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Abstract: Temperature mapping is a key asset in supporting the clinician during thermal 
ablation (TA) treatment of tumors without adding additional risk to the TA procedure. Herein 
we report our experiments on multidimensional thermal mapping during radio frequency (RF) 
thermal ablation treatments of an ex-vivo animal organ. The temperature was monitored using 
several arrays of fiber Bragg gratings properly positioned around the RF applicator. The 
results show the effectiveness of our proposed method at assessing the TA probe depth and 
demonstrating how the insertion depth directly influences the maximum temperature and the 
treated area of the radio frequency ablation. 

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

Radiofrequency ablation (RFA) for removal of solid tumors is a minimally invasive thermo-
ablative technique applied to the field of surgical oncology [1]. Its main advantage over more 
invasive procedures, particularly in surgical resectioning (such as the Pringle Manoeuvre in 
cases of hepatocellular carcinoma), is its minor impact on surgical stress thus allowing for 
faster recovery which is most important in old or very weak patients. RFA procedures can be 
applied percutaneously in both laparoscopic and open surgery, and are applicable to several 
types of tumors such as liver, kidney and lung, as well as in treating metastases such as 
hepatic metastases due to colorectal cancer [2–5]. RFA consists of electrodes inserted into a 
lesion which cause an electrical current flow. This phenomenon leads to frictional agitation at 
the ionic level and a consequent heat generation known as the Joule effect [1]. Thermal 
treatment brings about a localized increment of the organ’s temperature with consequent 
tissue dehydration and water vaporization. In this way coagulation necrosis takes place; a 
term used to describe the irreversible thermal damage which biological tissues undergo. 
Indeed, RFA’s aim is to destroy cancerous cells by exposing them to cytotoxic temperature 
while sparing the adjacent healthy tissue. 

The mortality rate of tumor cells is a function of the temperature value reached within the 
organ and of the time exposure [6]. In this way real-time temperature monitoring, which 
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allows for adjustment of the RFA settings, can be considered valuable for achieving optimum 
clinical results. The knowledge of temperature during thermal ablation (TA) treatment gives 
the surgeon a way of controlling temperature distribution in the tissue surrounding the RF 
electrodes. This information reduces the need for repeated sessions to achieve complete 
necrosis for larger tumors [7] and the occurrence of potentially adverse effects to the 
surrounding healthy tissue [8]. Indeed, a deep insertion of the TA probe in the organ allows 
the heat to disperse to the blood vessels to better control eventual bleeding (a serious post-
operative complication), but the risk of damaging the surrounding tissue increases. Therefore, 
the application time is eventually associated with an extended tissue damage which could be 
better controlled and limited when using an accurate temperature mapping. 

RFA is generally carried out under ultrasound (US) guidance [9] which allows for precise 
positioning of the probe close to the target even during challenging procedures (e.g., 
intracavitary and endoluminal applications). However, accurate tumor localization alone is 
not sufficient for obtaining targeted treatment without damaging healthy surrounding tissue, 
as it does not allow quantifying cell’s response to heat [10]. Indeed, it is still challenging to 
visualize the thermal dose delivered, and to delineate the damaged tissue margins with 
conventional US techniques because of the low intrinsic contrast between normal and ablated 
tissue and artefacts due to gas bubble formation [11]. It is for this reason that researchers have 
devised temperature maps by using a cross-correlation algorithm as applied to RF ultrasound 
echo signal data acquired at discrete intervals during heat treatment and caused by the speed 
of sound variation and thermal expansion with temperature. This thermometric technique 
however, requires calibration of the speed of sound variations and tissue expansion with 
temperature. Furthermore, US-based thermometry is affected by physiological motion and 
unexpected changes in acoustic properties of tissues [12]. Modern US systems are equipped 
with an image modality called Shear Waves Elastography (SWE), allowing to quantify tissue 
stiffness. Since a coagulated tissue is stiffer than a normal one, some studies are investigating 
the feasibility and accuracy of SWE for quantitative monitoring of thermal ablation [13]. 
Anyway, this technique is still in the early-stage, and cannot be expended to the monitoring of 
deep-seated lesions undergoing ablation therapy. 

To overcome this limitation, several commercial RF probes are equipped with 
thermocouples in the tips of the electrodes which can measure the temperature of the adjacent 
tissue [12]. Nevertheless, this is not enough to accurately monitor temperature distribution of 
the tissue. 

Other solutions aimed at visualizing three-dimensional temperature distribution in tissue 
during RFA procedures have been investigated such as the implementation of 3-D finite 
element models based on bio-heat equation whereby the results were corroborated with 
experimental data recovered through the use of thermocouples at the tip of the ablation 
electrodes [14]. However, the use of thermocouples may cause significant measurement 
errors due to their high thermal conductivity. Another solution to predict tissue destruction 
and cell death consists of a laparoscopic infrared camera capable of thermally mapping 
surface tissue temperatures [15]. The limitation of using a thermal camera however is that it is 
almost always limited to ex vivo analysis. Moreover, use of a laparoscopic thermal camera in 
clinical applications implies invasive surgical intervention and for this reason its level of 
invasiveness is incompatible with RFA which is a minimally invasive treatment [16]. 

The current landscape of temperature monitoring during RFA is facing with the 
challenges to obtain real-time and accurate temperature measurements by a minimally 
invasive approach. Therefore, multi-point temperature measurements performed with fiber 
Bragg grating sensors (FBGs) are a promising solution. FBG sensors have great potential in 
medicine, thanks to their biocompatibility, immunity to electromagnetic interference, non-
toxicity, chemical inertness and small size [17]. Due to their unique features, several studies 
have been conducted on the use of these sensors for real-time temperature monitoring during 
RFA. Some studies focused on the monitoring of tissue temperature during RFA by means of 
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linearly chirped fiber Bragg gratings (LCFBGs) [16,18]. This promising solution for 
distributed sensing presents the drawback of no reliable technique for their detection in the 
spectrum domain. Indeed, certain spectrum decoding methods require an overwhelming 
complexity and are not affordable in real-time operation, while simplified approaches 
substantially turn the LCFBG into a few-point sensor, which does not offer relevant 
advantages over uniform FBGs. 

The current technology allows writing multiple FBGs in a single fiber enabling multi-
point temperature measurements with high spatial resolution, inserting only one fiber optic 
within organs. Accordingly, other studies investigated the potential of FBG array for 
monitoring temperature in this field. Tosi et al. had directly mounted the FBG array on the 
ablation device, providing 5 points real-time temperature measurements (1 sensor/cm). 

Saccomandi et al. performed temperature measurements during CT-guided RFA 
performed with the StarBurst XL Electrosurgical Device. They used two custom-made 
thermal probes embedding a total of 9 FBGs (2 sensors/cm), in addition to the 5 
thermocouples embedded in the umbrella-shaped RF probe. The multipoint temperature 
monitoring by using FBG sensors at several distances from the applicator provided useful and 
additional information regarding the boundary of damaged volume. The following table 
summarizes the principal details of some of the FBG-based temperature monitoring systems 
solutions proposed in the literature (see Table 1). 

Table 1. Principal details of some of the fiber Bragg gratings-based temperature 
monitoring systems solutions proposed in the literature 

Article 
Type of 
sensor 

RF probe 
Model of 

ablation 
Details of measuring 

approach 

Tosi et al. 
2014 

[16,19,20] 
LCFBG 

Hollow brass needle with 
3⁄4 mm inner/outer diameter 

and 10-mm length, for 
laparoscopic and percutaneous 

approaches 

Ex vivo animal 
model (samples of 

porcine liver) 

Real-time monitoring; 
1 LCFBG for a quasi-
distributed detection 

Tosi et al. 
2014 [19,21] 

FBG 

Hollow brass needle with 
3⁄4 mm inner/outer diameter 

and 10-mm length, for 
laparoscopic and percutaneous 

approaches 

Ex vivo animal 
model (samples of 

porcine liver) 

Real-time monitoring; 
1 FBG array; 5 

measurement sites; spatial 
resolution of 1sensor/cm 

Samset et al. 
2001 [22] 

FBG 
3 mm cryo probe (Galil 

Medical, Yokneam, Israel) 

In vivo animal 
model (porcine 

liver) 

2 FBG arrays; 20 
measurement sites; spatial 
resolution of 2sensors/cm 

Saccomandi 
et al. 2016 

[23] 
FBG 

MRI compatible StarBurst 
XL Electrosurgical Device, for 
laparoscopic and percutaneous 

approaches 

Ex vivo animal 
model (porcine 

liver) 

Real-time monitoring; 
2 FBG arrays; 9 

measurement sites; spatial 
resolution of 2 sensors/cm 

Palumbo et 
al. 2016 [24] 

FBG 
Habib 4X, a laparoscopic 

bipolar RF device 

Ex vivo animal 
model (liver and 

kidney) 

Real-time monitoring; 
5 measurement sites; 

spatial resolution of 5 mm 

 
Building upon this research, we have recently proposed a FBG-equipped RFA probe for 

real-time monitoring of temperature during ablation, employing the Habib 4X RF commercial 
probe [25] measuring impedance between the electrodes as an indirect measure of 
temperature during ablation experiments. In previous reported experiments [24] researchers 
demonstrated that a linear FBG array was very useful for direct real-time temperature 
measure as it allows for potential optimization of the RF parameter (i.e. power and duration 
of the RF discharge). 

Herein we present a significant improvement in the design of the sensorized RF probe 
based upon multidimensional temperature measurements. Its main strength is the housing of 
multiple FBG arrays with high spatial resolution, which provides increased valuable 
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information about the temperature of the RF treated area. This approach is clinically relevant 
since the surgeon usually evaluates and establishes the RF probe’s insertion depth with the 
sole aim of reaching the cancerous tissue, disregarding the substantial temperature increase of 
the organ as the electrodes’ depth increases. 

Our previous studies analyzed the temperature map and the distance from the RF 
applicator axis along the treatment without focusing on the above-mentioned insertion depth 
[23,24]. Herein we show how the proposed system is able to measure the temperature profile 
around the RF probe assessing that the TA probe’s insertion depth directly influences the 
maximum temperature and the treated area. The obtained temperature mapping is a key asset 
that can support the clinician during treatment, without added invasiveness and ensuing risk 
to the procedure. Our proposed setup and results obtained are detailed, described and 
commented upon below. 

2. Experimental setup 

FBGs consist of a segment of optical fiber along which a spatially periodic modulation of the 
core refractive index is permanently made. The index modulation leads to the reflection of 
light in a narrow range of wavelengths while other wavelengths are transmitted along the 
fiber. The reflected range of wavelengths are centered on a specific value known as the Bragg 
wavelength λB, which is expressed as: λB = 2neffΛ, where neff is the effective refractive index 
of the guided core mode and Λ is the grating period. The grating is intrinsically a strain and 
temperature sensor and the external physical parameters are detected through the 
measurement of the reflected wavelength. For our purposes, the FBGs were employed in a 
strain-free configuration in order to consider the temperature contribution only, which is 
linearly related to the Bragg wavelength shift with the following expression: ∆λB/λB = ST∆T, 
where ST is the thermal sensitivity coefficient of the grating [26]. 

In our experiments the Habib 4x laparoscopic bipolar Device RF probe was employed and 
consisted of 10 cm long electrodes (6 cm of inactive part and 4 cm of active part) that allowed 
for RF current circulation in a pig liver) [27]. Figure 1 shows the RF probe outfitted with 5 
arrays for a total 27 FBGs representing the measurement sites. This configuration allowed for 
the processing of two-dimensional thermal maps in planes perpendicular and parallel to the 
probe’s electrodes with a resolution of 0.1 °C. 

FBG commercial arrays with the following characteristics were used in conducting the 
tests: 

• Array A of 3 FBGs - length of each grating 1 mm and distance edge-to-edge 3 mm. 
Total length of 9 mm at x = −0.70 cm; 

• Array B of 7 FBGs - length of each grating 1 mm and distance edge-to-edge 2 mm. 
Total length of 19 mm at x = 0.35 cm; 

• Array C of 10 FBGs - length of each grating 1 mm and distance edge-to-edge 2 mm. 
Total length of 28 mm at x = 0.00 cm; 

• Array D of 3 FBGs - length of each grating 1 mm and distance edge-to-edge 3 mm. 
Total length of 9 mm at x = 0.70 cm; 

• Array E of 4 FBGs - length of each grating 1 mm and distance edge-to-edge 3 mm. 
Total length of 13 mm at x = 1.05 cm. 

Four FBG arrays were positioned at x = 0.00 cm, x = 0.35 cm, x = 0.70 cm and x = 1.05 
cm in order to measure a temperature profile starting from the electrode’s center. The last 
array was fixed at x = −0.70 cm to observe the symmetry of the temperature profile. Due to 
the length of the electrodes, a plexiglass support for the FBGs sensors was also fabricated to 
facilitate their positioning and make the structure easily removable from the RF probe, Fig. 
1(b). The FBG sensors were then inserted into carbon fiber microtubes with an inner diameter 
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