
Virtualized Controller Placement for Multi-Domain
Optical Transport Networks

Sabidur Rahman∗, Tanjila Ahmed∗, Sifat Ferdousi∗, Partha Bhaumik∗, Pulak Chowdhury∗,
Massimo Tornatore∗†, Goutam Das‡, and Biswanath Mukherjee∗

∗University of California, Davis, USA †Politecnico di Milano, Italy ‡Indian Institute of Technology, Kharagpur, India
Email: {krahman, tanahmed, sferdousi, pbhaumik, pchowdhury, bmukherjee}@ucdavis.edu; gdas@gssst.iitkgp.ac.in

Abstract—Optical multi-domain transport networks are often
controlled by a hierarchical distributed architecture of con-
trollers. Optimal placement of these controllers is very impor-
tant for their efficient management and control. Traditional
SDN controller placement methods focus mostly on controller
placement in datacenter networks. But the problem of virtual-
ized controller placement for multi-domain transport networks
needs to be solved in the context of geographically-distributed
heterogeneous multi-domain networks. In this context, Edge
Datacenters have enabled network operators to place virtualized
controller instances closer to users, besides providing more
candidate locations for controller placement. In this study, we
propose a dynamic controller placement method for optical
transport networks that considers the heterogeneity of optical
controllers, resource limitations at edge hosting locations, latency
requirements, and costs. Simulation studies considering practical
scenarios show significant cost savings and delay reductions
compared to standard placement approaches.

Index Terms—SDN controller; optical controller; optical trans-
port network; cost savings; network function virtualization; edge
computing.

I. INTRODUCTION

Existing proposals for controller placement [1] have fo-
cused mostly on packet-switched Software-Defined Networks
(SDNs) and they often ignore the complexity, heterogene-
ity, and vendor specificity of a transport-network control
plane. Current technical solutions for transport-network con-
trol planes (e.g., Transport SDN, T-SDN) are designed for
circuit-switched layer 0 (optical) and layer 1 (SONET/ SDH
and OTN). T-SDN supports multi-layer, multi-vendor, circuit-
oriented networks that are different from packet-based SDN-
controlled networks [2]. The control plane for optical transport
networks employs a hierarchical distributed architecture [3]
comprising heterogeneous (often vendor-specific) Optical Net-
work (ON) Controllers (ONC) and SDN Controllers (SDNC).

Our study considers that T-SDN controllers can be deployed
as virtualized controller instances (as in [5]). Virtualized
controller placement has many benefits. First, manually de-
ploying SDN and ON controllers in traditional ‘hardware
boxes’ can take several days, compared to few minutes in
case of virtualized instances (hosted on Virtual Machines
(VMs), docker containers, etc.) in the cloud datecenter (DCs)
or in computing nodes at edge datacenters (Edge-DCs) (such
as Network Function Virtualization Infrastructure Points of
Presence (NFVI-PoPs), metro datacenters (DCs), or Central
Offices Re-architected as Datacenters (CORDs), etc.). Second,

virtualized controllers can be easily recovered from failures
or disasters using the backed-up/replicated virtual copy of
the controllers. These instances can be easily moved from
one location to another and can be redeployed [6] without
significant down time. Third, operational cost savings for
network operators and leasing cost savings for network leasers
are other important motivations toward virtualization.

Prior studies exploring static [7] [8], and dynamic [9]
controller placement problems mostly focused on packet-
based SDN controllers and DC networks [10] [11]. But, as
we discuss in Section II, methods proposed in SDN and
DC scenarios are often not applicable and not optimal for
heterogeneous optical transport networks.

To the best of our knowledge, our study is the first to
propose dynamic placement of controllers for heterogeneous,
multi-domain transport networks comprising heterogeneous
ON and SDN controllers, considering the complexity due to
virtual instances hosted jointly on DCs and Edge (e.g. NFVi-
PoPs), and inter-domain and intra-domain latency constraints.
In addition, we observe that [2] [4] both fixed-grid and flex-
grid technologies might be required to co-exist (i.e., mixed-
grid) with seamless interoperability (see Fig. 1). In this con-
text, our proposed method can support the deployment of
different controller types, hence we enforce ’controller-type
constraint’ (e.g., flex-grid controllers for flex-grid domains,
fixed-grid controllers for fixed-grid domains, etc.).

In our previous study [13], we discussed state-of-the-art
control-plane architectures for transport network and moti-
vations behind virtualization of controllers. In this study, we
explore the technical details of the dynamic controller place-
ment problem (e.g., latency requirements, resource limitations
at Edge-DCs, heterogeneous types of controllers, controller
capacity limitations, etc.), propose the Virtualized Controller
Deployment Algorithm (VCDA), and report illustrative results
comparing with prior studies.

This study is organized as follows. Section II reviews
prior work on controller placement problems in both SDN
and transport networks. Section III discusses the control-
plane architecture and describes how virtualization enables
to exploit spatial variations of load. Section IV provides a
formal problem statement and describes the proposed solution
method. Section V discussed numerical results on cost savings
and delay minimization. Section VI concludes the study.

II. BACKGROUND AND RELATED WORK

In the context of SDN, both static [7] [8], and dynamic [9]
placement problems have been explored. But most studies
on SDN Controller Placement Problems (CPPs), e.g., [7]-
[9], consider placement of only controller ‘middle-boxes’, not
virtualized instances. Ref. [15] considers recovery of SDN
controllers in a disaster scenario. These early studies do
not consider the additional complexities due to virtualization,
delay constraints, hosting location constraints, etc.

On the other hand, control-plane architectures [12] [16] in
T-SDN paradigm are designed to accommodate multiple het-
erogeneous network domains and associated domain-specific
ON controllers. But, as recent studies [2] [16] suggests, there
is still no consensus on the design of the T-SDN control plane.
Ref. [5] was among the first to propose a virtualized control
plane architecture for transport networks, but it did not cover
several virtualization aspects such as compute and memory
resource allocation at host locations, VM consolidation and
migration, limitation in VM hosting capacity, etc.

Recent studies [10] [11] on Elastic Control Place (ECP)
for SDN controllers discuss threshold-based methods to dy-
namically resize the ECPs. Ref. [10] focuses on DC networks
managed through homogeneous SDN controllers, minimizing
control-plane resizing delay. Refs. [10] [11] consider DC
placement (of controller instances), which is practical for a DC
network scenario. But, for a transport network with distributed
heterogeneous domains, we also consider joint deployment in
DCs and Edge-DCs, which introduces new constraints such
as host location capacity, and inter-domain and intra-domain
communication delays (which [10] [11] do not consider).

III. VIRTUALIZED CONTROL PLANE FOR
HETEROGENEOUS TRANSPORT NETWORKS

Fig. 1 shows an example of a hierarchical control plane for
heterogeneous transport networks. Domain-specific controllers
are connected with ‘parent controller(s)’, which are connected
to the ‘application plane’ (e.g., Transport Network Orches-
trator (TNO), Operations Support Systems (OSS), etc.) using
‘north-bound interfaces’.

Fig. 1: Control-plane architecture for heterogeneous transport networks.

‘Domain Controllers’ are responsible for the communica-
tion between ‘control plane’ and ‘data plane’. Different au-
tonomous domains, depending on the underlying ONC/SDNC,
use specific type of controllers and protocols to control the

‘data plane’ switches. Fig. 1 shows three types of domains.
This example architecture can be extended to support more
variations of domain controllers and associated technologies.

IV. PROBLEM STATEMENT AND SOLUTION METHOD

A. Problem Statement

The controller-placement problem is known to be NP-
hard [1]. Traditional dynamic controller placement meth-
ods [9] [10] focus on the ‘switch-to-controller’ mapping,
ensuring that each switch (forwarding plane) is connected to
at least one controller (control plane); incoming traffic flow
requests originated inside a domain will be served by the same
controller; and controller capacity limit is preserved. When a
new traffic flow request arrives, the ‘switch’ depends on the
controller for routing and path computation decisions.

In addition to considerations from prior studies, we consider
that heterogeneous network domains require specific controller
instances, compute and memory resources, and constraints
from the Edge-DC vs. DC hosting locations (more details in
Section IV.B). In addition, our method uses consolidated place-
ment (placing more interacting modules closer together) from
cloud computing. Our proposed method places the controller
instance from the same domain together. Also, the ‘controller
instances’ are deployed dynamically to serve the new incoming
traffic requests (i.e., higher load requires more controllers and
lower load requires less controllers).

The dynamic ‘on-demand’ controller deployment problem
can be defined as follows: Given a topology, a set of controller
hosting locations with limited capacity, arrival rate of traffic
flows, a set of heterogeneous network domains, controller
capacity, and constraints, deploy optimal number of controllers
to satisfy all the domains, minimizing the leasing costs.

B. Input Parameters and Variables

• G(V,E): Optical transport network topology where V is
set of network domains and E is set of core network links
connecting the domains in V .

• Mv: set of controllers serving domain v.
• Sv: set of switches in domain v.
• Tv: domain-specific controller type.
• Hv: controller hosting location where Hv ⊆ V .
• χtv: total compute capacity at v.
• χuv : used compute capacity at v.
• ωtv: total memory capacity at v.
• ωuv : used compute capacity at v.
• Tµv : service capacity limit (i.e., maximum number of

requests served per second) for controller type Tv .
• Tχv : compute resource requirement for controller-type Tv .
• Tωv : memory resource requirement for controller-type Tv .
• λ(v): arrival rate of new traffic flows for a given domain

(v), where rv represents new arrival of flow routing
request. Sr is the switch at which the request has arrived,
and Mv gives the set of domain controllers the switch
(Sr) is connected to.

• α: latency constraint (maximum allowed delay) from
users’ Service Level Agreement (SLA).

• CT : variable containing total cost of running the con-
trollers in all the domains (more details in Section IV.D).

C. Constraints

We consider the following constraints:
1) Latency constraints: Controllers must be placed within

the allowed latency limit, i.e., switch-to-controller and
controller-to-switch delay, including processing delay
must not exceed the allowed delay limit:

D(s, h) +Dp +D(h, s) ≤ α;∀sεSv, ∀hεV (1)

where function D(x, y) represents transmission, propa-
gation, and processing delay between points x and y,
s is origin, h is controller hosting location, and Dp is
processing delay at controller instances Mv (depends on
load).

2) Controller type constraint: To reflect the impact of
controller heterogeneity, we must ensure the following
controller type constraints:

Tv ==M t
v; ∀vεV (2)

where, the constraint enforces that all controller instances
of v, (M t

v) match the required controller type Tv .
3) Controller capacity constraints: Deployed controllers

must have enough capacity to support domain switches:∑
sεSv

λ(s) ≤ Tµv ∗ |Mv|; ∀vεV (3)

4) Controller host capacity limit: Hosting location (v.h)
must have both compute and memory capacity to host
the controllers placed in that location:∑

gεV

|Mg| ∗ Tχg ≤ χtv; Hg == v;∀vεV (4)

∑
gεV

|Mg| ∗ Tωg ≤ ωtv; Hg == v;∀vεV (5)

D. Cost Models

1) Leasing cost for virtual controller instances: We con-
sider that network operators lease hosting capacity from DC
operators. Virtual instance leasing cost CC can be stated as:

CC =
∑
vεV

|Mv| ∗ γ ∗ d) (6)

where γ is per-unit compute per unit-time cost of leasing
virtual instances, and d is duration of operation.

2) Network capacity cost: Cost of network usage is often
ignored in prior studies focusing on DC SDN scenarios. But
the distributed nature of virtualized controller deployment for
transport networks can add significant communication cost.
First, switch-to-controller communication cost, CSN , is:

CSN = (
∑
vεV

(B(Sv,Mv))) ∗ π (7)

where B(x,y) gives bandwidth consumption due to communi-
cation between x and y, and π gives the per-GBps per unit-time
bandwidth price.

Similarly, controller-to-controller (same domain) communi-
cation cost, CMN , is:

CMN =
∑
vεV

(B(Mv(i),Mv(j)); i 6= j)) ∗ π (8)

where B(Mv(i),Mv(j)); i 6= j gives bandwidth consumption
between controllers instances of the same domain.

Similarly, controller-to-controller (different domains) com-
munication cost, CPN , is:

CPN =
∑
p,qεV

(B(Mp,Mp; p 6= q)) ∗ π (9)

In addition, controllers may require to be migrated from one
hosting location to other. This live VM migration process adds
to the network cost (CVN) as follows:

CVN =
∑
vεV

(BVM (v)) ∗ π (10)

where BVM (.) is the bandwidth consumption due to VM
migrations.

Hence, total network cost, CN , is:

CN = CSN + CMN + CPN + CVN (11)

3) Delay Cost: We also consider the impact of controller
delays on user experience (higher delay means unhappy user,
leading to revenue penalty). This cost adds delay factor in
decision making and encourages the algorithm to minimize de-
lays. Similar to network cost, cost of switch-to-controller delay
(CSU), controller-to-controller (same domain) communication
delay (CMU), and controller-to-controller (different domains)
delay (CKU) can be calculated by replacing B(x,y) with D(x,y)
and π with σ in Eqns. (7), (8), and (9), respectively. Here,
D(x,y) gives delay due to communication between sets x and
y, and σ is cost ($) associated to per unit-time delay. Also, our
model considers cost due to processing delay at controllers,
CPU .

Hence, total delay cost becomes:

CU = CSU + CMU + CKU + CPU (12)

Now, total cost is modeled as:

CT = CC + CN + CU (13)

The objective of the proposed method is to minimize the
cost of controller deployment:

Minimize(CT) (14)

E. Algorithm

We propose a polynomial-time heuristic, called Virtualized
Controller Deployment Algorithm (VCDA), as a scalable
solution for a heterogeneous optical transport network (see
Algorithm 1). Since turning controllers on/off too often
may make the network unstable, we introduce a decision
epoch (e), a dynamic variable allowing network operators to
tune the decision frequency. We also use two management
entities: Network Management and Orchestration (NMO) and

Distributed Cloud Management (DCM). NMO takes care of
load balancing and assignment of switches and traffic with the
controllers. DCM manages the controller turn-on/off activities,
as well as live VM migration in Edge-DC and DC hosting
locations.

Algorithm 1 Virtualized Controller Deployment Algorithm
(VCDA)

1: Input: G(V,E), λ(v), α, e;
2: for each domain v in V do
3: . Calculate required number of controllers
4: c← (count(rv))/T

µ
v ;

5: if |Mv| == c then
6: Consolidate and load balance switches and traffic
7: flows among the Mvs using Eqns. (1-5);
8: . deploy more controllers
9: else if c > |Mv| then

10: h← Hv;
11: δ ← c − Mv;
12: . enough resources at h
13: if (χth−χuh) > δ ∗Tχv & (ωth−ωuh) > δ ∗Tωv then
14: Turn on additional δ controllers (Tv type) at
15: location h;
16: Load balance and re-route switches and traffic
17: flows among the Mvs using Eqns. (1-5);
18: . not enough resources at h
19: else
20: h

′ ← find optimum location to host c;
21: using Eqns. (1-5) and Eqns. (6-14);
22: Allocate c controllers (Tv type) at h

′

23: via DCM;
24: Migrate all Mv instances to h

′
via DCM;

25: Turn on δ additional controller instances via
26: DCM;
27: Load balance and re-route switches and traffic
28: flows among the controller instances;
29: Turn off Mv controllers at h via DCM;
30: end if
31: . remove extra resources
32: else if c < |Mv| then
33: δ ← c − Mv;
34: DCM finds optimum δ controllers to turn off;
35: Reroute and load balance switches and traffic flows
36: among the Mv using Eqns. (1-5);
37: Turn off δ controllers;
38: end if
39: end for
40: if e is expired then
41: go to line 2;
42: end if

Our algorithm ensures that, for each domain, enough con-
trollers are deployed to serve current load, observing the con-
straints. At a given load, if the controller capacity constraint
holds, it means that we do not need additional controller
instances (line 5). But, if the controller capacity constraint fails

(line 9), the algorithm checks if the current hosting location
(h) has enough compute and memory capacity to host the
additional δ controllers (line 13). If yes, we turn on additional
controllers and load balance the switches and traffic flows (line
14-17). If host location h does not have enough resources,
the algorithm finds the next optimal location to host all the
instances (line 20) following constraints as in Eqns. (1-5) and
minimizing Eqn. (14). In this step, we utilize the benefits
of consolidation in computing. Placing controllers from the
same domain closer to each other will reduce delay cost (Eqn.
(12)). We consider live VM migraion (line 24) to relocate the
already-running controller instances to the new location with
least interruption of services.

The algorithm turns off the extra controllers (line 32-37) to
save operational cost. After each iteration, the algorithm waits
for the epoch e to expire. The run-time complexity of VCDA
depends on number of domains (|V |), maximum number of
controllers (max(|Mv|)), maximum number of switches in a
domain (max(|Sv|)), and number of host locations (|Hv|). The
run-time complexity of VCDA can be expressed as O(|V | ∗
max(|Mv|)∗max(|Sv|)+|V |∗|Hv|∗max(|Mv|)∗max(|Sv|).

V. ILLUSTRATIVE NUMERICAL EXAMPLES

We present illustrative results on a US-wide 14-domain
topology (see Fig. 2), with heterogeneous domains and Edge-
DCs/DCs. Each network domain requires domain-specific con-
troller(s), that are connected to other domains via backbone
optical links. For example, we consider six fixed-grid domains
(4, 5, 7, 9, 12), two ‘packet network’ domains (8 and 11), and
six flex-grid domains (1, 2, 3, 10, 13, 14). Later, our study
also considers larger domains in Fig. 5. We consider two DC
locations (2 and 13) and three Edge-DCs (6, 8, 10) to host
controller instances.

Fig. 2: Topology 1: Example optical network topology with controller host
locations and 14 heterogeneous domains (red denotes flex-grid, black denotes
fixed-grid, and green denotes packet).

This topology shows a heterogeneous multi-domain optical
transport networks with both Edge-DC and DCs. Capacities
of DCs, racks, and servers vary significantly in practice. For
Edge-DCs (6, 8, 10), we assume total compute capacity (χtv)
is 30 units and total memory capacity (ωtv) is 60 GB. For DCs,
we consider 15000 compute and 30000 memory capacity (to
represent virtually infinite capacity).

Per census data, we have 47.6% of US population in Eastern
time zone, 29.1% in Central, 6.7% in Mountain, and 16.6%
in Pacific time zone. Our study uses this data to generate
spatial variation of incoming load λ(v). For example, full
load (λ = 1) for the Eastern domains is 30,615 requests
per seconds vs. 10,910 requests for Mountain domains. For
illustrative examples, let α = 15 ms, Tµv = 2500 requests per
second [9], per-controller instance compute requirement (Tχv)
= 2 compute units [10], memory requirement (Tωv) = 4 GB, γ
= $0.01 per unit per hour, σ = $0.0001 per minute, and π =
$70 per GBps per month [14].

Fig. 3 compares the normalized cost (Eqn. (14)) among
three different methods: (1) DC-Only method mimics con-
troller placement methods which focus on dynamic placement
of controllers inside DCs only; (2) Edge-Greedy method con-
sidering both DCs and Edge-DCs, but instead of consolidated
VM placement considering delays, this method places VMs in
a greedy way ignoring network cost (Eqn. 7-11) and delay cost
(Eqn. 12) (similar to [9], evolved to host controllers at Edge);
and (3) our proposed VCDA method considering consolidated
VM placement, delay and capacity constraints (Eqns. (1-5)),
and cost minimization (Eqns. (6-14)).

Fig. 3: Normalized cost versus load for Topology 1.

Fig. 3 shows that our algorithm has lowest normalized cost
among all three approaches. As expected, placing controllers
only at DCs results in very high delays (see Fig. 4), causing
higher delay cost. At lower load (λ = 0.2), Edge-Greedy
placement saves cost compared to DC-Only (10% extra cost
for Edge-Greedy vs. 41% extra cost for DC-Only), by placing
the domain controllers closer to Edge. VCDA benefits more
from Edge resources using consolidated placement and reduc-
ing inter-controller communication delays, resulting in cost
saving. But, at higher load (λ = 0.8), VCDA saves less due to
tighter capacity limits at Edge-DCs, as consolidated controllers
need to move to DC locations, resulting in higher network and
delay costs. Still, VCDA’s cost savings is higher than the other
two methods.

A major limitation of virtualized controller placement in
transport networks is the additional delays. Edge-DCs helps to
reduce those delays. But, as shown in Fig. 4, if the placement
method is not aware of the delays (DC-Only) or takes a
greedy placement approach (Edge-Greedy), the controllers will
experience significant additional delays (resulting in higher

delay cost). At lower load (λ = 0.2), DC-Only placement
method places the controllers far from the domains, resulting
in very high delays (60% extra delays). Even Edge-Greedy
placement method (13.5% extra delays) reduces significant
delays compared to DC-Only. But, as load increases (λ = 0.6),
VCDA experiences higher delays as more controllers are now
being placed at DCs (due to Edge-DC hosting capacity limit).
Edge-Greedy also experience more delays at higher loads as,
in addition to delays due to DC locations usage, more scattered
controller instances lead to higher communication delays.

Fig. 4: Normalized delay versus load for Topology 1.

We also observe that changes in topology can impact the
results. To illustrate the impact of domain size, let us consider
larger domains (see Fig. 5).

Fig. 5: Topology 2: Example optical network topology with controller host
locations and six heterogeneous domains (red denotes flex-grid, black denotes
fixed-grid, and green denotes packet).

Fig. 5 show six domains. Nodes 1, 2, and 3 create a flex-
grid domain: 1-2-3. Similarly, the other domains are: 4-5-6-7
(fixed-grid), 8-11 (packet), 10-13-14 (flex-grid), 9 (fixed-grid),
and 12 (fixed-grid). Fig. 6 shows normalized cost for Topology
2. At lower load (λ = 0.2), cost savings is 30% compared
to ‘DC-Only’. VCDA looses some cost savings (compared to
41% for the same load in Fig. 3). This observation can be
explained as follows. When node 10 was a separate domain,
it’s controllers were placed in the Edge-DC at 10. But, with the
bigger domain 10-13-14, controllers for this domain are hosted
in DC at 13, adding to the switch-to-controller network and
delay cost. As load grows cost savings reduces and gets close
to ’DC-Only’ (0.358% cost savings at load λ = 0.8). This
observation can be explained with the following example: for

domain 4-5-6-7, initially at lower load, controllers were placed
at Edge-DC at 6, but as load grew, requiring more resources
for controllers, the controller instances were migrated to DC
(reducing the cost gap).

Fig. 6: Normalized cost versus load for Topology 2.

More Edge-DC and DC locations can significantly change
the cost and delay. More Edge-DC locations will allow to save
more cost and reduce delay even in higher loads (λ = 0.8).
In our study, we consider two DC locations, in two corners of
the topology, from these intuitions: (1) DC operators in USA
tend to place DCs in more populated east coast and west coast
regions; and (2) Placing DCs apart allows us to demonstrate
the impact of Edge-DCs. But if we add more DCs or change
the DC locations, that will impact the cost and delays as well.

Our study also considers operational cost of controllers. A
large portion of DC operational costs comes from electricity
cost from servers’ electricity consumption [6]. In Fig. 7, we
borrow the operational cost model for servers from Ref. [6],
and consider four different virtualization technologies (Xen,
KVM, Docker, and LXC) [17] to compare the operational cost
(in terms of electricity consumption in KWH). We observe
that container-based technologies (Docker and LXC) use sig-
nificantly lower electricity compared to Xen and KVM. Using
a more detailed cost model, this electricity consumption can
be converted to electricity cost (including power consumption
from heating, cooling, ventilation, lighting, maintenance ac-
tivities, network electricity usage, etc.).

Fig. 7: Operational cost in terms of server electricity consumption over load.

VI. CONCLUSION

Virtualized controller placement in multi-domain
heterogeneous optical transport networks introduces new
challenges for network management. Our proposed method
for controller placement considers transport-network-specific
properties and constraints such as heterogeneous optical
controller types, resource limitations at edge-hosting
locations, cost from additional delays, etc. Illustrative
examples show that our proposed method saves cost and
reduces delays significantly, compared to prior studies.
Future studies should explore variation of compute/memory
requirements, variation of Edge-DC capacities, variation of
Edge-DC and DC locations, temporal variation of load, and
more detailed cost models.

Acknowledgement
This work was supported by NSF Grant No. 1818972.

REFERENCES

[1] G. Wang et al., “The controller placement problem in software defined
networking: a survey,” IEEE Network, vol. 31, no. 5, pp. 21-7, 2017.

[2] R. Alvizu et al., “Comprehensive survey on T-SDN: Software-defined
networking for transport networks,” IEEE Comms. Surveys & Tutorials,
vol. 19, no. 4, pp. 2232-2283, 2017.

[3] V. Lopez et al., “Control plane architectures for elastic optical net-
works.” J. of Optical Comms. and Net., vol. 10, no. 2, pp. 241-249,
Feb. 2018.

[4] T. Ahmed et al., “Dynamic Routing and Spectrum Assignment in Co-
Existing Fixed/Flex Grid Optical Networks,” Proc. IEEE Advanced
Networks and Telecom Systems, Indore, India, Dec. 2018.

[5] R. Munoz et al., “Integrated SDN/NFV management and orchestration
architecture for dynamic deployment of virtual SDN control instances
for virtual tenant networks,” Journal of Optical Comms. and Net., vol.
7, no. 11, pp. 60-70, Nov. 2017.

[6] S. Rahman et al., “Dynamic Workload Migration over Optical Backbone
Network to Minimize Data Center Electricity Cost,” IEEE Trans. Green
Comms. and Net., vol. 2. no. 2, pp. 570-579, Dec. 2017.

[7] B. Heller et al., “The Controller Placement Problem,” Proc. 1st Wksp.
Hot Topics in Software Defined Networks, pp. 712, 2012.

[8] G. Yao et al., “On the Capacitated Controller Placement Problem in
Software Defined Networks,” IEEE Commun. Letters, vol. 18, no. 8,
pp. 1339-1342, 2014.

[9] A. Sallahi et al., “Optimal Model for the Controller Placement Problem
in Software Defined Networks,” IEEE Comms. Letters, vol. 19, no. 1,
pp. 30-33, 2015.

[10] W. Kim et al., “T-DCORAL: A Threshold-based Dynamic Controller
Resource Allocation for Elastic Control Plane in Software-Defined Data
Center Networks,” IEEE Comms. Letters, Nov. 2018.

[11] A. Potluri et al., “An efficient DHT-based elastic SDN controller,” Proc.,
9th Intl. Conf. on Comm. Sys. and Net., pp. 267-273, Jan. 2017.

[12] A. Aguado et al., “ABNO: A feasible SDN approach for multivendor
IP and optical networks,” IEEE/OSA J. Opt. Comms. Net., vol. 7, no.
2, pp. A356-A362, Feb. 2015.

[13] S. Rahman et al., “Dynamic Controller Deployment for Mixed-Grid
Optical Networks,” Proc. Asia Comms. and Phots. Conf., 2018.

[14] S. Rahman et al., “Auto-Scaling VNFs Using Machine Learning to
Improve QoS and Reduce Cost,” Proc., IEEE Intl. Conf. on Commun.,
May 2018.

[15] S. S. Savas et al., “Disaster-resilient control plane design and mapping
in software-defined networks,” Proc., 16th IEEE Intl. Conf. on High
Performance Switching and Routing, pp. 1-6, July, 2015.

[16] R. B. Lourenco et al., “Robust hierarchical control plane for Transport
Software-Defined Networks,” Optical Switching and Net., vol. 30, pp.
10-22, Nov. 2018.

[17] R. Morabito, “Power Consumption of Virtualization Technologies: an
Empirical Investigation,” 8th IEEE/ACM Intl. Conf. on Utility and Cloud
Computing, pp. 522-527, 2015.

