wqe
−j 2πmq

N , (19)

which is the circular convolution between the DFT of the
channel and the DFT of the shifted windowing function, where
Wq = GDq . According to the definition of GDk given in (12),
eq. (19) realizes a weighted average of M frequency domain
values of Hk around k = q, where the weights are obtained
from the complex exponential for a given m. The M samples
Hk involved in the average are k = 〈q − bM2 c, . . . , q − 1〉N
and k = 〈q, . . . , q + dM2 e − 1〉N , which define the M points
around q taking into account of the periodic nature of Hk.
After some straightforward mathematical manipulations, (10)
can be rewritten as

Yq(m)=Xq(m)H̄qM (0)︸ ︷︷ ︸
mth sample received
on the qth sub-carrier

+

M−1∑
l=0,l 6=m

Xq(l)H̄qM ((m−l)K)︸ ︷︷ ︸
Interference induced by sub-symbols

other than Xq(m) transmitted
on the qth sub-carrier

+Wq(m)︸ ︷︷ ︸
AWGN Noise

,

(20)
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Fig. 1. Theoretical and simulated with MMSE receiver SER vs. Es/N0

of the DGT-based GFDM in special case of BPSK transmission over a flat
Rayleigh fading channel and AWGN channel with L = 1 and M = 1.

where it appears that the mth sub-symbol transmitted on the
qth sub-carrier Xq (m) is
• scaled by the term H̄qM (0);
• impaired by the interference generated by the mth sub-

symbol transmitted on the same sub-carrier through the
term H̄qM (l −m)K, l 6= m;

• distorted by the AWGN term Wq(m).

III. DESIGN OF LINEAR RECEIVERS

With reference to (20), we define the vector of the received
signal Yq = [Yq(0), Yq(1), . . . , Yq(M − 1)]

T on the qth sub-
carrier, which is given by

Yq = H̄qMXq + Wq, q = 1, . . . ,K − 1, (21)

where Wq = [Wq(0),Wq(1), . . . ,Wq(M − 1)]
T and

H̄qM=


H̄qM(0) H̄qM(N−K) · · · H̄qM(N−(M−1)K)

H̄qM(N−(M−1)K) H̄qM (0) · · · H̄qM (N −K)
...

...
. . .

...
H̄qM (N−K) H̄qM (N−2K) · · · H̄qM (0)

 .
(22)

It is worth noting that the model in (21) is the same as
that used to describe the received vector in a MIMO system
[19]. With this interpretation it is possible to design several
type of receivers according to the desired trade-off between
performance and complexity.

Here, we consider linear receivers schemes to take a deci-
sion on the transmitted vector. For such a class of receivers
an estimate of the M sub-symbols transmitted on the q sub-
carrier is obtained by linear weighting the received vector as

X̂q = CqMYq. (23)

Then, a threshold detector is used to decide independently the
M symbols. The linear weighting matrix CqM can be designed
both by using ZF and MMSE criteria [20]. The details of each
receiver are describe below:
• ZF Receiver removes the ISI at the receiver, but with

the possible noise enhancement that decreases the SNR.
For the ZF receiver the expression of the demodulation
matrix is given by

CqM,ZF = (H̄H
qMH̄qM )−1H̄H

qM , (24)
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Fig. 2. SER vs. Es/N0 for the DGT-based GFDM with ZF receiver in case
of BPSK transmission over frequency selective Rayleigh fading channel with
L = 2 and K = 16 for different value of M .
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Fig. 3. SER vs. Es/N0 for the DGT-based GFDM with ZF receiver in case
of BPSK transmission over frequency selective Rayleigh fading channel with
L = 9 and K = 16 for different value of M .

where H denotes Hermitian transpose conjugation.
• MMSE Receiver gives a trade-off between noise en-

hancement and ISI. The expression of the demodulation
matrix is

CqM,MMSE = (H̄H
qMH̄qM +N0IM)−1H̄H

qM , (25)

where N0 is the variance of the noise and IM is an M×
M identity matrix.

IV. SIMULATION RESULTS

The performance of the proposed design is evaluated by
means of Monte Carlo simulations for K = 16 and different
lengths of the frequency selective Rayleigh fading channel
model defined in Sec. II. Figure 1 reports Monte Carlo simu-
lations and theoretical results of the symbol error rate (SER)
versus SNR for GFDM transmission when BPSK symbols are
transmitted over an AWGN channel and a flat Rayleigh fading
channel. From these results it is evident that GFDM based
on DGT interpretation has the same theoretical performance
as that of BPSK in case of transmission over non-frequency
selective channels. Figures 2 and 3 show the SER versus
Es/N0 achieved by the ZF linear receiver with L= 2 and
L= 9, respectively, and different values of M . It is worth
observing that when M = 1 we get the conventional OFDM
system. For both the two considered lengths it can be seen
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Fig. 4. SER vs. Es/N0 for the DGT-based GFDM with MMSE receiver in
case of BPSK transmission over frequency selective Rayleigh fading channel
with L = 2 and K = 16 for different value of M .

that the performance is almost the same for all the considered
values of M . However, for L= 2 it can be observed that at
values of SNR greater than 20 dB there is performance gain
for M = 3, 5 compared to M = 1, which is due to a change in
the slope of the curve. The change of slope is more evident
when MMSE linear detection is considered in place of ZF
linear detection since it starts at lower SNR values. This can be
observed in Figs. 4 and 5 where the results obtained for MMSE
linear detection are reported for the same channel lengths and
values of M considered for ZF linear detection. As expected,
the linear MMSE offers a superior performance compared to
linear ZF, which is more consistent for L= 9 than for L= 2.
For both the two considered lengths it can be seen that for
M > 1 a higher improvement of performance is achieved.

V. CONCLUSION

In this paper the optimal per-subcarrier design of time-
domain MMSE and ZF linear receivers for GFDM trans-
mission over a frequency selective channel is proposed. The
approach, which relies on the DGT interpretation of GFDM,
is based on the modelling of the inter-sub-symbol interference
among sub-symbols transmitted on the same sub-carrier when
the Dirichlet function is used as pulse shaping filter. The SER
performance achived by ZF and MMSE is evaluated by means
of Monte Carlo simulations. Compared to the OFDM case a
performance improvement is observed for increasing number
of sub-symbols transmitted on the same sub-carrier, which is
due to a steep decreasing slope of the SER curve as SNR
increases.
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