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Abstract. For a class of competition-diffusion nonlinear systems involving
the s-power of the Laplacian, s ∈ (0, 1), of the form

(−∆)sui = fi(ui)− βui

∑

j 6=i

aiju
2

j , i = 1, . . . , k,

we prove that L∞ boundedness implies C0,α boundedness for α > 0 sufficiently
small, uniformly as β → +∞. This extends to the case s 6= 1/2 part of the
results obtained by the authors in the previous paper [arXiv:1211.6087v1].

1. Introduction

In this paper we study the problem

(1.1)

{

(−∆)sui = fi,β(ui)− βui

∑

j 6=i aiju
2
j

ui ∈ Hs(RN ),

in dimension N ≥ 2, where aij = aji > 0, β is positive and large, and the non-local
operator

(−∆)su(x) = cN,s pv

∫

RN

u(x)− u(ξ)

|x− ξ|N+2s
dξ

denotes the s-power of the laplacian. We are mostly concerned with the asymptotic
behavior of the solutions to the previous system as the parameter β → +∞: as
we shall see, this entails spatial segregation for the limiting profiles. Our aim is to
prove uniform in β bounds in Hölder spaces, extending to the case s ∈ (0, 1) part of
the results that we already obtained for the case s = 1/2 in the recent paper [19],
to which we refer for further details.

Segregation-diffusion problems arise in different applicative contests, from bio-
logical models for competing species to the phase-segregation phenomenon in Bose-
Einstein condensation. Regarding the standard diffusion case (s = 1), a broad
literature is present. Among the others, we mention the papers [7, 8, 3, 2, 21, 1,
20, 9, 18, 10, 11], which are mostly concerned with regularity issues. Our study
is motivated by the recent interest that has developed around equations involving
fractional laplacians, as they model long-jump diffusion processes in population
dynamics, and they naturally appear in relativistic corrections of quantum field
theory.
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Exploiting the local realization of the fractional laplacian (−∆)s as a Dirichlet-
to-Neumann map (see, for instance, [6]), semilinear problems involving fractional
laplacians have been the object of a massive study. Accordingly, letting a := 1−2s ∈
(−1, 1), if we introduce the differential operator (on the (N +1)-dimensional space)

Lav := −div (|y|a∇v) ,

and define

∂a
νv := lim

y→0+
−ya∂yv,

we obtain that, up to normalization constants, the problem

(P )sβ

{

Lavi = 0 in B+
1

∂a
νvi = fi,β(vi)− βvi

∑

j 6=i aijv
2
j on ∂0B+

1

is a localized version of (1.1), with ui(x) = vi(x, 0). Here, as usual, we write

R
N+1
+ ∋ X = (x, y) and B+

r (x0, 0) := Br(x0, 0)∩{y > 0}, which boundary contains

the spherical part ∂+B+
r := ∂Br ∩ {y > 0} and the flat one ∂0B+

r := Br ∩ {y = 0}.
Well known properties of the Muckenhoupt A2-weights (see for instance [15]) allow
to provide a weak formulation of (P )sβ in the weighted space

H1;a(Ω) :=

{

v :

∫

Ω

ya
(
|v|2 + |∇v|2

)
dxdy < ∞

}

,

endowed with its natural Hilbert structure.
The main result we prove in this paper is the following.

Theorem 1.1 (Local uniform Hölder bounds). Let the functions fi,β be continuous
and uniformly bounded (w.r.t. β) on bounded sets. There exists α = α(N, s) > 0
such that, for every {vβ}β family of H1;a(B+

1 ) solutions to the problems (P )sβ,

‖vβ‖L∞(B+
1 ) ≤ M =⇒ ‖vβ‖C0,α

(

B+

1/2

) ≤ C,

where C = C(M,α). Furthermore, {vβ}β>0 is relatively compact in H1;a(B+
1/2) ∩

C0,α
(

B+
1/2

)

.

The above result allows to prove its natural global counterpart, either on the
whole of RN or on domains with suitable boundary conditions.

Theorem 1.2 (Global uniform Hölder bounds). Let fi,β and α be as in the previous
theorem, and let {uβ}β be a family of Hs(RN ) solutions to the problems

{

(−∆)sui = fi,β(ui)− βui

∑

j 6=i aiju
2
j in Ω

ui ≡ 0 in R
N \ Ω,

where Ω is a bounded domain of RN , with smooth boundary. Then

‖uβ‖L∞(Ω) ≤ M =⇒ ‖uβ‖C0,α(RN ) ≤ C(M,α).

Of course, a natural question regards the optimal regularity of such problems,
that is the maximal value of α for the above results to hold. In the case of the
standard diffusion (s = 1), the analogous issue is faced in [14], where uniform
Hölder bounds are shown for every α < 1. The proof of this result relies on a blow-
up procedure, leading to a contradiction with some Liouville type theorems; these
are based on the validity of some monotonicity formulae of Alt-Caffarelli-Friedman



and Almgren type. In [19], we consider the case s = 1/2. In the situation there,
a two-step strategy has been developed: indeed, though providing some uniform
Hölder bounds, the above blow-up procedure seems not enough to catch the optimal
regularity threshold. The main reason for this failure is the lack of an exact Alt-
Caffarelli-Friedman formula, so that the bounds, at a first stage, are obtained only
when α is smaller than some number νACF > 0, which is not explicit. Nonetheless,
this provides enough compactness to trigger the second step of the strategy, based
on the classification of the possible profiles obtained through a blow-down argument.
At the end of the procedure, uniform bounds for any α < 1/2 are shown. In this
perspective, Theorem 1.1 here corresponds to the first step (the blow-up procedure)
of the strategy just described, extended to the general case s ∈ (0, 1). The exponent
α mentioned there is subject to two main restrictions: as before, α is bounded
above by the minimal rate of growth for multi-phase segregation profiles νACF; on
the other hand, when s > 1/2, a new upper threshold must be taken into account,
which is related to the phenomenon of self-segregation.

The first restriction, as we mentioned, is related to the validity of an exact
Alt-Caffarelli-Friedmann formula, which in turn depends on an optimal partition
problem. More precisely, let S

N
+ := ∂+B+. For each open ω ⊂ S

N−1 := ∂SN+ we
define the first s-eigenvalue associated to ω as

(1.2) λs
1(ω) := inf

{∫

SN
+

ya|∇Tu|2 dσ
∫

SN
+

yau2 dσ
: u ∈ H1;a(SN+ ), u ≡ 0 on S

N−1 \ ω
}

,

where ∇Tu is the tangential gradient of u on S
N
+ . The minimal rate of growth for

multi-phase segregation profiles is given by the number

νACF : = inf

{
γ(λs

1(ω1)) + γ(λs
1(ω2))

2
: ω1 ∩ ω2 = ∅

}

,(1.3)

where, as usual,

γ(t) :=

√
(
N − 2s

2

)2

+ t− N − 2s

2

is defined in such a way that u achieves λs
1(ω) if and only if it is one signed, and its

γ(λs
1(ω))-homogeneous extension to R

N+1
+ is La-harmonic. As a peculiar difference

with respect to the case s = 1, we remark that the eigenfunctions achieving νACF

have not disjoint support on the whole S
N
+ , but only on its boundary S

N−1. In

particular, the degenerate partition (∅, SN−1) is admissible, and one can show that
it has the same level than the equatorial cut one:

γ(λs
1(∅)) + γ(λs

1(S
N−1))

2
=

γ(λs
1(S

N−1
+ )) + γ(λs

1(S
N−1
− ))

2
= s.

As a consequence, the above optimal partition problem does not enjoy the same
convexity properties than the one corresponding to s = 1, and we can only show
that

0 < νACF ≤ s.

Turning to self-segregation, the main point is that the fundamental solution

Γ(X) =
CN,s

|X |N−2s
,



turns out to be bounded near 0 and H1;a(B), whenever s > 1/2, N = 1. This
implies that, when s > 1/2, N ≥ 2, the function

v(x, y) = (x2
1 + y2)(2s−1)/2

is positive and La-harmonic for y > 0, ∂a
νv(x, 0) = 0 whenever v(x, 0) 6= 0, and

its trace on R
N has disconnected positivity regions. Moreover, such self-segregated

profile is globally Hölder continuous, of exponent α = 2s − 1 which is arbitrarily
small as s → (1/2)+. The phenomenon of self-segregation can be excluded in some
situations, for instance when s ≤ 1/2 (for capacitary reasons), or when suitable
minimality conditions are imposed (as in [4]). Nonetheless, in general it is hard to
tackle: for the case s = 1 it was excluded only recently, in [11].

To conclude we stress that, by exploiting the compactness provided by Theorem
1.1, the optimal regularity should arise from the classification of suitable blow-down
profiles. Also this point presents a number of new difficulties with respect to the
case s = 1/2, and it will be the object of a forthcoming paper.

2. Monotonicity formulae

This section is devoted to the introduction of some monotonicity formulae, which
will provide suitable estimates in order to prove some Liouville type results. Our
first aim is to prove monotonicity formulae of Alt-Caffarelli-Friedman type for the
one phase problem: these will imply non existence results for La-harmonic functions
under different assumptions on their growth at infinity and on the geometry of their
null set.

Secondly, we will concentrate on systems of degenerate elliptic equations, pro-
viding monotonicity formulae of Alt-Caffarelli-Friedman type with two phases, and
of Almgren type.

2.1. One phase Alt-Caffarelli-Friedman formulae. We first deal with La-
harmonic functions (on R

N+1
+ ) which vanish on the whole R

N .

Proposition 2.1. Let v ∈ H1;a(B+
R) be a continuous function such that

• v(x, 0) = 0 for x ∈ R
N ;

• for every non negative φ ∈ C∞
0 (BR),

∫

R
N+1
+

(Lav)vφdxdy +

∫

RN

(∂a
νv)vφdx =

∫

R
N+1
+

ya∇v · ∇(vφ) dxdy ≤ 0.

Then the function

Φ(r) :=
1

r4s

∫

B+
r

ya
|∇v|2

|X |N−2s
dxdy

is monotone non decreasing in r for r ∈ (0, R).

Remark 2.2. Since

(2.1)

∫

R
N+1

+

ya∇v · ∇(vφ) dxdy =

∫

R
N+1

+

ya
[

|∇v|2φ+
1

2
∇v2 · ∇φ

]

dxdy,

we have that if v satisfies the assumptions of Proposition 2.1 then also |v| does.



Definition 2.3. We define Γs
1 ∈ C1(RN+1

+ ;R+) as

Γs
1(X) :=

{
1

|X|N−2s |X | ≥ 1
N+2(1−s)

2 − N−2s
2 |X |2 |X | < 1.

We let also Γs
ε(X) = Γ1

s(X/ε)ε2s−N , so that Γs
ε ր Γs = |X |2s−N , a multiple of

the fundamental solution of the s-laplacian, as ε → 0.

Remark 2.4. We observe that each Γs
ε is radial and, in particular, ∂a

νΓ
s
ε = 0 on

R
N . Moreover, since N − 2s > 0, they are La-superharmonic on R

N+1
+ .

The proof of Proposition 2.1 is based on the following calculation. Incidentally,
we observe that also the following monotonicity results rest on a similar argument.

Lemma 2.5. Let v be as in Proposition 2.1. The function

(2.2) r 7→
∫

B+
r

ya
|∇v|2

|X |N−2s
dxdy

is well defined and bounded in any compact subset of (0, 1).

Proof. We proceed as follows: let ε > 0, δ > 0 and let ηδ ∈ C∞
0 (Br+δ) be a smooth,

radial cutoff function such that 0 ≤ ηδ ≤ 1 and ηδ = 1 on Br. Choosing φ = ηδΓ
s
ε in

the second assumption of Proposition 2.1, and recalling equation (2.1), we obtain

∫

R
N+1

+

ya
[

|∇v|2Γs
ε +

1

2
∇v2 · ∇Γs

ε

]

ηδdxdy ≤ −
∫

R
N+1

+

1

2
yaΓs

ε∇v2 · ∇ηδdxdy

=

r+δ∫

r




−η′δ(ρ)

∫

∂+B+
ρ

yaΓs
εv∇v · X

|X |dσ




dρ.

Passing to the limit as δ → 0 we obtain, for almost every r ∈ (0, 1),
∫

B+
r

ya
[

|∇v|2Γs
ε +

1

2
∇(v)2 · ∇Γs

ε

]

dxdy ≤
∫

∂+B+
r

yaΓs
εv∂νvdσ,

which, combined with the inequality LaΓ
s
ε ≥ 0 tested with v2/2 leads to

∫

B+
r

ya|∇v|2Γs
ε dxdy ≤

∫

∂+B+
r

ya
(

Γs
εv∂νv −

v2

2
∂νΓ

s
ε

)

dσ.

Letting ε → 0+, by monotone convergence we infer

(2.3)

∫

B+
r

ya
|∇v|2

|X |N−2s
dxdy ≤ 1

rN−2s

∫

∂+B+
r

yav
∂v

∂ν
dσ +

N − 2s

2rN+1−2s

∫

∂+B+
r

yav2 dσ

and this, in turns, proves the lemma.

Proof of Proposition 2.1. By Remark 2.1 we can assume, without loss of generality,
that v is (non trivial and) non negative, and that R = 1. We start observing that
the function Φ(r) is positive and absolutely continuous for r ∈ (0, 1). Therefore,



the proposition follows once we prove that Φ′(r) ≥ 0 for almost every r ∈ (0, 1). A
direct computation of the logarithmic derivative of Φ shows that

Φ′(r)

Φ(r)
= −4s

r
+

∫

∂+B+
r

ya|∇v|2/|X |N−2s dσ

∫

B+
r

ya|∇v|2/|X |N−2s dxdy
.

First we use the estimate (2.3) to bound from below the left hand side:

∫

∂+B+
r

ya|∇v|2/|X |N−2s dσ

∫

B+
r

ya|∇v|2/|X |N−2s dxdy
≥

∫

∂+B+
r

ya|∇v|2 dσ
∫

∂+B+
r

vya∂νv dσ + (N − 2s) r2
∫

∂+B+
r

yav2 dσ

=
1

r

∫

SN
+

ξaN+1|∇v(r)|2 dσ
∫

SN+

v(r)ξaN+1∂νv
(r) dσ + N−2s

2

∫

SN+

ξaN+1(v
(r))2 dσ

,

where v(r) : SN−1
+ → R is defined as v(r)(ξ) = v(rξ), so that y = rξN+1. We now

estimate the right hand side as follows: the numerator writes

∫

SN+

ξaN+1|∇v(r)|2 dσ =

∫

SN+

ξaN+1|∂νv(r)|2 dσ +

∫

SN+

ξaN+1|∇T v
(r)|2 dσ

=

∫

SN
+

ξaN+1|v(r)|2 dσ












∫

SN
+

ξaN+1|∂νv(r)|2 dσ
∫

SN
+

ξaN+1|v(r)|2 dσ
︸ ︷︷ ︸

t2

+

∫

SN
+

ξaN+1|∇T v
(r)|2 dσ

∫

SN
+

ξaN+1|v(r)|2 dσ
︸ ︷︷ ︸

R












.

where R stands for the Rayleigh quotient of v(r) on S
N
+ . On the other hand, by the

Cauchy-Schwarz inequality, the denominator may be estimated from above by

∫

SN
+

ξaN+1v
(r)∂νv

(r) dσ +
N − 2s

2

∫

SN
+

ξaN+1|v(r)|2 dσ

≤






∫

SN
+

ξaN+1|v(r)|2 dσ






1/2




∫

SN
+

ξaN+1∂νv
(r) dσ






1/2

+
N − 2s

2

∫

SN
+

ξaN+1|v(r)|2 dσ

≤
∫

SN
+

ξaN+1|v(r)|2 dσ

















∫

SN
+

ξaN+1|∂νv(r)|2 dσ
∫

SN+

ξaN+1|v(r)|2 dσ







1/2

︸ ︷︷ ︸

t

+
N − 2s

2











.



As a consequence

(2.4)

∫

∂+B+
r

ya|∇v|2/|X |N−2s dσ

∫

B+
r

ya|∇v|2/|X |N−2s dxdy
≥ 1

r
min
t∈R+

R+ t2

t+ N−2s
2

.

A simple computation shows that the minimum is achieved when

t = γ(R) =

√
(
N − 2s

2

)2

+R− N − 2s

2
,

and it is equal to 2γ(R). Recalling the definition of λs
1(∅) (equation (1.2)) we obtain

Φ′(r)

Φ(r)
+

4s

r
≥ 2

r
γ(λs

1(∅))

and the proposition follows observing that λs
1(∅) is achieved by v(x, y) = y2s, in

such a way that

γ (λs
1 (∅)) = 2s.

Now we turn to functions which vanish only on a half space.

Proposition 2.6. Let v ∈ H1;a(B+
R) be a continuous function such that

• v(x, 0) = 0 for x1 ≤ 0;
• for every non negative φ ∈ C∞

0 (BR),
∫

R
N+1
+

(Lav)vφdxdy +

∫

RN

(∂a
νv)vφdx =

∫

R
N+1
+

ya∇v · ∇(vφ) dxdy ≤ 0.

Then the function

Φ(r) :=
1

r2s

∫

B+
r

ya
|∇v|2

|X |N−2s
dxdy

is monotone non decreasing in r for r ∈ (0, R).

Proof. The proof follows the line of the one of Proposition 2.1, recalling that

v(x, y) =

(√

x2
1 + y2 + x1

2

)s

achieves γ(λs
1(S

N−1 ∩ {x1 > 0})) = s (see, for instance, [5, page 442]). �

In the previous propositions, we considered functions vanishing on the whole
R

N , or on a half-space. Now, in great contrast with the case s ≤ 1/2, it is known
that, if s > 1/2, then also (N − 1)-dimensional subsets may have positive capacity.
This motivates the following formula, which is the analogous of the previous ones,
for functions which vanish on subspaces of RN of codimension 1.

Proposition 2.7. Let s > 1/2 and let v ∈ H1;a(B+
R ) be a continuous function such

that

• v(x, 0) = 0 for x1 = 0;



• for every non negative φ ∈ C∞
0 (BR),

∫

R
N+1

+

(Lav)vφdxdy +

∫

RN

(∂a
νv)vφdx =

∫

R
N+1

+

ya∇v · ∇(vφ) dxdy ≤ 0.

Then the function

Φ(r) :=
1

r4s−2

∫

B+
r

ya
|∇v|2

|X |N−2s
dxdy

is monotone non decreasing in r for r ∈ (0, R).

Proof. Let ω̄ = S
N−1 \ {x1 = 0}, and let us consider the function

v(x, y) = |(x1, 0, y)|2s−1,

that is the fundamental solution in dimension 1, extended in a constant way to the
other directions. Then v is (2s − 1)-homogeneous, positive and La-harmonic for
y > 0. We deduce that its restriction to ∂+B+

1 = S
N
+ is an eigenfunction associated

to λs
1(ω̄), so that

γ(λs
1(ω̄)) = 2s− 1.

As a consequence, also in this case the proposition follows by reasoning as in the
proof of Proposition 2.1.

2.2. Two phases Alt-Caffarelli-Friedman monotonicity formulae. Now we
turn to the multi-component ACF formulae. We start by proving that the constant
νACF defined in equation (1.3) is not 0.

Lemma 2.8. For any N ≥ 2, 0 < νACF ≤ s.

Proof. The bound from above easily follows by comparing with the value corre-
sponding to the partition (SN−1, ∅): indeed, it holds λs

1(S
N−1) = 0, achieved by

u(x, y) ≡ 1, and λs
1(∅) = 2sN , achieved by u(x, y) = y1−a. In order to prove the

estimate from below, one can argue by contradiction, as in the proof of [19, Lemma
2.5], exploiting the compactness both of the embedding H1;a(SN+ ) →֒ L2;a(SN+ ) and

of the trace operator from H1;a(SN+ ) to L2(SN−1). �

We will prove two multi-component formulae, the first regarding entire profiles
which are segregated on R

N , the second regarding profiles which coexist on R
N .

Proposition 2.9. Let v1, v2 ∈ H1;a(B+
R (x0, 0)) be continuous functions such that

• v1v2|{y=0} = 0, vi(x0, 0) = 0;
• for every non negative φ ∈ C∞

0 (BR(x0, 0)),
∫

R
N+1
+

(Lavi)viφdxdy +

∫

RN

(∂a
νvi)viφdx =

∫

R
N+1
+

ya∇vi · ∇(viφ) dxdy ≤ 0.

Then the function

Φ(r) :=

2∏

i=1

1

r2νACF

∫

B+
r (x0,0)

ya
|∇vi|2
|X |N−2s

dxdy

is monotone non decreasing in r for r ∈ (0, R).



Proof. Applying the same estimates developed for the proof of Proposition 2.1, it
is easy to see that the proposition is equivalent to (summing equation (2.4) for the
two functions)

Φ′(r) ≥ 0 ⇔
2∑

i=1

∫

∂+B+
r

ya |∇vi|
2

|X|N−1 dσ

∫

B+
r

ya |∇vi|
2

|X|N−1 dxdy

≥ 2

r
inf

(ω1,ω2)∈P2

2∑

i=1

γ (λs
1(ωi)) =

4

r
νACF

In particular, the last inequality follows by the definition of νACF.

Proposition 2.10. Let v1, v2 ∈ H1;a
loc

(

R
N+1
+

)

be continuous functions such that,

for every non negative φ ∈ C∞
0

(

R
N+1
+

)

and j 6= i,

∫

R
N+1

+

(Lavi)viφdxdy +

∫

RN

(∂a
νvi + aijviv

2
j )viφdx

=

∫

R
N+1

+

ya∇vi · ∇(viφ) dxdy +

∫

RN

aijv
2
i v

2
jφdx ≤ 0.

For any ν′ ∈ (0, νACF) there exists r̄ > 1 such that the function

Φ(r) :=

2∏

i=1

Φi(r)

is monotone non decreasing in r for r ∈ (r̄,∞), where

Φi(r) :=
1

r2ν′






∫

B+
r

ya|∇vi|2Γ1 dxdy +

∫

∂0B+
r

aijv
2
i v

2
jΓ1 dx




 , for j 6= i.

The proof of Proposition 2.10 is based on a contradiction argument, and follows
the lines of the one of Proposition 2.9. We do not report the details, referring the
reader to [14, Lemma 2.5] and [19, Theorem 2.13], where similar computations were
developed for the case s = 1 and s = 1/2, respectively.

2.3. Almgren type monotonicity formula. To conclude this section on mono-
tonicity formulae, we focus our attention on an Almgren quotient defined for a
suitable class a functions: these will come into play as limits of a blow up sequence.
First, for any

v ∈ H1;a
loc

(

R
N+1
+

)

:= {v : ∀D ⊂ R
N+1 open and bounded, v|D+ ∈ H1;a(D+)},

v = (v1, . . . , vk) continuous, let use define

E(x0, r) :=
1

rN−2s

∫

B+
r (x0,0)

ya
∑

i

|∇vi|2 dxdy,

H(x0, r) :=
1

rN+1−2s

∫

∂+B+
r (x0,0)

ya
∑

i

v2i dσ,



where x0 ∈ R
N and r > 0. By assumption, both E and H are locally absolutely

continuous functions on (0,+∞), that is, both E′ and H ′ are L1
loc(0,∞) (here,

′ = d/dr). Let us also consider the function (Almgren frequency function)

N(x0, r) :=
E(x0, r)

H(x0, r)
.

We have the following result, which proof we omit since it follows with minor
changes from the one of Theorem 3.3 in [19].

Proposition 2.11. Let v ∈ H1;a
loc

(

R
N+1
+ ;Rk

)

, v = (v1, . . . , vk) continuous, and

let us assume that:

(1) vivj |y=0 = 0 for every j 6= i;
(2) for every i,

(2.5)

{

Lavi = 0 in R
N+1
+

vi∂
a
νvi = 0 on R

N × {0};

(3) for any x0 ∈ R
N and a.e. r > 0, the following (Pohozaev type) identity

holds

(2s−N)

∫

B+
r

ya
∑

i

|∇vi|2 dxdy + r

∫

∂+B+
r

ya
∑

i

|∇vi|2 dσ = 2r

∫

∂+B+
r

ya
∑

i

|∂νvi|2 dσ.

Then for every x0 ∈ R
N the Almgren frequency function N(x0, r) is well defined on

(0,∞), absolutely continuous, non decreasing, and it satisfies the identity

(2.6)
d

dr
logH(r) =

2N(r)

r
.

Moreover, if N(r) ≡ γ on an open interval, then N ≡ γ for every r, and v is a
homogeneous function of degree γ.

Of the many consequences that the validity of an Almgren monotonicity formula
carries, at this stage we are mostly interested in the following, which states a rigidity
property implied by Hölder continuity.

Corollary 2.12. If v satisfies the assumptions of Proposition 2.11 and is globally
Hölder continuous of exponent γ on R

N+1
+ , then it is homogeneous of degree γ with

respect to any of its (possible) zeroes, and thus

Z := {x ∈ R
N : v(x, 0) = 0} is an affine subspace of RN .

Proof. The proof relies on the fact that the Almgren centered at any point of Z has
to be constant and equal to γ. Indeed letting x0 ∈ Z, we argue by contradiction
and suppose that N(x0, R) > γ for some R. By monotonicity of N we have

d

dr
logH(r) ≥ 2

r
N(x0, R) ∀r ≥ R

and, integrating in (R, r), we find

Cr2N(x0,R) ≤ H(r) ≤ Cr2γ ,

a contradiction for r large enough. The same reasoning provides a contradiction in
the case N(x0, R) < γ and r ≤ R.



3. Liouville type results

Relying on the previous monotonicity formulae, in this section we will prove
some Liouville type theorems for solution to either equations or systems involving
the operator La. As a first result, we have the following.

Proposition 3.1. Let v ∈ H1;a
loc

(

R
N+1
+

)

be continuous and satisfy

{

Lav = 0 in R
N+1
+

v(x, 0) = 0 on R
N ,

and let us suppose that for some γ ∈ [0, 2s), C > 0 it holds

|v(X)| ≤ C(1 + |X |γ)

for every X. Then v is identically zero.

Proof. We remark that v satisfies the assumptions of Proposition 2.1 for any R. For
r > 0 large enough, we choose η non negative, smooth and radial cut-off function
supported in B+

2r with η = 1 in B+
r such that

∫

R
N+1

+

ya|∇η| ≤ CrN+1−2s,

∫

R
N+1

+

|Laη| ≤ CrN−2s

(for instance, we can take η as a smooth approximation of the function 1
r (2r− |X |)

in B2r \ Br). Moreover, let Γs
1 be defined as in Definition 2.3 (in particular, it is

radial and superharmonic). Testing the equation for v with Γs
1vη we obtain

∫

B+
2r

ya|∇v|2Γs
1ηdxdy ≤

∫

B+
2r\B

+
r

1

2
v2 [−LaηΓ

s
1 + 2ya∇η · ∇Γs

1] dxdy,

where we used that η is constant in B+
r . Since Γs

1(X) = |X |2s−N outside B1, and
|v(X)| ≤ Crγ outside a suitable Br̄, using the notations of Proposition 2.1 we infer

Φ(r) =
1

r4s






∫

B+
r

ya|∇v|2Γs
1 dxdy




 ≤ 1

r4s
· Cr2γ ,

with C independent of r > r̄. Due to the monotonicity of Φ, we then find

0 ≤ Φ(r̄) ≤ Cr2(γ−2s).

for every r > r̄ sufficiently large. This forces v to be constant.

The previous proposition allows to prove an analogous result of the classical
Liouville Theorem, which holds for La-harmonic functions.

Proposition 3.2. Let v be an entire La-harmonic function defined on R
N+1. If

there exists γ < 1 such that

|v(X)| ≤ C (1 + |X |γ) ,

then v|y=0 is constant. Moreover, if γ < min(2s, 1), then v is constant.



Proof. It is well known (see [5]) that La-harmonic functions enjoy the mean value
property (C > 0)

v(x, 0) =
C

rN+a

∫

∂Br(x,0)

|y|av dσ

and, equivalently

v(x, 0) =
C

RN+1+a

∫

BR(x,0)

|y|av dσ.

It follows, by the growth condition, that

|v(x′, 0)− v(x′′, 0)| ≤ C

RN+1+a

∫

BR(x′,0)△BR(x′′,0)

ya|v(x, y)| dxdy

≤ C

RN+1+a

∫

BR(x′,0)△BR(x′′,0)

ya|X |γ dxdy ≤ CRγ−1

and the first conclusion follows since γ < 1. Let us now assume γ < min(2s, 1):
since v|y=0 is constant, we can assume v|y=0 ≡ 0 and apply Proposition 3.1.

We can obtain the analogous of the classical Liouville Theorem for s-harmonic
functions by applying the previous result to the even reflection through {y = 0} of
their La-harmonic extensions.

Corollary 3.3. Let v ∈ H1;a
loc

(

R
N+1
+

)

be continuous and satisfy

{

Lav = 0 in R
N+1
+

∂a
νv(x, 0) = 0 on R

N ,

and let us suppose that for some γ < min(2s, 1), C > 0 it holds

|v(X)| ≤ C(1 + |X |γ)
for every X. Then v is constant.

By the way, a stronger result in the direction of the above corollary is contained
in [5, Lemma 2.7].

In the same spirit of Proposition 3.1, we provide a result concerning La-harmonic
functions which vanish on a half space of RN .

Proposition 3.4. Let v ∈ H1;a
loc

(

R
N+1
+

)

satisfy the assumptions of Proposition

2.6. Let us suppose that for some γ ∈ [0, s), C > 0 it holds
|v(X)| ≤ C(1 + |X |γ )

for every X. Then v is identically zero.

Proof. Again, v as above fulfills the assumptions of Proposition 2.6. Now, assuming 
that v is not constant, we can argue as in the proof of Proposition 3.9 obtaining a 
contradiction. 

We proceed with a lemma regarding the decay of subsolutions to a linear equation 
involving La.



Lemma 3.5. Let M > 0 and δ > 0 be fixed and let h ∈ L∞(∂0B+
1 ) with ‖h‖L∞ ≤ δ.

Any v ∈ H1;a(B+
1 ) non negative solution to

{

Lav ≤ 0 in B+
1

∂a
νv ≤ −Mv + h on ∂0B+

1

verifies

sup
∂0B+

1/2

≤ 1 + δ

M
sup

∂+B+
1

v.

The proof of Lemma 3.5 follows by a comparison argument. In order to construct
an appropriate supersolution, we need a technical lemma. Let f ∈ AC(R)∩C∞(R)
be defined as

f(x) = C

∫ x

−∞

1

(1 + t2)1−a/2
dt,

where C is such that f(+∞) = 1.

Lemma 3.6. There exists c > 0 such that

(−∆)sf(x) ≥ −cf(x)

for any x < 0.

Proof. The function f under consideration is increasing, smooth and such that
there exist c, C > 0 with

lim
|t|→∞

f ′(t)|t|2−a = C > 0 and lim
|t|→∞

f ′′(t)|t|3−a = c.

The s-laplacian of the function f is well-defined. Thanks to the extension repre-
sentation of the fractional laplacian, we can consider

v(x, y) =

∫

R

Pa(ξ, y)f(x − ξ)dξ =

∫

R

y1−a f(x− ξ)

(ξ2 + y2)1−a/2
dξ

= {t = ξ/y} =

∫

R

f(x− ty)

(1 + t2)1−a/2
dt

so that

∂a
νv(x, 0) = lim

y→0+
−ya

∂

∂y

∫
f(x− ty)

(1 + t2)1−a/2
dt = lim

y→0+

∫

yat
f ′(x− ty)

(1 + t2)1−a/2
dt

= {r = yt} = lim
y→0+

∫
r

(y2 + r2)1−a/2
f ′(x− r)dr

= pv

∫ |r|a
r

f ′(x− r)dr = pv

∫ |x− r|a
x− r

f ′(r)dr.

Let us observe that, due to the decay properties of f ′ at infinity, the last principal
value acts only around the singularity x = r, that is

(−∆)sf(x) = lim
ε→0+

∫

R\(r−ε,r+ε)

|x− r|a
x− r

f ′(r)dr.

We aim at proving that there exists a positive c > 0 such that the estimate

(−∆)sf(x) ≥ −cf(x)



holds for every x ≤ 0. As a first step, we are going to estimate the asymptotic
behavior of the right hand side as x → −∞. To this end, letting K > 0 be a fixed
number, we write

(3.1) (−∆)sf(x) = pv

∫ −K

−∞

|x− r|a
x− r

f ′(r)dr +

∫ ∞

−K

|x− r|a
x− r

f ′(r)dr

(this decomposition is possible thanks to the prescribed decay of f ′). We estimate
the two contributions separately. First (a < 1)

∫ ∞

−K

|x− r|a
x− r

f ′(r)dr ≥ −(−K − x)a−1

∫ ∞

−K

f ′(r)dr ≥ −C|x|a−1.

We further decompose the second integral in (3.1), to find

pv

∫ −K

−∞

|x− r|a
x− r

f ′(r)dr = {t = r/|x|} = −|x|a pv
∫ −K/|x|

−∞

|1 + t|a
1 + t

f ′(t|x|)dt

= −|x|a
[
∫ −3/2

−∞

. . . dt+ pv

∫ −1/2

−3/2

. . . dt+

∫ −K/|x|

−1/2

. . . dt

]

In the first part we use the estimate

f ′(t|x|) ≥ c|t|a−2|x|a−2

in order to obtain

−|x|a
∫ −3/2

−∞

|1 + t|a
1 + t

f ′(t|x|)dt ≥ −c|x|2a−2

∫ −3/2

−∞

|1 + t|a
1 + t

|t|a−2dt ≥ −C|x|2a−2.

In the principal value we write

−|x|a pv
∫ −1/2

−3/2

|1 + t|a
1 + t

f ′(t|x|)dt = −|x|2a−2 pv

∫ −1/2

−3/2

|1 + t|a
1 + t

f ′(t|x|)|x|2−adt.

Since

f ′(t|x|)|x|2−a → C|t|a−2 in C1

(

−3

2
,−1

2

)

as |x| → ∞

and

pv

∫ −1/2

−3/2

|1 + t|a
1 + t

|t|a−2dt = {r = −1− t} = pv

∫ 1/2

−1/2

−|r|a
r

(r + 1)a−2dr > 0,

we obtain the lower bound

−|x|a pv
∫ −1/2

−3/2

|1 + t|a
1 + t

f ′(t|x|)dt ≥ −C|x|2a−2.

To estimate the last integral we use

f ′(t|x|) ≤ C|t|a−2|x|a−2

to obtain

− |x|a
∫ −K/|x|

−1/2

|1 + t|a
1 + t

f ′(t|x|)dt ≥ −C|x|2a−2

∫ −K/|x|

−1/2

|1 + t|a
1 + t

|t|a−2dt

≥ −C|x|2a−2

(

1 +
1

|x|a−1

)

≥ −C|x|a−1.



As a consequence

(−∆)sf(x) ≥ −C
(
|x|a−1 + |x|2a−2

)
≥ −C|x|a−1.

On the other hand, by a direct estimate we have (x ≪ 0)

f(x) ≤ C
1

|x|1−a

which immediately yields that for x ≪ 0 there exists c > 0 such that

(−∆)sf(x) ≥ −cf(x).

Due to the positivity and regularity of f , this estimates extends to every x ≤ 0. 

We can conclude with the proof of Lemma 3.5.

Proof of Lemma 3.5. Let us first consider, for M > 0, the scaling x 7→ M1/2sx and
let us introduce the function fM (x) := f(M1/2sx). It follows that

(−∆)sfM (x) = M2s/2s [(−∆)sf ] (M1/2sx) ≥ −cMfM (x)

It is then clear that if we let

gM (x) := fM (t− 1) + fM (−t− 1)

then for any M > 0 it holds






(−∆)sgM (x) ≥ −cMgM(x) in (−1, 1)

gM (x) ≥ 1
2 in R \ (−1, 1)

gM (x) ≤ CM−1 in
(
− 1

2 ,
1
2

)
.

The proof follows by a comparison argument between v and the supersolution

wδ := δ
1

M
+

∫

R

Pa(ξ, y)gM (x− ξ)dξ.

The previous estimate allows to prove the following.

Proposition 3.7. Let v satisfy
{

Lav = 0 in R
N+1
+

∂a
νv = −λv on R

N

for some λ > 0 and let us suppose that for some γ < min(1, 2s), C > 0 it holds

|v(X)| ≤ C(1 + |X |γ)
for every X. Then v is constant.

Proof. Let either z = v+ or z = v−. In both cases,
{

Laz ≤ 0, in R
N+1
+

∂a
ν z ≤ −λz, on R

N .

By translating and scaling, Lemma 3.5 implies that

z(x0, 0) ≤ sup
∂0Br/2(x0,0)

z ≤ 1

λr
sup

∂+Br(x0,0)

z ≤ C
1 + rγ

r
.

Letting r → ∞ the proposition follows.



Proposition 3.8. Let v satisfy
{

Lav = 0 in R
N+1
+

∂a
νv = λ on R

N

for some λ ∈ R and let us suppose that for some γ < min(1, 2s), C > 0 it holds

|v(X)| ≤ C(1 + |X |γ)
for every X. Then v is constant.

Proof. For h ∈ R
N , let w(x, y) := v(x+ h, y)− v(x, y). Then w solves

{

Law = 0 in R
N+1
+

∂a
νw = 0 on R

N

and, as usual, we can reflect and use the growth condition to infer that w has to
be constant, that is v(x + h, y) = ch + v(x, y). Deriving the previous expression in
xi, we find that

v(x, y) =

k∑

i=1

ci(y)xi + c0(y).

Using again the growth condition, we see that ci ≡ 0 for i = 1, . . . , k, while c0 is 
constant. We observe that, consequently, λ = 0. 

Proposition 3.9. Let v ∈ H1;a
loc

(

R
N+1
+

)

be continuous and satisfy

{

Lavi = 0 in R
N+1
+

∂a
νvi = −vi

∑

j 6=i aijv
2
j on R

N ,

and let νACF be defined according to (1.3). If for some γ ∈ (0, νACF) there exists 
C such that

|v(X)| ≤ C (1 + |X |γ ) ,
for every X, then k − 1 components of v annihilate and the last is constant. 

Proof. We only sketch the proof, referring to [19, Proposition 4.1] for a detailed
proof in the case s = 1/2. To start with, we observe that any pair of components 
of v satisfy the assumptions of Proposition 2.10; as a consequence, if v had two
nontrivial components, then one could argue as in the proof of Proposition 3.1 in
order to obtain a contradiction. Once we know that all but one component are 
trivial, we can conclude by applying Corollary 3.3 to the last one. 

Proposition 3.10. Let v satisfy the assumptions of Proposition 2.11 and γ ∈ 
(0, νACF).

(1) If there exists C such that

|v(X)| ≤ C (1 + |X |γ) ,
for every X, then k − 1 components of v annihilate;

(2) if furthermore v ∈ C0,γ
(

R
N+1
+

)

and

γ <







νACF 0 < s ≤ 1

2

min(νACF, 2s− 1)
1

2
< s < 1,



then the only possibly nontrivial component is constant.

Proof. To prove 1., we can reason as in the proof of Proposition 3.9, using Proposi-
tion 2.9 instead of Proposition 2.10. Turning to 2., let v denote the only non trivial
component. If v(x, 0) 6= 0 for every x, then we deduce that ∂a

νv(x, 0) ≡ 0, and we
can conclude by using Corollary 3.3. On the other hand, let

Z = {x ∈ R
N : v(x, 0) = 0} 6= ∅.

By Corollary 2.12, we have that v is γ-homogeneous about any point of Z, which
is then an affine subspace of RN , and that v solves

(3.2)







Lav = 0 in R
N+1
+

v = 0 on Z
∂a
νv = 0 on R

N \ Z.

Now, if Z = R
N , then Proposition 3.1 applies. On the other hand, if dimZ ≤

N − 2s, we obtain that Z has null La-capacity (this can be seen directly for the
fractional laplacian in R

N , see for instance [13, Theorem 3.14]), and the conclusion
follows by Proposition 3.2. Finally, we are left to deal with the case

dimZ = N − 1 and
1

2
< s < 1.

In this situation, the previous capacitary reasoning fails, see Remark 3.11 below.
Nonetheless, assuming without loss of generality that Z = {x ∈ R

N : x1 = 0}, we
have that v satisfies the assumptions of Proposition 2.7. As a consequence, one can
reason once again as in the proof of Proposition 3.1, obtaining a contradiction with
the fact that γ < 2s− 1.

Remark 3.11. As we already mentioned in the introduction, in great contrast
with the case s ≤ 1/2, if s > 1/2 the fundamental solution of the s-laplacian
in R is bounded in a neighborhood of x = 0. As a consequence, the function
Γ(x, y) = |(x1, y)|2s−1 solves (3.2). This implies that, for s > 1/2, the sets of
codimension 1 in R

N have positive s-capacity.

4. C0,α uniform bounds

In this section we turn to the proof of the regularity results we stated in the
introduction. In particular we will prove Theorem 1.1. We recall that, here and
in the following, the functions fi,β appearing in problem (P )sβ are assumed to be
continuous and uniformly bounded, with respect to β, on bounded sets. We start
by recalling the regularity results which hold for β bounded. For easier notation,
we write B+ = B+

1 .

Lemma 4.1. There exists α∗ ∈ (0, 1) such that, for every α ∈ (0, α∗), m̄ > 0 and
β̄ > 0, there exists a constant C = C(α, m̄, β̄) such that

‖vβ‖C0,α
(

B+

1/2

) ≤ C,

for every vβ solution of problem (P )β on B+, satisfying

β ≤ β̄ and ‖vβ‖L∞(B+) ≤ m̄.



Proof. The above regularity issue can be rephrased for a general h ∈ H1;a(B+)
with 





Lah = 0 in B+

h = f ∈ L∞ on ∂+B+

∂a
νh = g ∈ L∞ on ∂0B+.

Denoting

f̃(x, y) := f(x, |y|) and g̃(x) =

{

g(x) x ∈ ∂0B+

0 x ∈ R
N \ ∂0B+,

we can write h = h1 + h2, where
{

Lah1 = 0 in R
N+1
+

∂a
νh1 = g̃ on R

N
and

{

Lah2 = 0 in B

h2 = f̃ − h1 on ∂B.

But then the regularity of h1 (depending on ‖g̃‖L∞) follows by [17, Proposition 2.9], 
while the one of h2 is proved in [12] (see also [5, Section 2]). 

From now on, without loss of generality, we will fix α∗ > 0 in such a way that 
Lemma 4.1 holds, and furthermore

α∗ ≤







νACF 0 < s ≤ 1

2

min(νACF, 2s− 1)
1

2
< s < 1.

We will obtain Theorem 1.1 for any fixed α ∈ (0, α∗). Following the outline of
[19, Section 6], we proceed by contradiction and develop a blow up analysis. Let η
denote a smooth function such that







η(X) = 1 0 ≤ |X | ≤ 1
2

0 < η(X) ≤ 1 1
2 ≤ |X | ≤ 1

η(X) = 0 |X | = 1

(in particular, η vanishes on ∂+B+ but is strictly positive ∂0B+). We will show
that

‖ηv‖
C0,α(B+) ≤ C,

and the theorem will follow by the definition of η. Let us assume by contradiction
the existence of sequences {βn}n∈N, {vn}n∈N, solutions to (P )sβn

, such that

Ln := max
i=1,...,k

max
X′ 6=X′′∈B+

|(ηvi,n)(X ′)− (ηvi,n)(X
′′)|

|X ′ −X ′′|α → ∞.

By Lemma 4.1 (and the regularity of η) we infer that βn → ∞. Moreover, up to a
relabeling, we may assume that Ln is achieved by i = 1 and by two sequences of
points (X ′

n, X
′′
n) ∈ B+ × B+. The first properties of such sequences have already

been obtained in [19].

Lemma 4.2 ([19], Lemma 6.4). Let X ′
n 6= X ′′

n and rn := |X ′
n −X ′′

n | satisfy

Ln =
|(ηv1,n)(X ′

n)− (ηv1,n)(X
′′
n)|

rαn
.

Then, as n → ∞,

(1) rn → 0;



(2)
dist(X ′

n, ∂
+B+)

rn
→ ∞,

dist(X ′′
n , ∂

+B+)

rn
→ ∞.

Our analysis is based on two different blow up sequences, one having uniformly
bounded Hölder quotient, the other satisfying a suitable problem. Let {X̂n}n∈N ⊂
B+, |X̂n| < 1, be a sequence of points, to be chosen later. We write

τnB
+ :=

B+ − X̂n

rn
,

remarking that τnB
+ is a hemisphere, not necessarily centered on the hyperplane

{y = 0}. We introduce the sequences

wi,n(X) := η(X̂n)
vi,n(X̂n + rnX)

Lnrαn
and w̄i,n(X) :=

(ηvi,n)(X̂n + rnX)

Lnrαn
,

where X ∈ τnB
+. With this choice, on one hand it follows immediately that, for

every i and X ′ 6= X ′′ ∈ τnB+,

|w̄i,n(X
′)− w̄i,n(X

′′)|
|X ′ −X ′′|α ≤

∣
∣
∣
∣
∣
w̄1,n

(

X ′
n − X̂n

rn

)

− w̄1,n

(

X ′′
n − X̂n

rn

)∣
∣
∣
∣
∣
= 1,

in such a way that the functions {w̄n}n∈N share an uniform bound on Hölder
seminorm, and at least their first components are not constant. On the other hand,
since η(X̂n) > 0, each wn solves

(4.1)

{

Lτn
a wi,n = 0 in τnB

+

∂a,τn
ν wi,n = fi,n(wi,n)−Mnwi,n

∑

j 6=i aijw
2
j,n on τn∂

0B+,

where the new operators write (X̂n = (x̂n, ŷn))

Lτn
a = −div

((
ŷnr

−1
n + y

)a ∇
)

, ∂a,τn
ν = lim

y→(−ŷnr
−1
n )+

−
(
ŷnr

−1
n + y

)a
∂y,

and fi,n(t) = η(X̂n)r
2s−α
n L−1

n fi,βn(Lnr
α
n t/η(X̂n)), Mn = βnL

2
nr

2α+2s
n /η(X̂n)

2.

Remark 4.3. The uniform bound of ‖vβ‖L∞ imply that

sup
τn∂0B+

|fi,n(wi,n)| = η(X̂n)r
2s−α
n L−1

n sup
∂0B+

|fi,βn (vi,n) | ≤ C(m̄)r2s−α
n L−1

n → 0

as n → ∞.

A crucial property is that the two blow up sequences defined above have asymp-
totically equivalent behavior, as enlighten in the following lemma.

Lemma 4.4 ([19], Lemma 6.6). Let K ⊂ R
N+1 be compact. Then

(1) max
X∈K∩τnB+

|wn(X)− w̄n(X)| → 0;

(2) there exists C, only depending on K, such that |wn(X)−wn(0)| ≤ C, for
every x ∈ K.

Now we show that the sequences (X ′
n, X

′′
n) accumulates towards {y = 0}.

Lemma 4.5. There exists C > 0 such that, for every n sufficiently large,

dist(X ′
n, ∂

0B+) + dist(X ′′
n , ∂

0B+)

rn
≤ C.



Proof. We argue by contradiction. Taking into account the second part of Lemma
4.2, this forces

dist(X ′
n, ∂B

+) + dist(X ′′
n , ∂B

+)

rn
→ ∞.

In the definition of wn, w̄n we choose X̂n = X ′
n, so that τnB

+ → R
N+1 and

ŷ−1
n rn → 0. Let K be any fixed compact set. Then, by definition, K is contained in
the half sphere τnB

+, for every n sufficiently large. By defining Wn = wn−wn(0),
W̄n = w̄n−w̄n(0), we obtain that {W̄n}n∈N is a sequence of functions which share
the same C0,α-seminorm and are uniformly bounded in K, since W̄n(0) = 0. By
the Ascoli-Arzelà Theorem, there exists a function W ∈ C(K) which, up to a sub-
sequence, is the uniform limit of {W̄n}n∈N: taking a countable compact exhaustion
of RN+1 we find that W̄n → W uniformly in every compact set. Moreover, for any
pair X , Y , we have that X,Y ∈ τnB

+ for every n sufficiently large, and so

|W̄n(X)− W̄n(Y )| ≤
√
k|X − Y |α.

Passing to the limit in n the previous expression, we obtain W ∈ C0,α(RN+1). By
Lemma 4.4, we also find that Wn → W uniformly on compact sets. We want to
show that W is harmonic. To this purpose, let ϕ ∈ C∞

0 (RN+1) be a smooth test
function, and let n̄ be sufficiently large so that suppϕ ⊂ τnB

+ for all n ≥ n̄. For a
fixed i ∈ {1, . . . , k}, we test the equation Lτn

a wi,n = 0 by ϕ to find
∫

RN+1

−div
((

1 + yrnŷ
−1
n

)a ∇ϕ
)

wi,n dxdy = 0.

Passing to the uniform limit and observing that (1+ yrnŷ
−1
n )a → 1 in C∞(suppϕ),

we obtain at once that W is indeed harmonic. We will obtain a contradiction with
the classical Liouville Theorem once we show that W is not constant. To this aim
we observe that (X ′

n − X̂n)/rn = 0 and, up to a subsequence,

X ′′
n − X̂n

rn
=

X ′′
n −X ′

n

|X ′′
n −X ′

n|
→ X ′′ ∈ ∂B1.

Therefore, by equicontinuity and uniform convergence,
∣
∣
∣
∣
∣
W̄1,n

(

X ′
n − X̂n

rn

)

− W̄1,n

(

X ′′
n − X̂n

rn

)∣
∣
∣
∣
∣
= 1 =⇒ |W1(0) − W1(X

′′)| = 1. 

After the result above, we are in a position to choose X̂n in the definition of wn,
w̄n as

X̂n := (x′
n, 0),

where as usual X ′
n = (x′

n, y
′
n). With this choice, it is immediate to see that

Lτn
a = La, ∂a,τn

ν = ∂a
ν , τnB

+ → Ω∞ = R
N+1
+ .

Moreover, by Lemma 4.5, we have that X ′
n, X

′′
n ∈ B+

C , for some C not depending on
n. This will imply that any possible blow up limit can not be constant. Now one can
reason as in [19, Section 6] in order to prove that the blow up sequences converge.
In doing this, a first crucial step consists in proving that wn(0) is bounded: to this
aim, it is useful to notice that the decay rate for subsolutions which we obtained in
Lemma 3.5 does not depend on s and completely agrees with the one found in [19,
Lemma 4.5]. Consequently, the uniform bound on the Hölder seminorm allows to
prove the following result.



Lemma 4.6 ([19], Lemma 6.13). Under the previous blow up setting, there exists

w ∈ (H1;a
loc ∩ C0,α)

(

R
N+1
+

)

such that, up to a subsequence,

wn → w in (H1 ∩ C)(K)

for every compact K ⊂ R
N+1
+ .

End of the proof of Theorem 1.1. Up to now, we have that wn → w in (H1;a ∩
C)loc, and that the limiting blow up profile w is a nonconstant vector of harmonic,
globally Hölder continuous functions. To reach the final contradiction, we distin-
guish, up to subsequences, between the following three cases.

Case 1: Mn → 0. In this case also the equation on the boundary passes to the
limit, and the nonconstant component w1 satisfies ∂

a
νw1 ≡ 0 on R

N , in contradiction
with Corollary 3.3.

Case 2: Mn → C > 0. Even in this case the equation on the boundary passes
to the limit, and w solves

{

Lawi = 0 x ∈ R
N+1
+

∂a
νwi = −Cwi

∑

j 6=i aijw
2
j on R

N × {0}
The contradiction is now reached using Proposition 3.9.

Case 3: Mn → ∞. In this case we can find a contradiction with Proposition
3.10. To this aim, one has to prove the validity of a Pohozaev-type identity for the
limits of the blow-up sequences. This can be done by taking into account Lemma
4.6 and reasoning as in [19, Section 5].

As of now, the contradictions we have obtained imply that {vβ}β>0 is uniformly

bounded in C0,α
(

B+
1/2

)

, for every α < α∗. But then the relative compactness in

C0,α
(

B+
1/2

)

follows by Ascoli-Arzelà Theorem, while the one in H1;a(B+
1/2) can be

shown by reasoning as in the proof of Lemma 4.6.

Incidentally, we remark that similar arguments can be exploited in order to
prove the following compactness result, concerning segregated profiles (see also [19,
Proposition 6.15]). This result, though technical at this stage, provides a com-
pactness criterion for suitable blow down sequences, and may be useful in proving
optimal regularity results, along the scheme explained in the introduction.

Proposition 4.7. Let {vn}n∈N be a subset of C0,α
(

B+
1

)

, for some 0 < α ≤ α∗,

and satisfy the assumptions of Proposition 2.11. If

‖vn‖L∞(B+
1 ) ≤ m̄,

with m̄ independent of n, then for every α′ ∈ (0, α) there exists a constant C =
C(m̄, α′), not depending on n, such that

‖vn‖C0,α′

(

B+

1/2

) ≤ C.

Furthermore, {vn}n∈N is relatively compact in H1;a(B+
1/2)∩C0,α′

(

B+
1/2

)

for every

α′ < α.

To conclude, we mention that the above local result can be used, together with a
covering argument and Proposition 3.4, to prove Theorem 1.2 (see also [19, Theorem
8.5]): there are, however, two different situations to be handled.



First, if one considers the problem (1.1) set on the whole RN (Theorem 1.2 in the
case Ω = R

N ), then the global uniform bounds on uβ imply, by the representation
formula of Caffarelli and Silvestre [6], that also vβ enjoy the same uniform L∞

bounds. As a consequence, the local uniform bounds extend at once to the global
case by a simple covering argument.

In the case of Ω 6= R
N , one has to deal also with the boundary of Ω. In this

situation, the regularity for uβ is ensured by [16], while the uniform Hölder bounds
- obtained again via the blow up analysis - follows with similar arguments and the
use of the appropriate Liouville type results (Proposition 3.4). Further details can
be found in [19, Section 8].

References

[1] L. A. Caffarelli, A. L. Karakhanyan, and F.-H. Lin. The geometry of solutions to a segregation
problem for nondivergence systems. J. Fixed Point Theory Appl., 5(2):319–351, 2009.

[2] L. A. Caffarelli and F.-H. Lin. Singularly perturbed elliptic systems and multi-valued har-
monic functions with free boundaries. J. Amer. Math. Soc., 21(3):847–862, 2008.

[3] L. A. Caffarelli and J.-M. Roquejoffre. Uniform Hölder estimates in a class of elliptic systems
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