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Abstract

A robust, adaptive Model Predictive Control (MPC) approach for asymptotically stable, constrained linear time-varying (LTV) systems
with multiple inputs and outputs is proposed. The approach consists of two-steps, carried out on-line with a receding horizon strategy. In
the first one, a real-time Set Membership identification algorithm exploits the measured input-output data and the available prior knowledge
to build and refine a set of admissible models of the plant (Feasible Parameter Set, FPS). This set is guaranteed to contain also the
true system dynamics under the considered working assumptions. In the second step, a robust finite-horizon optimal control problem is
formulated and solved. The variation of system dynamics is taken into account by inflating the FPS over the prediction horizon, according
to worst-case bounds, assumed a-priori, on the parameters’ rate of change. The resulting optimal control sequence guarantees that the
outputs of all possible plants inside the FPS satisfy the operational constraints, also considering all possible future parameter changes. The
main theoretical properties of the proposed approach are demonstrated and the method is showcased in numerical simulations, highlighting
the fundamental improvement over previous approaches not designed for LTV systems.
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1 Introduction and motivation

MPC is a successful technique in industrial applications,
thanks to the capability to explicitly account for constraints
on inputs and outputs and to incorporate information on fu-
ture disturbance and reference signals [16]. A research di-
rection that is currently receiving growing interest is that
of dual, adaptive and learning-based MPC, i.e. approaches
where the model derivation/identification step is considered
together with the control computation, and possibly carried
out on-line. There are several contributions that differ in
terms of system dynamics (linear or nonlinear), uncertainty
characterization (stochastic or unknown-but-bounded), and
model identification scheme (off-line or on-line/adaptive),
see e.g. [11, [2], [3], [4], [8], [11], [12], [13], [14], [18], [22],
[23], [15],[10]. These works are motivated by the difficulty
to derive models based on physical principles for complex
processes, the increasing real-time availability of measured
data, and the want to derive MPC approaches that can auto-
matically adapt to uncertain and time-varying dynamics.

Set Membership (SM) techniques are being adopted by sev-
eral researchers for the model identification phase, since
they provide, in addition to a nominal model of the plant, a
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quantification of the associated uncertainty, which can be ex-
ploited for MPC design. Examples of contributions exploit-
ing SM techniques are [4],[12], [13] and [18]. In [18], we
proposed the use of SM identification to derive an adaptive
MPC approach for uncertain linear time-invariant systems,
subject to both process disturbance and measurement noise.
This approach guarantees robust constraint satisfaction on
the outputs also during model adaptation, which is a major
challenge in adaptive control under constraints. However, it
does not provide the same guarantees in presence of time-
varying dynamics: indeed the method can easily fail in this
case, as we show here through a motivating example. The
main contribution of this paper is to remove this deficiency,
through a modified adaptive technique that can cope with
LTV systems. As in [18], a two-step procedure is employed.
In the first step, a set of models consistent with measured
data and prior assumptions is built and refined (Feasible Pa-
rameter Set, FPS). This set is guaranteed to contain also
the true system dynamics, under the considered working as-
sumptions. Differently from [18], we now take into account
the time-varying nature of the plant, both in the future pre-
dictions and in how the past data is exploited to build the
FPS. In the second step, a robust finite-horizon optimal con-
trol problem is formulated and solved, where we also predict
all possible future changes of the model set. The procedure
is implemented on-line with a receding horizon strategy. We
prove that the resulting feedback control law guarantees re-
cursive feasibility and robust constraint satisfaction, and il-
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lustrate its performance in the motivating example, show-
ing that the new approach removes efficiently a fundamental
limitation of the previous one. To the best of our knowledge,
to date there are no other adaptive techniques in the litera-
ture providing similar theoretical guarantees in presence of
output constraints, system uncertainty, process disturbance,
and measurement noise.

2 Motivating example

Consider an LTV, single-input, single-output mass-spring-
damper system with natural frequency equal to 1, gain equal
to 4, and eigenvalues in the left half plane with damping
ratio £. The value of £ can change over time inside the
interval [0.3, 1]. The amplitude of the input u is constrained
in the compact set [—1.5,1.5] and its rate of change Aw in
[—0.5,0.5]. By discretizing the dynamics with the trapezoid
method and sampling time 75 = 0.7 s and truncating the
system’s infinite impulse response (IIR) at m = 24 samples,
one obtains the Finite Impulse Response (FIR) coefficients
reported as an example in Fig. 1 for the values £ = 0.3 and

£=1.
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Fig. 1. Impulse response of the LTV plant with £ = 1 (stars) and
& = 0.3 (circles), and considered set €2 (thick black lines).

The truncated part of the impulse response is embedded
into an additive disturbance signal d, acting on the output
y. Such a disturbance is bounded, because of the bounded
input and the fact that, for any fixed value of &, the corre-
sponding LTT system is asymptotically stable, i.e. its impulse
response decays exponentially to zero. In the described set-
tings, the exact bound on this additive contribution is 0.1.
We further assume that an exogenous additive disturbance
affects the output, with maximum amplitude 0.05. Thus, the
total bound on the additive output disturbance d is 0.15.
The system dynamics are not known exactly a priori, but
noise-corrupted measurements of the output are available,
with bounded noise v : |v| < 0.1. As prior information, we
assume that the FIR coefficients belong to a polytopic set
), bounded by the thick black lines in Fig. 1, and that the
bounds on the additive disturbance and measurement noise
are equal to 0.2 and 0.15, respectively. Note that this prior
information is not tight, i.e. the signal bounds and the poly-
topic set are not known exactly. The control problem is to
track a given reference output, while satisfying the output
constraints y € [—6, 6]. The change of ¢ over time in our
simulation test is shown in Fig. 2.

In [18], we proposed an adaptive MPC technique based on

SM identification for uncertain LTI plants, able to robustly
enforce output constraints also during adaptation. One of
the core steps in this approach is the real-time refinement of
the FPS, i.e. the set of all models compatible with the col-
lected measurements and prior assumptions. When applied
to the LTV case, the approach of [18] looses its theoretical
guarantees and in practice it can easily fail, as shown in Fig.
3, where at time step k = 42 the FPS becomes empty due
to the inconsistency between the collected data, produced
by the change of system dynamics. This problem can occur
with rather small changes of the plant (3% reduction of &
in this example), and it does not depend on the parameters’
rate of change: also with very slow variations there is even-
tually an instant when an inconsistency among the past data
can arise. Finally, note again that the assumed initial set 2
containing the unknown system parameters, i.e. the starting
FPS, covers all possible FIR coefficients of the true system
(see Fig. 1). Thus, the problem is neither due to the param-
eters being outside the assumed initial bounds. Rather, it
is caused by a fundamental limitation of the adaptive MPC
approach of [18] when applied to LTV plants. On the one
hand, this effect could be used for condition monitoring and
fault detection schemes, since emptiness of the FPS indi-
cates a change in the plant dynamics. On the other hand,
we present here an approach that removes such a limitation,
restoring the recursive feasibility and constraint satisfaction
guarantees achieved in [18].
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Fig. 2. Change of damping parameter & over time. At k = 42 the
value of £ is 0.97, 3% smaller than the starting value.

Plant output

Fig. 3. Plant output (thick black line), reference (dashed), un-
certainty bounds (dotted) and constraints (dash-dotted) when the
adaptive MPC algorithm from [18] is used. At ¢ = 42, the output
exits the uncertainty range defined by the FPS, which becomes
empty at the next step causing the control algorithm to fail.



3 Problem Statement

We consider a discrete-time LTV system with n,, inputs and
n, outputs. The system at each time step ¢ € Z is known to
be asymptotically stable, but the exact dynamics and the way
they change over time are not known precisely. We denote
the vector of control inputs by u(t) = [u1(t), ..., un, (t)]7,
where u;(t) € R, i = 1,...,n, are the individual plant
inputs and 7 stands for the matrix transpose operator. Sim-
ilarly, we denote the vector of plant outputs by y(t) =
[y1(t), ..., yn, (t)]". We consider a family of models for
this system, whose equations read:

yi(t) = H (t)p(t) + d;(t), j =1,...,ny. (1)

In (1), the vector d(t) = [dy(t),...,dy, (¢)]" accounts for
exogenous additive disturbances and the effects of neglected
dynamics on the outputs (e.g. due to truncation of the IIR
of the system, see Remark 3.1). ¢(t) € R™ is a regressor
vector with m elements, that evolves over time according to
the following linear model:

p(t+1) = Fo(t) + Gu(t), )

where matrices F' € R™*™ and G € R™*"+ depend on the
chosen model parametrization. For example, when n, = 1
and a Finite Impulse Response (FIR) plant model is used,
F and G have the following structure:

00...00 1
10...00 0

F= . .. [G=]|: S
00...10 0

For the case n,, > 1, F and G can be obtained by block
diagonalizing the matrices in (3). Moreover, suitable F' and
G matrices can be derived for Laguerre [20], Kautz [21] or
generalized basis functions [6] parameterizations.

Each of the vectors H;(t) € R™ in (1) contains the model
parameters that describe the influence of ¢ to the plant output
j at time step t. Defining the matrix H(f) € R"*™ as

H(t) = [Hy(t),..., Hy, (t)]T, we have:

y(t) = H(t)p(t) +d(t). 4)

The output measurement available for feedback control is
corrupted by noise. In particular, the vector of measured
plant outputs §(¢) is given by g(t) = y(t) + v(t), where
v(t) = [v1(t),...,vn, ()] and v;(t),j = 1,...,n, are
the individual measurement noise terms that affect each of
the plant outputs.

Assumption 1 (Prior assumption on disturbance and
noise) d and v are bounded as:

|d;(#)]
v ()]

<
;EdJ,VteZ,ijL...,ny, 5)

€y,
v

where ¢4, and €,, are positive scalars.

We further assume that the rate of change of the plant param-
eters, indicated as AH (t)%oteqH (t) — H(t — 1), is limited.

Assumption 2 (Bounds on parameter rate of change)
AH(t) € {M eR™X™MK; M; <l;,j= 1,...,ny},Vt €z,
(6)

where K; € R"i™™ and |; € R"5,j = 1,...,n, are
chosen matrices and vectors defining na; linear inequali-
ties, forming a bounded set.

Assumption 3 (Bounds on parameter values) The plant
model parameters belong to the following set at all times:
H(t) € Q,Vt € Z, with

Qi{HERnymIA]‘onSbjoajzlw'-any}v Q)

where the inequalities in (7) should be interpreted as
element-wise, and each matrix Ajy € R70X™ and vector
bjo € R"° define a polytope with r;q faces.

The control objective is to track a given output reference
and reject disturbances over a possibly very long time hori-
zon T' (I' > m), while enforcing affine input and output
constraints:

T
. T
Lomn ; (Y(t) — yaes(t))” Q (Y() — Yaes (1)) (8a)
+ u(t)T Su(t) + Au(t)T RAu(t)
Subject to, Vt € [0, T
Cu < Gu
u(t) g (8b)

CAuAu(t) S 9Au
ny(t) < gy

where yges(t) € R™v is the desired output reference, @, S
and R are positive semi-definite weighting matrices of
suitable dimensions selected by the control designer, and
Au(t) = u(t) — u(t — 1) is the rate of change of the con-
trol input. The element-wise inequalities in (8b) define a
number n,,, na,, and n, of linear constraints on the inputs,
input rates, and outputs, respectively. We assume that the
set defining the constraints on Awu(t) contains the origin,
and that the constraint set on wu(t) is compact.

Remark 3.1 The considered settings and assumptions hold
in a large variety of practical problems. In fact, under the
assumption of asymptotic stability, one can embed the ef-
fects of truncating an IIR model in the additive disturbance
acting on the output of the resulting FIR model. In this way,
the considered model class can describe the dynamic be-
havior of any asymptotically stable linear system. Bounded-
ness of the modeling error due to truncation is guaranteed
by the bounds on the input and the decay rate of the im-
pulse response. Regarding Assumptions 2 and 3, these are



reasonable in practice, when physical insight and prior in-
Sformation on the plant are available. For an example of how
to construct the set Q) for a realistic problem of building
climate control, the interested reader is referred to [19]. A
typical approach in case of FIR structure entails comput-
ing or assuming maximum and minimum values of each FIR
coefficient and of its rate of change, in order to build the
polytopes in (6)-(7). Note that the set §) needs not to be
tight, and it can be set to be very large, such that a large
number of models is covered. In fact, this set is instrumental
to guarantee recursive feasibility and does not affect much
the performance. The collected input-output data will pro-
vide much tighter parameter bounds, which are adapted in
real-time, than the fixed set Q). Similarly, the bounds on the
parameters’ change between two time steps and on the sig-
nals d(t) and v(t) need not to be known precisely: an over-
approximation does not impair our theoretical guarantees.
However, assuming too large bounds can lead to excessively
cautious control and performance degradation. In principle
these bounds can be estimated on-line as well: this is a sub-
Jject of future research.

4 Adaptive control algorithm and its properties

The optimization problem (8) is generally intractable. As
a feasible approximate solution, we propose the use of a
receding horizon control policy that relies on two steps: 1) a
recursive set membership identification that tracks the FPSs,
and 2) a model predictive controller that exploits the model
set to robustly enforce constraints while optimizing the plant
behavior. We now describe in detail these two main steps.

4.1 Recursive set membership identification algorithm

Under the working assumptions, each new measurement col-
lected from the plant at time step ¢ delimits a set to which
the parameter matrix H(t) is guaranteed to belong:

Si(t) = { e R ‘H]Tgo(t) - yj(t)‘ < €a; €y, }
Jj=1...,ny

€))
where S;(j) denotes the set that is defined by the regressor
and output measurement vectors at time step 4, i.e. ¢(¢) and
9(7), and that is guaranteed to contain the model parame-
ter matrix H (j) at time step j. Geometrically, the set S;(¥)
is formed by 2n,, linear inequalities defined by the regres-
sor ¢(t) and the output measurements g;(t),j = 1,...,n,
collected at time ¢. In addition, we note that the relation be-
tween the model parameter matrix at time step ¢, H(t), and
the regressor and plant output vectors at time step ¢t — 1, i.e.
o(t — 1) and y(¢t — 1), can be expressed by the following
equation:

yt—1)=Ht)pt—-1)+dt—-1)+9(t—-1), (10
where ¥(t — 1) € R™, 9(t — 1) = [J1(t —1),...,0p, (t -

1)]",and 9;(t—1) € R,j = 1,...,n, are the contributions
of the unmodeled dynamics to the individual plant outputs.

These terms are present because the parameter matrix H (t)
is used in (10) instead of H(t — 1) in order to relate the
regressor ¢(t — 1) to the output y(t — 1):

It -1)=(H({E-1)-H@®)p(t-1). 1D

From Assumption 2, it follows that the signal ¥(t — 1) is
bounded by:

9(t—1)<9;(t—1) <I;(t—1),j=1,...,n,, (12)
where the bounds ¥;(t — 1) € R and J;(t — 1) € R,

j =1,...,n, are the solution to the following two linear
programs (LPs):

53

(t—1) = min T (t —1):
j(t=1)= min " (¢t~ 1)z

i(t—1) = maxp?(t — 1)z

|

(13)
Subject to:

Kjx < l7
Based on these definitions, the set S (t) is formed on the

basis of the regressor and output measured at time step k < ¢,
i.e. p(k) and y(k), as:

H e Rm»m
—eq; — €y, +(t=k)9; (k) < H (k) —5;(k),
H o(k)—1;(k) < eq; +eo,+(t—k)0;(k),

Jj=1...ny

Sk (t) =

(14)
This set is guaranteed to contain the matrix of true system
parameters at time step ¢, H (). Based on (14) and Assump-
tions 1-3, we can now define the FPS at time step ¢, denoted
by F(t), as the one containing all parameter matrices H (t)
consistent with the prior assumptions and the output mea-
surements collected up to time step ¢:

N St ] . (15)

F(t) is defined by polytopic constraints on the rows of the
model parameter matrix H (t). Thus, it can be uniquely de-
scribed by a set of matrices and vectors:

.F(t) = {H € Ry xm . Aj(t)Hj < bj(t)} , (16)

where each of the matrices and vectors A;(t) € R™()xm,

b;(t) € R®, j = 1,... n, define r;(t) linear inequal-
ities. Tools to compute automatically A;(¢) and b;(t) are
available, see e.g. [9]. Note that, as time progresses, the
bounds contributed by older data (i.e. the sets Sy(t) with
k < t) grow larger and larger, i.e. they naturally become
loose.

To use the defined FPS F(¢) for on-line control computation,



a recursive update approach is needed. To this end, we note
that the matrix A;(¢) can be derived from A;(t —1),j =
1,...,n, by appending two rows formed by the regressor
vector at time step ¢, ¢(¢) and that the vector b;(¢) can
be formed from b;(t — 1),j = 1,...,n,, by first adding
the terms that should account for the possible change of
the plant model with respect to the previous time step, and
then by appending two new elements that define the con-
straints related to the newly collected output measurement

gi(t), 5 =1,...,ny:

A;(t—1) bj(t—1)+Abj(t—1)
Ajt)=1| =" (1) |, bi(O)=| —g;(t)+eq; +ey,
o (t) ;i (t)+€q, 4o,

17)
In (17) the vectors Abj(t — 1) € R(=D 5 = 1,... n,
contain the bounds on the output perturbation induced by all
the possible changes of the model dynamics from one time
step to the next:

— — T
Abj(t—1)=[0,,,, —0,(0),7,0), ..., —0,(t—=1),0,(t—1)]

(18)
with O, € R"i0 denoting a vector of r;, zeros.

Using the recursive equation (17) would result, in general,
in a growth of the dimensions 7;(¢), j = 1,...,n, by two
with each new output measurement. In this way, storing the
matrices A;(t) and vectors b;(t) over time would become
intractable. Therefore, in order to have a tractable recursive
identification algorithm, we keep track of the constraints
generated by the most recent M measurements, where M
is an even number and a design parameter. In this way the
dimensions of the matrices A;(t) and the vectors b, (t) re-
main bounded over time, such that r;(t) < ro; + M,Vj =
1,...,ny,Vt. The parameter M should be selected such
that a good trade-off between conservativeness and compu-
tational complexity is reached.

Based on the elements introduced so far, Algorithm 1 sum-
marizes the proposed recursive SM identification algorithm.

Algorithm 1 Recursive update the Feasible Parameter Set

1) Att = 0, fOI'j = ].,...,le, set A](O) = Aj(), bJ(O) =
bjo;

2) Att > 0, calculate the regressor vector o(t) according to
(2) and take the measurement vector §(1);

3) For j =1,...,ny, calculate ¥, (t) and ¥;(t) as in (13);

4) For j =1,...,n, update A;(t), b;(¢) as in (17);

5) For j = 1,...,ny, if rj(t) > 70 + M, remove rows n.
70+ 1 (and if needed 7o +2) from A;(t) and b;(t), such
that after removal it holds 7;(t) < rjo + M;

6) Sett=t+1, goto2).

From the derived FPS, we compute a nominal model of
the plant at each time step. This is given by a matrix
H.(t) e Rmv*™ H. = [H.q,... Hc,ny]T, where the vec-
tors H ;(t) € R™, j =1,...,n, are calculated by solving
an LP that aims to find the point inside the FPS closest to

the nominal model in the previous time step (i.e. H.(t—1)):

Ty

u min Z\\Hc,j(t—l)_Hc,j(t)Hl
c,i (1), J=1,...,ny = (19)

Subject to:
Aj(t)ch(t) < bj(t), Vj = 1, sy Ty

The matrix H.(0) can be initialized as an arbitrary nonzero
element inside the set €.

4.2 Finite horizon optimal control problem

Let u(k|t), k € [t,t+ N — 1], N > m, be candidate future
control moves, where the notation k|t indicates the predic-
tion at step k > ¢ given the information at the current step
t. For brevity, we collect these decision variables in vector
U= [ut)T...u(t+N—1[t)T]T. We also define the vec-
tors of future input increments Au(k|t), k € [t,t + N — 1]
as:

Ju(tlt)—u(t—1) ifk=t
Au(kt)_{u(kt)—u(k—lt) ift+1 <k <t+N-1.

Moreover, we define the future regressor vectors ¢(k|t) €
R™, ke[t+1,t+ N]as:

(hlt) = Fo(t)+Gu(t|t) ifk=t+1
P\ Fo(k—1]t)+Gu(k—1|t) if t+2<k<t+N.
(20)

Finally, we define the current prediction error d(t) € R™v

as:
d(t) = g(t) — He(t)p(?). 21
Then, we consider the following cost function:

J(U,4(t), ¢(t)) =
t+N—1
> (@11~ yaes (k4116)) " Qi (k+1]t)
k=t
—yaes (k+11t)) +u(k[t)” Su(klt) + Au(k|t)” RAu(k|t),
(22)
where §(k+1[t) = H.(t)p(k+1[t)+d(¢t). In (22), §(t) and
©(t) are known parameters and yqes (k|t), k € [t+1,t4+ N],
are the predicted values of the desired output. Note that, if
the nominal model of the plant H.(¢) were equal to the real
plant, which would not change in the considered time hori-
zon, the measurement noise v(t) were zero, and the output
disturbance d(t) were constant, for N = T', minimizing the
cost function (22) would be equivalent to minimizing the
cost function of the control objective (8).
Satisfaction of input constraints can be enforced by the fol-
lowing set of inequalities:

< Gu
Vk e t,t+ N —1]. 23
< gn. [ ] (23)



To define the output constraints considered in our MPC de-
sign, we first introduce the notion of predicted FPSs, de-
noted by F(k|t), k € [t+1, ¢+ N]. These sets are computed
by propagating the FPS F(¢) in the future, considering the
bounds on the rate of change of the parameters. This is done
by using the recursive identification Algorithm 1 at each pre-
dicted time step, but without considering any future output
measurements, which are unknown at the current time:

F(klt)y={H e R™*™ : A;(k|t)H; < b;(k[t)}. (24)

The predicted matrices A;(k|t) and the vectors b;(k|t), for
kelt+1,t+ N —1]and j = 1,...,n, are initialized
as A;(t|t) = A;(t), bj(t|t) = b;(t) and computed by the
recursion:

A(k|t) if r; (k|t) < M’

[ aji(klt) ]

A(k+1]t)= 25)

Ajrjo (k|t)

otherwise
ajTjoJrB(k‘t) ’

L@jr; () (K[T) ]

- Orjo .
—ﬁj ‘e rj (t)24'rj0

9 (t,w%)

b(k|t)+ if r;(k|t) < M’

b(kHl|t) =

otherwise,

bjrsovalklt) —0; (k-0
bjrjoralklt) +0; (k— 1000

bjr;t)—1(k[t) —9;(t)
bjr, 1y (Klt) +U;5(2)

(26)
where a;;(k|t) and bj;(k|t) denote the i™ row of the ma-
trix A;(k|t) and the vector b;(k|t) respectively, r;(k|t) =
rj(t) + 2(k — t) represents the predicted dimension of the
matrices A; (k) and the vectors b; (k) that would be obtained
by using Algorithm 1 if no rows would be removed (i.e. if
the dimension of the matrices and vectors would be allowed
to grow without limit in the future). Finally, the terminal
predicted FPS, F(t + N|t), is equal to the set €2, to which
the model parameters are guaranteed to belong at all times.

Remark 4.1 The choice F(t+ N|t) = § in principle intro-
duces additional conservativeness, since the set F(t + N|t)
could be calculated from the set F(t + N — 1|t) in the same
way as for the sets F(k|t),k € [t+ 1,6 + N — 1], and in
general such a set would be tighter than the set Q). However,
this approach enables recursive feasibility and robust con-
straint satisfaction (see Theorem 4.1 later on). Moreover, the
impact on the performance is rather small if a long enough
prediction horizon is used, as we show in the numerical ex-
ample of Section 5.

Robust satisfaction of the output constraints is guaranteed
by enforcing them for all the parameters inside the predicted
FPSs F(k|t),k € [t + 1,t + N] and for all disturbance
realizations:

CyHo(kltyd < g,, VH € F(k|t), Vk € [t+1,t+N], (27)

where d = [dy, ...
given as:

dp )T, and d; € R, 1 =1,...,n, are

Ny
dy = Z |cijled;
j=1

where c;; stands for the element of the ™ row and j™ column

of the matrix C,,. Constraints (27) can be reformulated into
a set of linear equality and inequality constraints by using
Lemma 3.2 from [18].

To guarantee recursive feasibility, we finally introduce an
additional generalized terminal equality constraint, as done
e.g. in [7]:

o(t+ NJt) = Fo(t+ N|t) + Gu(t+ N —1[t). (28)

This means that we require the terminal regressor to corre-
spond to a steady state for the considered model structure.
Combined with (27), this guarantees robust output constraint
satisfaction on an infinite horizon.

For fixed values of N, @, S and R, we can now define the fi-
nite horizon optimal control problem (FHOCP) to be solved
at each time step t:

minJ (U, §(t), ¢ (t))
Subject to: (23), (27), (28),

(29)

which (by using Lemma 3.2 from [18]) can be converted into
a quadratic program (QP). The number of decision variables
and constrains of this QP depends on the chosen predic-
tion horizon N and the dimension of matrices and vectors
that define the FPS F(t). Its computational complexity can
be decreased by reducing the tuning parameter M, which
bounds the dimension of matrices A;(t) and the vectors
bi(t),j =1,...,n,, at the cost of higher conservativeness.

4.3  Properties of the proposed adaptive control algorithm

The described approach guarantees recursive feasibility and
robust satisfaction of both input and output constraints. We
first state two results that are instrumental to prove the main
one. All the proofs are included in the Appendix.



Lemma 4.1 Let Assumptions 1-3 hold. Then, the feasible
parameter set F(t) obtained by using the recursive Algo-
rithm 1 is guaranteed to contain the true model parame-
ter matrix at each time step, i.e. F(t) # () and H(t) €
F(t),vt > 0.

Lemma 4.2 Let Assumptions 1-3 hold. Then, when Algo-
rithm 1 is used, at each time step t, it holds that F (k|t+1) C
F(k|t), ke [t+2,t+ N

We now state the main result related to recursive feasibility
of the finite horizon optimal control problem and robust
constraint satisfaction.

Theorem 4.1 Let Assumptions 1-3 hold, and assume that
the problem (29) is feasible at time t = 0. Then the prob-
lem (29) is recursively feasible and the closed-loop system
obtained by applying the proposed adaptive algorithm is
guaranteed to satisfy input and output constraints ¥t > 0.

Remark 4.2 With respect to our previous contribution [18],
the key technical additions that allow us to guarantee recur-
sive feasibility (hence robust constraint satisfaction) also in
the LTV case are: 1) the inflation of the FPS both with re-
spect to past data (see (14)) and future time (see (25)-(26);
and 2) the use of robust output constraints at the end of
the prediction horizon with respect to the whole set ). Both
these measures generally increase the conservativeness of
the adaptive MPC algorithm, this is the price to pay to obtain
guaranteed properties. As mentioned (see Remark 4.1), such
conservativeness can be mitigated by increasing the predic-
tion horizon N. In this way, the presence of the terminal
constraint does not have a large impact on the performance
at the beginning of the prediction horizon, which is the part
that impacts the close-loop behavior. Finally, one can show
that if the nominal model parameters do not change over
a given time period, then during such an interval the ap-
proach exhibits integral action. The result is omitted since
it is a minor modification of Lemma 4.1 in [18].

Remark 4.3 It is interesting to compare our approach with
MPC techniques for Linear Parameter-Varying (LPV) sys-
tems. In LPV-MPC, the system is known a priori, meaning
that for a given value of the scheduling parameter the dy-
namics are known. The scheduling parameter might be mea-
sured or not. In the first (most frequent) case (see e.g. [5]),
the past and current system dynamics are known, and the
predictions need to account for changes in the scheduling
parameter, which results in a change of the system dynamics.
In the second case, the past and current dynamics are not
exactly known and one would need to estimate the schedul-
ing parameter. Differently from either setup, in our work we
assume that the time-varying dynamics are not known. Our
setup is equivalent to an LPV one with unmeasured schedul-
ing parameters, where all the coefficients of the system ma-
trices are time-varying parameters that need to be estimated
from data. Moreover, we employ a robust approach, mean-
ing that we estimate on-line not only a nominal value of the
parameters, but also all possible system parameters consis-
tent with the measured data, and we robustify the design
against such uncertainty.

5 Simulation results - motivating example revisited

To illustrate its effectiveness, we apply the new approach
to the example of Section 2. We take the set ) as in Fig.
1. We use a FIR model structure with m = 24 and assume
the bounds on A H (¢) shown in Fig. 4. The actual values of
AH (t) during the simulation are presented in Fig. 4 as well,
showing that it is not required that the assumed bounds are
tight or known exactly. We set the MPC prediction horizon
to 30. Fig. 5 shows the obtained results when the proposed
algorithm is used. As it can be seen, the new approach copes
with the change of the actual plant parameters, satisfying
robustly the constraints, and the actual plant output is al-
ways inside the estimated uncertainty bounds, meaning that
the true plant parameters are inside the FPS despite their
time varying nature. Very good tracking performance are
achieved, too. Regarding this aspect, we also evaluated the
effect of the robust terminal constraint on the conservative-
ness of the control algorithm (see Remark 4.2), by repeating
the simulation without such a constraint. In cases when the
optimal control problem was not feasible, we applied the last
calculated control input. During the simulation there were
actually 4 time steps in which infeasibility occurred. On the
other hand, the obtained control performance was extremely
similar, with just a 3% reduction of the mean square track-
ing error with respect to the one obtained in presence of
the terminal constraint. Another simulation study, consider-
ing a multivariable three-tank system, is available in [17],
showing the advantages with respect to an adaptive MPC
approach that relies on a certainty equivalence model iden-
tification strategy.
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Fig. 4. Bounds on the rate of change of the impulse response
coefficients (solid line) and actual values of AH (t) during the
simulation (circles).

6 Conclusion

We described an adaptive MPC algorithm for asymptotically
stable, constrained LTV systems with multiple inputs and
outputs. The technique relies on a novel recursive SM iden-
tification approach to keep track of the set of all possible
model parameters that are consistent with data and with the
prior assumptions. The recursive update of such a set ac-
counts for the time-varying nature of the system through as-
sumed (not necessarily tight) bounds on the parameters’ rate
of change. The MPC design guarantees recursive feasibility
and robust satisfaction of output constraints. A simulation
study shows that the new algorithm removes a fundamental
limitation of a previously proposed adaptive MPC approach.



Plant output
' o
.

| | | | | | | | |
0 100 200 300 400 500 600 700 800 900 1000
Time

Fig. 5. Plant output (thick black line), reference (dashed line), un-
certainty bounds (dotted lines) and constraints (dash-dotted lines)
with the proposed adaptive MPC algorithm.

Appendix

Proof of Lemma 4.1. We use induction to prove the claim of the
Lemma. At time step ¢ = 0, from the step 1) of Algorithm 1,
it holds that 7(0) =  and from Assumption 3, it then follows
that F(0) # 0 and that H(0) € F(0). Let us now, for the
sake of the inductive argument, assume that at some time step
t > 0, it holds that H(t) € F(t). We shall show, that it than
follows that H(t+1) € F(t+ 1). To this end, we define matrices

Aj(t) € Rraox™ AY(t) € RT3 (D=m50)X™ and vectors b (t) €

R70, b (t) € R0 5 =1,... ny, as:
bj1 bjrjo+1 aji
viy=| ¢ [ =] | A= ],
bj’"j() bj"‘j(t) Ajrjo
-_SOT (t_ j (t)QA,,.J_O -
Ajrio+1 o7 (tf Lo (t);rjo )
A;’(t) = = :
Qs (t) -7 (1)
I @7 (1) |
Al (t b(t
Note that A;(t) = 5(¢) and b;(t) = 5 () . From As-
A1) /(i
sumption 3, it holds that:
AOH;t+1) <bi(),5=1,...,ny. (30)

In addition, we note that from the inductive assumptions, it holds
that A} (t)H;(t) < bj(¢),j = 1,...,ny. Therefore, it than also
holds that: B .

A7 (O H;(t+1) <05 (t) +e;(t)

where e;(t) € R7W7"0 e;(t) = AJ(t) (H;(t + 1) — H;(t)),
j=1,...,n,. From the definition of A/ (t) (note that this ma-
trix is exclusively formed from the past regressor vectors), and
the definition of ¥J(¢) and 9(¢) in (13), we note that the vectors
ej(t),7 = 1,...,n, are bounded such that it holds e;(t) < €;,
where:

éj:[—ﬁ<t—rj(t)%> a(t_%) ,...,—ﬂ(tm(t)]T

Therefore, it holds that:
AV H j(t+1) <bj(t+1)+€5,7=1,...,ny. (31)

Moreover, from Assumption 1, it holds that the following two
inequalities have to be satisfied:

—p(t+1)H;(t+1) <—g;({t+1)+eq; +ev;
—p(t+1)H;(t+1) <g;(t+1)+eq; +eo;

Based on (30), (31) and (32), it holds that:

Al 4+ DH;(t+1) <bl(t+1), j=1,...,ny,

where
Aj(t) b (t)
AJ(t by (t+1) + €
—(p(t—l—l) _y]'(t+1) + €d; +€Uj
(p(t—l—l) gj(t+1)+6dj +611j

are the matrices that would be obtained after running the
step 4) of Algorithm 1 at time ¢t 4+ 1 (i.e. before remov-
ing any rows from the matrices and vectors in order to keep
their dimensions bounded). Therefore, the set F'(t + 1) =

{H € RMwXm A;(t—l— 1)H; < b;(t—i— 1)} is a nonempty set

that is guaranteed to contain H(t+ 1), i.e. H(t+1) € F(t+1).
Set FT(t 4+ 1) represents the updated feasible parameter set
before possible removal of any inequalities in order to bound
the complexity of its description. The set F(t + 1) is ob-
tained by either taking the set }'T(t + 1) as it is (i.e. when
rj(t) < M + rjo,¥j = 1,...,ny), or by removing several
inequalities that constitute it (see step 5) of Algorithm 1). There-
fore it holds that F'(t 4+ 1) C F(t + 1), and hence it holds
that H(t + 1) € F(t + 1), which means that F(¢ + 1) # 0. By
invoking the argument of mathematical induction, it then holds
that H(t) € F(t),Vt > 0, which completes the proof. [ ]

Proof of Lemma 4.2. We first note that, from the definition of
F(t 4+ 1Jt) (see (24),(25) and (26)), and the way Algorithm 1
works, it holds that:

Aj(t+1]t) b (t+1]¢)
A;(t+1)= —p(t+1) ,bj(t+1)= —ﬂj(t+1)+€dj+€uj .
e(t+1) Ui (t+1)+eq; +e;

Matrices A;(k|t + 1) and vectors b;(k|t + 1),5 = 1,...,mny
are then, by construction, formed from the matrices A;(¢ + 1)
and b; (¢t + 1). Therefore we have that, for j = 1,...,n, and
k € [t + 2,t+ NJ, it holds:

A; (k|t) b (klt)
Aj (kL) =] —p(t+1) | , bj(k[tH) =| =g, (t+1)+€q; +€o,
p(t+1) Ui (t4+1)+e€q; +eo,

Asitholds that F(k|t) = {H € R™*™ : A;(k|t)H; < b;(klt)},
and F(k|t+1) = {H € R™*™ : Aj(k|t + 1)H; < bj(k[t + 1)},



Vk € [t + 2,t + N — 1], it holds that each of the sets
F(k|t+1),k € [t+1,t+ N —1] is formed by the same inequalities
as the set F(k|t) and that it has two additional inequalities defined
by the regressor vector and output measurement at time step ¢+ 1.
Therefore, it holds that F(k|t+1) C F(k|t), k € [t+2,t+N—1].
In addition, we note that F(t + N|t) = € and that for
3 =1,...,ny, it holds that:

A; b;
Aj(t+ Nt +1) = {Aﬂo} bj(t+ N[t +1) = [bj,o],

J J

where the matrices A} and the vectors b}, = 1,...,n, are
obtained by using the rules for generating the predicted matrices
Aj;(k|t) and vectors bj;(k|t) in (25) and (26). Therefore, from the
definition of F (¢t + N|t + 1) (see e.g. (24)) and the definition of
the set © in (7), it holds that F(t + N|t + 1) C F(t + N|t).
Hence, it holds that F(k|t + 1) C F(k|t),k € [t + 2,t + N],
which completes the proof. |

Proof of Theorem 4.1. We first show that the FHOCP (29) is
recursively feasible. To this end, we use induction. The problem
(29) is feasible for ¢ = 0 by assumption. Let us assume that the
problem (29) is feasible at a generic time step ¢ and let the optimal
control sequence be U*(t) = [u"(¢|t),...,u"(t + N — 1]t)],
and its corresponding sequence of predicted regressor vectors be
©*(k|t), k=t+1,...,t + N. Then, a possible feasible control
sequence at t + 1 is U(¢t + 1) = [u"(t + 1]¢),...,u"(t + N —
1|¢),u*(t + N — 1|¢)]. This sequence satisfies constraints (23)
and (28). In addition, we note that the predicted regressor vectors
oklt +1), k = t+2,...,t + N + 1 that correspond to the
input sequence U(t + 1), by construction satisfy the equalities
e(klt+1) = ¢*(k|t), for k € [t+2,¢+ N] and that from (28) it
follows that p(t+ N +1|t+1) = ¢* (¢+ N|t). Moreover, we note
that from Lemma 4.2, it holds that F(k|t + 1) C F(k|t),Vk €
[t +1,t + NJ. In addition, we note that F(t + N + 1|t + 1) =
F(t+ NJt) = Q. Based on this, the sequence of inputs U (¢t + 1)
satisfies the output constraints (27), and hence the FHOCP (29)
has a feasible solution. Repeating this argumentation for all ¢ > 0,
it can be concluded that the FHOCP (29) remains feasible V¢ > 0.
From this and Lemma 4.1, the other claim of the Theorem follows
directly. |
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