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Abstract: In this paper we discuss the effects of deslagging practices and the size of electric arc
furnace (EAF) slags on structural, microstructural, composition and leaching tests. The samples
were collected from seven steelmakers located in Brescia (Lombardy Region, Italy). Nine granularity
fractions of four samples were tested to evaluate the influence of the granularity on the leaching tests.
The results showed that, in general, the release of the elements arises when the size of the particle
decreases, except in one sample, in which vanadium and zinc displayed the opposite trend. X-ray
diffraction results suggest that behavior may be ascribed to the effect of the grinding, which causes a
different percentage of the phases in the various fractions. In conclusion, the possible effects of the
size should also be carefully considered when defining new leaching test requirements for EAF slags.
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1. Introduction

Steel production is one of the most relevant industrial activities in the world. Depending on
technologies and processes, about 10–15 wt% of non-metallic solid residue slags are produced [1]. Steel
slags are classified as basic oxygen furnace slags, electric arc furnace (EAF) slags and ladle furnace
slags [2].

The integrated steelmaking route—producing steel based on the liquid iron originating from
iron ore—still dominates the world production of steel, but the EAF route accounts for a larger and
larger portion every year. Indeed, it is expected to grow in the next year, to reach 50% of the total
steel production.

In the past, steelmakers viewed EAF as inadequate for producing high-quality steel, since the
process employs recycled materials. However, EAF has become an efficient and reliable steelmaking
alternative. Indeed, today EAF steel cannot be distinguished from steel produced using the integrated
blast furnace/oxygen steelmaking route.

Even with continued improvements to the design of steelmaking processes, the steelmaking
research community has focused their attention on supply materials and impurity concentration used
in steelmaking in order to improve the quality of steel [3–7]. Slag is mainly formed by the lime and the
oxygen injected into the steel bath. When the refining process is completed, the slag is removed [8,9].
Due to the physical and mechanical characteristics, slags are widely used in roads and civil constructions,
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as concrete aggregates and bituminous mixtures (see for example [8,10–12]). Indeed, it was shown that
aggregates containing EAF slags have excellent physical and chemical characteristics, and thus can
be used in cement-treated materials [13]. EAF slags are also used in wastewater treatment [14–16],
CO2 sequestration [17], agriculture fertilizer or remedy for soil acidity [18], and reinforcing filler for
composite materials [19,20]. The recycling of steel slag may be restricted because of the presence of
potentially toxic elements—like Cr, V, Ba and Mo [21]—and leaching tests are mandatory to verify
the release of toxic elements in the water [22]. In particular, toxic metal ions can accumulate in the
human body and in the environment. A number of studies have been reported to detect and absorb
these metals ions [23–25], and different standards and regulations have been adopted to check the
possible leaching of the materials. EN 12457:2004 is the adopted standard in Europe and is constituted
by four parts, in which different grain sizes and the Liquid/Solid (L/S) ratio are considered. Indeed,
the grinding procedure leads to the formation of a variable amount of dust and small particle size
that can significantly affect the results [26]. Moreover, the slag chemical composition and phases are
also relevant.

Literature reports the effects of slagging procedures on the chemical, mineralogical, morphological
structure and leaching [22,27]. The optimization and control of slag composition during the steelmaking
process is very difficult because of different factors, as reviewed by Luz et al. [9]. The leaching behavior
of aged steel slags has also been reported by Engström et al. [28]. Gelfi et al. [29] showed the effect of
rapid cooling on the microstructure of slags and the formation of amorphous slag, determining a low
release of Cr in the leaching tests. The release of Ba, V, and Cr have also been related to the presence of
a large amount of hydraulic phases, and the addition of SiO2 during the slagging operation has been
suggested [21,30] to promote the formation of gehlenite. Cirilli at al. [31] investigated the leachability
of Vanadium, and showed that its leachability is higher in the non-stoichiometric phases. Thus, the
formation of stoichiometric tricalcium silicate structures will reduce the leachability of Vanadium.

This paper aims to present and discuss structural, microstructural, composition, and leaching tests
of electric arc furnace (EAF) slags obtained by seven steel makers located in Brescia (Italy). Moreover,
the influence of the granularity on the leaching tests will also be discussed.

2. Materials and Methods

2.1. Slag Samples

Seven different steel makers located in Brescia provided the carbon steel slags samples. The main
differences among their slagging practices are the cooling rate [27] and the addition/no addition of
SiO2 for slag stabilization [30]. The slag samples were divided into three categories depending on the
treatment: slagging into a hole and cooling by water jet (slow cooling); slagging on the chute and
cooling by water jet (fast cooling); slagging on chute after addiction of SiO2 and cooling by water jet
(fast cooling and modified slag). The samples are classified in Table 1.

Table 1. Description of samples, details of some steel making process parameters (2nd and 3rd column)
and slagging procedure (4th column) and grinding size (5th column).

Sample Steel Type Furnace Temperature [◦C] Slagging Procedure
Grinding Size

4 mm 10 mm

A Carbon steel 0.167% < C < 0.185% 1550–1620 Fast cooling X

B Carbon steel 0.04% < C < 0.08% 1670–1680 Fast cooling X X

C Carbon steel 1600 Fast cooling X X

D
D1

Carbon steel 0.12% < C < 0.18% 1600
Fast cooling and

modified slag
X X

D2 X

E
E1

Carbon steel C < 0.25% 1600
Fast cooling and

modified slag
X X

E2 X

F Carbon steel: 0.05% < C < 0.8% 1650 Fast cooling X

G Carbon steel 0.17 < C < 0.19% 1550 Slow cooling X
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2.2. Chemical and Structural Analysis

The microstructural characterization of slag samples, prepared by the standard metallographic
polishing procedure, was performed using LEO EVO 40 XVP scanning electron microscopy (SEM). The
elemental semi quantitative analysis was performed using the energy dispersive X-ray spectroscopy
(EDXS) microprobe (Link Pentafet Oxford mod 7060). X-ray powder diffraction (XRD) was performed
using a Panalytical X’ Pert Pro diffractometer, equipped with the X’ Celerator detector and Cu anode
(Cu Kα = 1.5406 A), operating at 40 KV and 40 mA, allowing the identification of the crystalline phases.
The patterns were collected in Bragg Brentano geometry between 5◦ and 80◦ (in 2θ). Qualitative
analysis of the crystalline phases was achieved by X Pert high score plus database.

2.3. Leaching Tests

Leaching tests of all the samples were performed according to EN12457 2—with a grinding size of
4 mm—and leachate were analyzed by Inductively Coupled Plasma atomic emission spectroscopy
(ICP AES). The pH was measured using a Metrohm 827 pH lab pHmeter equipped by a potentiometric
electrode. Samples B, C, D, and E were ground at 10 mm (Table 1) to perform the leaching test following
EN12457 4. To verify the influence of the size on the leaching, samples B, C, D, and E, after being
grounded below 4mm by jaw crusher, were sieved in nine granularity fractions (see Supplementary
Material Table S1). Each fraction underwent the leaching test for 24 h and L/S 10 l/Kg, and the leachate
were analyzed by Total Reflection X-ray Fluorescence (TXRF) for elemental chemical analysis. TXRF
measurements were performed with a Bruker S2 Picofox equipped with Mo tube operating at 50 kV
and 750 µA, and a silicon drift detector. Since Gallium was not present in the leachates, 1 mg/L was
added as the internal standard for quantification. A volume of 10 µl was deposed on the quartz sample
carrier and dried at 50 ◦C on the heating plate. Three independent specimens were prepared for each
sample and measured for 600 s [32].

3. Results

3.1. Morphological, Chemical and Structural Analysis

The EAF slags have a black/grey color, with white spots due to a presence of the calcium carbonate
phase. Given its density (between 3.3/3.6 g/cm3), the high roughness, and porosity, FeO, CaO, SiO2,
Al2O3, MgO in a wide range of percentage, 10%–40%, 22%–60%, 6%–34%, 3%–14% and 13%–14%,
respectively [8,33], and other minor phases. Ca and Si mainly originate from the inert materials added
to the steel bath, while the presence of other elements, such as Cr, Ti, and Cu, is due to impurities
of the ferrous scraps. Larnite (2CaO-SiO2), brownmillerite (Ca2(Al,Fe)2O5), wustite (FeO), calcium
silicate, silicon aluminates, gehlenite (Ca2Al[AlSiO7]), bredigite (Ca7Mg(SiO4)4), magnetite (Fe3O4),
magnesioferrite (MgFe2O4) and manganese oxides are the crystalline phases usually identified by XRD.
The composition and the phases of the slags are related to the cooling rate, the metal scrap, and the
feature of steel plant [34]. A high variability was also observed in slags collected from the steel plant at
different times.

The slag samples were classified according to the slagging operation, showing that, when SiO2 is
added, the slag appears less porous and dusty, as shown (see Figure 1).
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Figure 2. SEM micrographs of samples A, B, C, D1, E1, F and G. Numbered purple squares represent 
the position where Energy Dispersive X-ray Spectroscopy (EDXS) measurements are collected. 
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Indeed, non-uniform solidification occurs in the solid slag because of the temperature gradient 
in the matrix: high melting point phases—such as silicates—solidify first, giving rise to grain 

Figure 1. Photo of low cooling rate slag (top, sample G) and SiO2 modified slag (bottom, sample D1).
Reproduced in colors.

Morphological and compositional analyses have been performed to evaluate the differences
among the samples. In the SEM micrographs collected in back scattering modes (see Figure 2), the
differences in the morphology and contrast can be related to the phases. Grains are formed during the
solidification of the liquid slag and correspond to different phases [35].
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Figure 2. SEM micrographs of samples A, B, C, D1, E1, F and G. Numbered purple squares represent the
position where Energy Dispersive X-ray Spectroscopy (EDXS) measurements are collected. Reproduced
in black and white.

Indeed, non-uniform solidification occurs in the solid slag because of the temperature gradient in
the matrix: high melting point phases—such as silicates—solidify first, giving rise to grain structures
with shapes typical of the phase composition [30]. EDXS measurements (Table 2) allowed us to identify
the phases in the slags, that were confirmed by XRD analysis (see Supplementary Material Figure S1).
Analogies and differences among samples can be associated with the parameters of the solidification
process, in particular the cooling rate and the SiO2 addition. In all the samples, a high percentage of
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a dark matrix is present, with a high content of Si, Ca and also few percentages of Fe and Al. The
content of the last two elements is related to the larnite and gehlenite phases percentages, as detected
by XRD. In particular, the larnite content is significant in the samples that undergo slow cooling, while
the amount of gehlenite is high in the case of fast cooling and SiO2 addition. The light matrix has a
dendritic structure, with rounded and sharp edged grains. Dendritic and rounded grains have a high
content of Fe with the presence of Mg and Cr. The composition of the rounded grains is compatible
with iron oxides as magnesioferrite, while the phase of the dendritic structures is attributed to the
wustite phase. Dendritic structures are present in the samples obtained in the fast cooling process (A, C,
F, D1 and E1), and they are in a more significant percentage in the sample obtained by adding silica (D,
E). In the latter case, the dendritic structure formation may be related to a reduction in the slag melting
temperature induced by the SiO2 [30]. The slower is the cooling rate, the larger is the size of round
shape grains (see samples A, B and G). Grains with sharp edges have a high content of Cr, and they are
found only in the fast cooled samples, in which the crystalline magnesiochromite phase is also present.

Table 2. Results of EDXS analysis expressed as mole percentage ratio per sample measurement position
and the corresponding crystalline phase identification.

Sample Position
O Mg Al Si Ca Ti Cr Mn Fe Phases Identification

Concentration [Mol/Mol%]

A

1 43.9 12.3 11.7 - 0.4 - 21.6 2.2 7.8 Magnesiochromite
2 38.6 21.3 0.7 - 0.4 - 4.0 4.1 30.8 Magnesioferrite
3 47.4 0.7 14.4 11.0 25.2 0.5 - 0.6 5.8 Gehlenite
4 39.8 9.5 3.0 1.1 3.3 - 0.8 5.0 36.7 Wuestite

B

1 42.3 12.2 1.5 0.0 1.2 0.0 2.0 6.5 34.3 Magnesioferrite
2 53.5 - - 16.6 29.4 - - - 0.4 Larnite
3 48.0 0.9 19.7 3.1 19.0 0.8 - 0.8 7.7 Gehlenite
4 40.1 14.3 1.6 - 1.1 - 2.9 6.1 33.9 Magnesioferrite

C

1 40.3 - - - 0.3 - 0.4 11.9 34.7 Wuestite
2 41.2 - - - 0.5 - - 12.4 32.9 Wuestite
3 49.3 11.3 11.3 - 0.7 - 20.2 3.2 4.7 Magnesiochromite
4 51.0 13.0 13.0 - 0.4 - 17.8 3.0 4.3 Magnesiochromite
5 50.7 4.6 4.6 14.7 23.4 0.5 - 1.1 2.8 Gehlenite

D1

1 54.6 2.0 6.9 11.6 19.2 0.3 - 0.9 4.5 Gehlenite
2 48.5 8.8 12.3 - 0.5 - 19.1 2.5 8.3 Magnesiochromite
3 47.3 9.2 13.0 - 0.7 - 18.9 2.5 8.5 Magnesiochromite
4 50.6 1.8 9.0 11.9 20.0 0.5 - 0.8 5.5 Gehlenite
5 44.2 7.1 2.1 2.3 4.5 - - 5.7 34.3 Wuestite
6 49.2 1.6 12.8 10.6 17.6 - - 1.2 6.9 Gehlenite

E1
1 49.4 9.2 16.6 - 1.0 - 13.5 2.3 7.9 Magnesiochromite
2 51.4 2.4 9.0 14.5 17.7 - - 0.7 4.2 Gehlenite
3 47.2 5.2 5.2 7.0 8.6 0.4 0.6 3.8 22.0 Wuestite

F

1 45.9 20.1 3.3 - - - - 3.7 24.7 Wuestite
2 47.0 20.8 2.0 - - - 1.6 3.5 25.0 Wuestite
3 53.0 13.0 11.3 - 0.5 - 15.9 1.3 5.0 Magnesiochromite
4 55.4 2.0 8.7 11.5 15.9 - - 0.5 6.1 Gehlenite

G

1 51.1 4.2 0.0 16.6 17.4 0.0 - 3.6 7.2 Larnite
2 43.2 6.7 0.0 0.0 0.9 0.0 - 7.3 41.9 Wuestite
3 53.8 2.2 11.0 13.9 17.3 0.0 - 0.4 1.4 Gehlenite
4 53.9 4.7 0.0 16.2 16.0 0.4 - 2.7 6.1 Larnite
5 53.5 4.1 0.0 16.0 16.1 0.3 - 3.3 6.7 Larnite
6 50.3 4.5 0.7 16.7 16.9 0.5 - 3.4 7.0 Larnite
7 52.5 2.6 10.2 14.9 18.1 0.0 - 0.4 1.3 Gehlenite

3.2. Leaching Test

National legislations regulate the procedures for the leaching test as well as the physical and
chemical analysis of the slags. The results are usually compared with the limit values and depend
upon the final destination of the materials. The pH value of the leachates is between 9 and 11, and
the correlation with the process parameters is not significant. The results of the Inductively Coupled
Plasma Optical Emission Spectroscopy (ICP-AES) analysis are reported in Table 3. The relative standard
deviation (RSD) of the data is fixed at 10%. For the identified elements, four concentration ranges can
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be identified: above 1 mg/L are detected for Ca, Si, K and Ba; between 0.1 and 1 mg/L for Sr, V and Mo;
between 10 µg/L and 100 µg/L for P, Cr, Fe, Co, Zn, Se and Rb; less than 10 µg/L for Mn, Cu, In, Pb and
Cd. The higher is the pH the higher is the release of Ba.

Table 3. ICP-AES measurements results on leachate according to EN12457 2.

A B C D1 E1 F G

Elements Conc. [mg/L]

Si 1.3 1.0 0.2 8.0 11.8 7.8 0.7
P 0.01 0.005 0.005 0.01 0.008 0.008 0.006
K 0.3 0.08 0.2 0.7 5.3 1.0 3.0
Ca 58.2 84.6 152.2 27.6 21.9 29.7 66.5
V 0.1 0.03 0.01 0.1 0.06 0.2 0.03
Cr 0.002 0.02 0.004 0.001 - 0.006 0.001
Mn 0.001 0.001 0.001 0.001 0.001 0.001 0.002
Fe 0.02 0.02 0.03 0.004 0.005 0.004 0.02
Co 0.005 0.005 0.02 - 0.004 - 0.01
Cu - - - - - 0.001 -
Zn 0.01 0.01 0.01 0.006 0.007 0.002 0.01
Se 0.007 0.009 0.01 0.004 0.01 0.007 0.01
Rb 0.01 0.02 0.01 0.02 0.03 0.01 0.02
Sr 0.1 0.1 0.5 0.1 0.2 0.1 0.1

Mo 0.07 0.06 0.07 0.05 0.2 0.06 0.2
Cd - - - - - - -
In 0.003 0.001 0.002 0.003 - 0.002 0.002
Ba 0.6 0.2 2.0 0.5 0.8 0.2 1.1
Pb 0.005 0.004 - 0.005 0.003 0.004 -

The intrinsic variability of leaching tests of the same sample (intra-sample variability) has been
evaluated for SiO2 stabilized slag (namely D and E). Samples D1-D2 and E1-E2 were collected from two
different plants in two different days. The leaching test results have been compared in terms of average
values and relative standard deviations (RSD%) (Table 4). A high variability in the results is observed,
probably due to the sampling or to the furnace feeding. In general, the RSD is high when the element
concentration is low. Indeed, descriptive statistics, in terms of minimum and maximum RSD range,
per each concentration class defined above, highlights an inverse relationship with the concentration.
A higher variability is observed in samples E1 E2 than in samples D1 D2. The intra-sample variability
is similar to that observed among the samples (see Supplementary Material Table S2). The same result
was obtained with samples of different plants. The principal components analysis confirms the absence
of any correlation among samples belonging to the same cooling rate category.

The analysis of samples B, C, D1, and E1 have been repeated with the same standard procedure
(UNI EN 12,457 2) in a second laboratory to check the repeatability of the test. Results obtained by
the two laboratories are not different, suggesting that the primary source of variability is the sample
non-homogeneity (see Supplementary Material Table S3).

To evaluate the effect of the grain size on the leaching test results, two granularities—4 and 10 mm,
respectively—are considered according to EN 12,457 Part 2 and Part 4. The results of samples B, C, D1
and E1 are reported in Table 5. For most of the elements, the highest concentrations are found in the
specimens with the lowest granularity, possibly related to their high surface area.
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Table 4. Intra-sample variability expressed as the average and relative standard deviations (RSD%) (in
brackets) of elemental concentration measured in leachates from samples D1-D2 (second column) and
samples E1-E2 (third column).

Sample D1-D2 Sample E1-E2

Elements Conc. [mg/L] (RSD%)

Si 8.8 (12.8) 12.6 (8.9)
P 0.01 (0.5) 0.007 (18)
K 0.6 (21.2) 4.7 (18.3)
Ca 27.3 (1.8) 27.2 (27.3)
V 0.14 (18.2) 0.08 (25.9)
Cr 0.002 (38.6) 0.0005 (141.4)
Mn 0.001 (6.7) 0.001 (23.4)
Fe 0.003 (27.8) 0.003 (84.4)
Co - 0.003 (39.5)
Zn 0.003 (129.2) 0.007 (7.6)
Se 0.004 (3.7) 0.01 (27.5)
Rb 0.01 (23.8) 0.03 (9.1)
Sr 0.11 (25.4) 0.19 (22.9)

Mo 0.05 (25.4) 0.14 (39.2)
In 0.003 (25.0) -
Ba 0.5 (2.8) 0.6 (46.6)
Pb 0.002 (141.4) 0.002 (141.4)

Table 5. Elemental concentration in leachates from samples B, C, D1 and E1 with and ICP-AES results
on 4 and 10 mm granularity.

B C D1 E1

4 mm 10 mm 4 mm 10 mm 4 mm 10 mm 4 mm 10 mm

Elements Conc. [mg/L]

Ba 0.24 0.12 1.08 0.97 0.46 0.44 0.81 0.94
Zn - - - - - - - -
Co - - - - - - - -
V 0.021 0.088 0.028 0.053 0.116 0.107 0.074 0.049
Cr 0.021 0.018 0.005 0.018 - - - -
Se 0.002 0.001 0.003 0.001 - - - -
Mo 0.0869 0.027 0.0541 0.039 0.04 0.021 0.1642 0.16
Fe - - 0.0271 0.024 - - - -
Mn - - - - - - - -

RSD 10%

To confirm the grain sizes effect on the leaching test, samples B, C, D1 and E1 were selected and
their 4 mm granularity specimens were sieved and partitioned in nine granularity fractions. Finally,
the leaching test procedure was performed on each fraction. Because of the high number of leachates,
for the elemental analysis, the fast and cheap Total reflection X-ray fluorescence (TXRF) technique was
used. We considered Ca, Zn, Sr, V and Ba, whom concentration can be reliably determined (comparison
among ICP-AES and TXRF data is reported in Supplementary Material Table S4). The TXRF results
of the nine fractions are reported in Figure 3 (all the data are reported in Supplementary Material
Table S5). For each element, the concentrations have been normalized to the maximum obtained in the
nine fractions. In samples B and C, the general trend confirms that the leaching of the elements arises
when the grain size decreases, except in the case of V and Zn for sample B, that have an opposite trend.
In sample D1 and E1, the monotone behavior is not clear. Both these results suggest a different phase
composition of the fractions, as supported by XRD analysis (see Supplementary Material Figure S2).
We suggest that the different percentage of the crystalline phases in the fractions can be determined
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by the differences in their mechanical behavior. Indeed, the grinding procedure affects differently
on the hard and fragile phases, leading to a different phase and elemental composition of particles
with different sizes. The different solubility of hard and fragile phases will reflect in the leachate
composition. This result may also be due to the common ion effect on the solubility of some elements,
which may determine their re-precipitation [36].
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