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A B S T R A C T

The aromatic ligand 4,4′-(1,3-phenylenedioxy)-dianiline (L), has been used to explore its coordination chemistry
behaviour and nitroaromatic sensing ability by crystallizing it with a variety of transition metals. The supra-
molecular structures [CuCl2(L)] (1), [Mn(H2O)2Cl2(L)2] (2), [Ni(H2O)2 (L)2] Cl2 (3) and [Co(H2O)2 (L)2] Cl2 (4)
have been characterized by single crystal X-ray diffraction (SC-XRD) and X-ray powder diffraction (XRPD)
analysis. While 1 and 2 do not form polymeric structures but discrete (0D) arrays, 3 and 4 resulted in extended
isostructural 2D coordination polymers. The solid-state fluorescence properties of the reported crystals have
been investigated. Interestingly, coordination polymers 3 and 4 showed a better solid-state fluorescence emis-
sion compared to that of complexes 1 and 2. Coordination polymer 3 has been successfully used as a sensor for
the detection of trace amounts of nitrobenzene, 2-nitrotoluene and 3-nitrotoluene with a high quenching effi-
ciency of 96% for 3-nitrotoluene. The quenching efficiency of 3 is better than that of the free ligand L. The
polymeric nature of 3 is maintained after the sensing experiment and thus can be used in a recyclable manner.
Due to the fact that 3 is a nonporous and its structure does not change in the presence of the quenchers, the
quenching effect occurs in the surface of the solids when is in a suspension.

1. Introduction

The crystal engineering approach to design functional materials is a
powerful method to generate new advanced compounds displaying
properties in relevant technological areas [1]. For instance the self-as-
sembly of organic molecules with transition metals can be used (most
often using solvent molecules as templating agents) to form hybrid
metal organic solids with void spaces filled with solvent in their
structures (i.e., porosity) [2]. The porous nature of the metal–organic
structures can be exploited, for instance as filters, for the adsorption of
toxic molecules in the gas or liquid state (i.e., pollutants) [3]. In this
regard, metal organic frameworks (MOFs) and coordination polymers
(CPs) have shown to be promising candidates as highly functional
materials to treat pollution problems [1b,4].

The inclusion of photoactive organic molecules in the crystalline
lattice of the coordination polymers has been exploited to obtain
functional materials showing photoluminescent properties such as
fluorescence emission [5]. In fact, the photoactive behaviour of the
framework structures can be used for example, for the sensing of

nitroaromatic compounds [6]. Another class of metal–organic materials
that can be used for the sensing of nitroaromatics are the so-called
second sphere coordination adducts in which the metal ions and organic
ligands are self-assembled via electrostatic interactions, mainly charge
assisted hydrogen bonds [7].

Usually, organic ligands containing aromatic groups are good can-
didates to act as a source of luminescence due to the presence of elec-
tron-rich aromatic groups. Organic molecules containing pyridine
groups have been widely used and shown to produce great variety of
networks with functional applications [8]. However aromatic diamine
ligands have been less employed due to its poor stability and donor
ability of the amine groups towards the metal centres [9].

Recently, we have demonstrated that by using 4,4′-methylenedia-
niline which is a flexible molecule due to the single bond between the
aromatic rings (V-shape), in combination with transition metal based
[MX4]2- anions (M=Cu or Cd, X =Cl or Br) it is possible to construct
second sphere coordination adducts containing 1D channels via charge
assisted hydrogen bonds [10]. Using the same approach, the unexplored
optoelectronically active organic building block, 4,4′-(1,1′-biphenyl-
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4,4′-diyldioxy)di-aniline, has been recently used to form a photoactive
2D perovskite by using second sphere coordination interactions in the
presence of Cu metal which has shown to emit in the UV/blue region
[11].

The aromatic diamine ligand 4,4′-(1,3-phenylenedioxy)-dianiline
(L) (Fig. 1) is a flexible molecule with a higher π-electron-rich ability
than 4,4′-methylenedianiline and therefore, can be used to self-as-
semble with transition metals to form metal–organic materials. The
potential twisted conformations owing to the rotation along the CeOeC
bond between the benzene and aniline ring makes L a good candidate to
create flexible frameworks structures with new topologies. To the best
of our knowledge, L has been used for the synthesis of polymer mate-
rials by involving the reaction of the NH2 group, such as poly-
benzoxazine and polydimethylsiloxane crosslinked polymer materials
[12] and poly(amide–imide)s [13]. However, direct coordination with
metal ions has been rarely reported using L.

Here we report nitroaromatic sensing ability of four metal–organic
coordination compounds (1–4) self-assembled using metal chloride
salts and ligand L, namely [CuCl2(L)] (1), [Mn(H2O)2Cl2(L)2] (2), [Ni
(H2O)2(L)2]Cl2 (3) and [Co(H2O)2(L)2]Cl2 (4). The structures of the
coordination compounds 1–4 have been characterized by single crystal
X-ray diffraction and powder X-ray diffraction. The solid-state photo-
luminescent (PL) behavior of the four hybrid materials has been mon-
itored and the coordination polymer 3 was used for the detection of
trace amounts of nitrobenzene derivatives showing high quenching
efficiency. The nonporous nature and stability of the coordination
polymer 3 in the suspensions suggests that the quenching effect occurs
at the surface of the solids.

2. Results and discussion

Ligand L was reacted with MCl2·nH2O (M=Cu, Co, Mn, Ni) using
different metal to ligand ratios. Large single crystals of 1 were prepared
by the triple layering method whereas single crystals of 2–4 were ob-
tained via slow vapour diffusion of dichloromethane or ethyl ether into
an ethanol solution of microcrystalline 2–4 (See ESI). All single crystal
species are stable in contact with air once isolated.

The four complexes were structurally characterized by SC-XRD (ESI)
and the phase purity of the crystalline materials was confirmed by
comparing the experimental and simulated XRPD diffraction patterns.
The hybrid metal–organic materials 1–4 can also be readily obtained by
liquid-assisted grinding (LAG) [14], as seen in the XRPD patterns (ESI).
It is worth mentioning that the grinding method is much simpler
helping to reduce the solvent waste which is usually employed using
solution procedures (i.e., tedious synthetic and crystallization proce-
dures). This aspect is crucial for the applications in nitroaromatic sen-
sing in which suspensions of microcrystalline materials are used.

3. Description of the structures

3.1. [CuCl2(L)] (1).

X-ray crystallography reveals that 1 crystallizes in orthorhombic
Pnma space group. The ligand in 1 undergoes a large twist compared to

the ligand crystal structure itself, resulting in the parallel arrangement
of aniline rings, with the centroid distance being 4.46 Å. This structure
shows the flexible behavior of L. The CuCl2 metal is linked with the two
NH2 groups of aniline rings by means of coordination bonds, forming an
irregular tetrahedral configuration, with the Cu-N bond distance being
2.001 Å and 2.024 Å, respectively (Fig. 2). A single closed complex is
connected with neighboring ones via NeH∙∙∙Cl interactions and CeH∙∙∙π
interactions (C8-H8∙∙∙Cg (centroid of ring C0-C6) 3.492 Å between
benzene rings, 137.2°) expanding in the three crystallographic direc-
tions.

3.2. [Mn(H2O)2Cl2(L)2] (2).

X-ray crystallography reveals that the composition of 2 is [Mn
(H2O)2Cl2(L)2] and crystallizes in the monoclinic space group C2/c. The
Mn(II) sits on an inversion center in an octahedral environment co-
ordinated by two NH2 groups of the aniline moieties, two water mo-
lecules and two chloride ligands. Clearly the two chloride ligands and
coordinated water molecules prevent the further coordination with the
NH2 from the other ligands. A similar coordination environment has
been observed using a shorter dianiline ligand [15]. Therefore no
polymeric formation results and the coordination complex can be re-
garded as 0D (Fig. 3). The uncoordinated NH2 groups of L form hy-
drogen bonds with the coordinated water in the adjacent complex. The
hydrogen bond between the Mn-bound water and Cl on an adjacent Mn
center further links the chains into a 2D layer structure through NeH∙∙∙π
interactions.

3.3. [Ni(H2O)2(L)2]Cl2 (3) and [Co(H2O)2(L)2]Cl2 (4).

Crystallographic analysis by means of single crystal X-ray diffraction
shows that 3 and 4 are isostructural, with formulas [Ni(H2O)2(L)2]Cl2
and [Co(H2O)2(L)2]Cl2, respectively. Both crystallize in the monoclinic
P21/c space group and have similar unit cell parameters (see ESI).
Herein, crystal 3 is used as a representative structure to be described in
detail their topological features (Fig. 4). The Ni atom shows octahedral
coordination geometry, as it is bound to four equatorial NH2 groups of L

Fig. 1. Ligand L used to prepare coordination complexes and polymers 1–4
described in this work. Fig. 2. The single crystal X-ray structure of 1. Color code: carbon: orange; ni-

trogen: blue; oxygen: red; chloride: green; copper: brown; hydrogen: white.

Fig. 3. The single crystal X-ray structure of 2 showing how the coordination
polymer is not formed but a discrete 0D complex. Color code: carbon: orange;
nitrogen: blue; oxygen: red; chloride: green; manganese: grey; hydrogen: white.
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ligands [Ni-N1: 2.210 Å, Ni-N2: 2.155 Å] and two trans axial water
molecules [Ni-O: 2.061 Å] (Fig. 4b). The coordinated water molecules
in the Ni atom causes the chains to be positively charged with the
presence of the counter anion Cl– in the crystal lattice. This type of
coordination geometry was observed using the shorter 4,4′-methyle-
nedianiline [15]. Interestingly, the in situ observation of apical ligand
exchange for a similar coordination environment where the reversible
switch from charged to neutral and vice versa was monitored by single-
crystal-to-single crystal reactions [16]. Thus, similar solid-state pro-
cesses might be possible using 3 and 4.

Viewed along the c-axis the coordination geometry of the Ni results
in a 2D grid structure (Fig. 4c). The free chloride anion is uncoordinated
but acts as hydrogen bonding acceptor forming two H-bond bridges.
One is the OeH∙∙∙Cl (i. O3∙∙∙Cl1: 3.126 Å) with the coordinated water
molecules and the other with the NH2 groups of the ligand NeH∙∙∙Cl (ii.
N2∙∙∙Cl1: 3.295 Å), joining the chains into a 2D layer array in such a way
the void area of a single 2D layer is cancelled resulting in a non-porous
coordination polymer.

In most CPs/MOFs used for the sensing of nitroaromatics use porous
structures where the analytes quench the emission properties of the
sensor (CPs) once the pollutants enter the channels [17]. However, the
synthesis of porous structures is not always straight forward. Therefore,
the design and synthesis of nonporous CPs that can also serve as sensors
for nitroaromatics is important. Gas adsorption experiments have been
carried out to demonstrate the non-porous nature of 3. The isotherm
corresponds to a non porous structure (Figure S4) and shows the ca-
pillary condensation of N2 in the interparticle voids space and not in the
pores of the material. The small pore volume value obtained (i.e.,
0.044 cm3/g) evidences this fact.

3.4. Photoluminescence and detection of nitroaromatics

The presence of an optoelectronically active ligand (L) is important
as it can be used to generate photoluminescent hybrid metal–organic
materials. Thus, we tested their optical activity by performing fluores-
cence analysis.

Solid-state fluorescence measurements show that emission maxima
of the four crystals are very near: 387 nm for 1 (λex= 246 nm), 391 nm
for 2 (λex= 245 nm), 400 nm for 3 (λex= 247 nm) and 392 nm for 4
(λex= 246 nm) (Fig. 5). The emission wavelength shows a blue shift
compared with that of pure L (375 nm) (λex= 280 nm), as shown in
Figure S5 and Figure S6, which might be attributed from the existence
of the d-orbital of metal atoms and the π*→π electron transfer from
ligand to metal atoms. The observed luminescence of these four metal
coordination compounds belongs to the metal perturbation of the li-
gand luminescence (L*−L type), suggesting the influence of the metal
on the fluorescence performance of the ligand L. The measured

quantum yields (Φ) for 1–4 are respectively 6.35%, 4.18%, 8.88% and
7.89%. The intensities of the four crystals are significantly different, in
which the coordination polymers 3 and 4 are higher than the com-
pounds 1 and 2 due to the different coordination to the metal centers.
The quantum yields and the fluorescence intensities are in accordance
with the experimental results.

Currently, most reported coordination polymers or MOFs showing
potential prospects in the detection of traces amounts of nitroaromatics
are focused on Zn, Cd metals [5a,18], however, other metals like Ni or
Co have not been much reported up to date [19]. Herein, we have used
the nonporous coordination polymer 3 as a sensor to detect nitroaro-
matics compounds, due to the fact that crystals 3 give a better yield
than crystal 4. Therefore, all the results presented in this work have
been performed focusing on coordination polymer 3.

First, organic solvents, including dichloromethane (DCM), dioxane
(Diox), diethyl malonate (DM), ethyl acetate (EA), ethanol (EtOH),
hexane (He), methanol (MeOH), petroleum ether (PE), 2-butyl alcohol
(2BA) and aromatic solvent such as benzene (PhH), have been used to
monitor the detection ability of coordination polymer 3.
Microcrystalline 3 (7.50mg) were added in acetonitrile (10ml) to form
the suspension (1×10-3 mol/L) where the above-mentioned solvents
were added separately (800 ppm). No quenching of 3 upon the addition
of these solvents was observed as the PL experiments showed a similar
emission intensity around 400 nm (Fig. 6a). Interestingly, upon the
addition of nitroaromatics such as nitrobenzene (NB), 2-nitrotoluene
(2-NT) and 3-nitrotoluene (3-NT) the emission of 3, was dramatically
quenched (Fig. 6a). The quenching effect can be observed visually by
taking digital photographs under UV light as shown in Fig. 6b by in-
creasing the amount of NB from a blank sample of pure acetonitrile.

Fig. 4. The crystal structure of 3 showing the poly-
meric chain viewed approximately along the b-axis
(a), and coordination geometry around the Ni metal
(b). 2D layered structure of viewed along the c-axis.
The Cl– counter anions balancing the positive charge
of the framework are not shown for clarity purposes.
Color code: carbon: orange; nitrogen: blue; oxygen:
red; nickel: green; hydrogen: white.

Fig. 5. The solid-state fluorescence emission and excitation spectra of 1–4.
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New experiments aimed at exploring the sensitivity in the ni-
troaromatic sensing of coordination polymer 3 were carried out using
suspensions of 3 in acetonitrile and monitored its PL emission by a
progressive increase of the nitroaromatic contents in the suspensions.
Fig. 7 clearly shows how the emission intensity decreased upon the
gradual addition of nitrobenzene [20]. The Stern–Volmer constant
(KSV) constant using 3 as a sensing solid for the detection of ni-
trobenzene is 2.388× 106 M−1. The quenching effect by the presence
of nitrobenzene at a concentration of 2.9× 10–4 mol/L, is evident with
a high quenching efficiency of 94.89% [21]. This shows that co-
ordination polymer 3 can detect nitrobenzene with high sensitivity.
According to the IUPAC criteria [22], the limit of detection (LOD) of
coordination polymer 3 is 0.62 μM.

The aromatic detection abilities of coordination polymer 3 have
been tested using nitroaromatic derivatives including 2-nitrotoluene (2-
NT) and 3-nitrotoluene (3-NT). Since coordination polymer 3 is in-
soluble in acetonitrile, a suspension of 3 in acetonitrile containing 2-NT
and 3-NT in different amount were prepared. From the photo-
luminescent measurements it is observed that the emission intensity
diminishes in the presence of nitroaromatic derivatives 2-NT and 3-NT.
The emission intensity of 3 was also quenched at a concentration of
3.1× 10–4 mol/L for 2-NT, with a quenching efficiency of 95.39%, and
3.0×10–4 mol/L for 3-NT, showing a high quenching efficiency of
95.64%, with detection limits of 0.80 μM and 0.73 μM, respectively.

The Stern–Volmer constant (KSV) using 3 as a sensing solid are
1.876× 106 M−1 and 2.041× 106 M−1 for 2-NT and 3-NT respec-
tively.

Since Ni complexes are rarely reported in fluorescence detection of

nitroaromatics, 3 was compared with reported Cd coordination poly-
mers. The obtained values demonstrate that 3 is more sensitive in
comparison to some other sensors (Ksv of {[Cd2(L)
(Dimethylacetamide)]·H2N(Me)2}n [23]: 4.9× 103 M−1 and Ksv of
[H2L]2+[CdCl4]2– [24]: 6.09× 103 M−1). The detection limits are
comparable to different sensing methods such as hanging mercury drop
electrode (i.e., LOD of: 5× 10-6 M) [25]. About the quenching me-
chanism by nitroaromatics, our conclusion is that complex 3 belongs to
static quenching according to the linearity of the Stern-Volmer plot and
the Ksv value calculated for NB, 2-NB, and 3-NB. The Ksv for static
quenching corresponds to the association constant KA [26,27].

3.5. Control experiments using free L for the sensing of nitroaromatics

The conjugated π-rich nature of ligand L due to the interaction with
the nitroaromatic compounds in the suspension of 3 results in the
quenching of the photoemission. Since free ligand L is luminescent and
3 is also luminescent, further experiments using only ligand L have
been carried out. The experimental results show that the luminescence
intensity of a solution in acetonitrile of the free ligand is not as strong as
that of the suspension of 3 and the quenching effect is not obvious
(Fig. 7). The emission intensity of L was quenched at a concentration of
750 ppm for NB with a quenching efficiency of 85.78%, 900 ppm for 2-
NT, quenching efficiency of 82.93%, 800 ppm for 3-NT, quenching ef-
ficiency of 84.56% (Fig. 7d-f). The Ksv are 2.47× 104 M−1, 2.85× 104

M−1, 2.69×104 M−1, respectively (See ESI for further details).
The excited electrons by the photons are transferred to the ni-

troaromatic derivatives that contain the electron-deficient –NO2 group,

Fig. 6. (a) Emission spectra using the suspension of 3 in acetonitrile upon the addition of 800 ppm of different organic solvents. (b) Visual color changes observed
upon subjecting 1mM solution of crystal 3 in acetonitrile with increasing quantity of NB under UV light.
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and quenching occurs decreasing the fluorescence intensities of co-
ordination polymer 3. Importantly, using benzene, there is no
quenching activity. This can be explained by the absence of the ni-
troaromatic group. Crucially, 3 does not have problems in detecting
large molecules since it is not necessary for the molecules to diffuse into
the pores as the quenching occurs in the surface of the material.

The crystalline stability of 3 in a suspension of acetonitrile was
prepared and then filtered and monitored by XRPD. As shown in Figure
S10, there is no change in the structure as observed by the good dif-
fraction displayed by the powders used in the suspension. Additional
SEM images clearly showed that 3 is a microcrystalline material and
that the shape of the solid is maintained after the sensing experiments
(see Figure S11). Therefore, 3 can be used for further sensing in a re-
cyclable manner.

Moreover, a filtration experiment was carried out in order to un-
derstand if the sensing takes place at the surface of 3. It was found that
the fluorescence intensity of the solution after the filtration of 3 was
significantly weakened when the suspended particles were filtered out
(Figure S12). This experiment indicated that the reaction occurs on the

surface of the coordination polymer particles and is not in solution.

4. Conclusions

In summary, the coordination chemistry of the ligand 4,4′-(1,3-
phenylenedioxy)-dianiline with metal chlorides resulted in four new
supramolecular hybrid metal organic materials. The 2D Ni coordination
polymer 3 which can be easily prepared also by LAG (i.e., fast and large
amounts), showed a high quenching efficiency towards nitrobenzene
(94.89%), 2-nitrotoluene (95.39%) and 3-nitrotoluene (95.64%) de-
tection. The quenching efficiency of 3 is better than that of the free
ligand L. Therefore, the reported coordination polymer can be used as
for the sensing of nitroaromatics. The 0D nature of 2 with two NH2

groups uncoordinated opens up for the possibility to explore the co-
ordination behaviour via mechanochemical means (LAG) or by ex-
ploiting solid liquid interface reactions in the presence of different
metal centers [3e,28]. This can lead to new hetero-bimetallic co-
ordination polymers. Further work addressing the structural properties
and functional applications of ligand L with the metal chlorides used in

Fig. 7. Fluorescence spectra using suspensions of 3 in acetonitrile: a) NB, b) 2-NT, c) 3-NT. Emission of a solution of L in acetonitrile (1× 10-3 mol/L) d) NB, e) 2-NT
and f) 3-NT.
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this work but using second sphere interactions will be carried out.

Author contributions

The manuscript was written through contributions of all authors. All
authors have given approval to the final version of the manuscript.

Funding sources

We would like to thank the National Science Foundation of China
(No. 21571090) and Lianoning BaiQianWan Talents Program and
Lianoning Provincial Department of Education Innovation Team Project
(LT2017010) for supporting our research.
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