
1	Introduction
FCG	between	the	emerging	of	a	crack	and	the	occurrence	of	fatigue	fracture	is	main	degradation	process	leading	to	failure	of	many	critical	mechanical	equipment.	In	order	to	predict	equipment	lifetime,	the	crack	growth

process	needs	to	be	modeled.	Deterministic	FCG	models	have	been	built	based	on	the	physical	mechanism	analysis	of	fatigue	crack	[1,2].	In	these	models,	the	mechanic	properties	of	metallic	material	are	considered	homogeneous	and

constant,	but	a	large	amount	of	experimental	data	has	indicated	the	variability	among	FCG	processes	even	if	the	same	cyclic	loading	are	applied	[3].	Therefore,	over	the	last	few	decades,	probabilistic	models	have	been	applied	to

incorporate	randomness	in	the	FCG	process	[4].

In	order	to	make	use	of	the	existing	knowledge	of	crack	growth	mechanism,	many	probabilistic	FCG	models	have	been	developed	by	inserting	random	factors	into	the	original	deterministic	FCG	models	[3,5–7].	By	this	way,	a

deterministic	FCG	model	was	randomized	to	account	for	the	randomness	in	the	FCG	processes.	One	of	the	most	well-known	methods	has	been	proposed	by	Yang	and	Manning	[5],	which	randomized	a	deterministic	FCG	model	by

multiplying	the	growth	rate	with	a	random	factor	(multiplier).	Yang	and	Manning	proposed	to	use	a	lognormal	distribution	to	describe	the	multiplier	variability	and	the	maximum	likelihood	estimation	(MLE)	method	to	estimate	the

unknown	parameters	in	the	deterministic	FCG	model	and	in	the	lognormal	distribution	of	the	random	multiplier	[5].

Two	problems	are	raised	when	applying	Yang	and	Manning’s	probabilistic	FCG	model.	Firstly,	the	unknown	parameters	in	the	deterministic	FCG	model	and	lognormal	distribution	are	simultaneously	estimated	by	the	MLE

method;	their	estimates	jointly	maximize	the	likelihood	function.	Then,	the	modeling	error	due	to	inappropriate	choice	of	deterministic	FCG	model	and	that	due	to	the	unsuitable	assignment	of	the	probability	distribution	of	the	random

multiplier	cannot	be	distinguished.	In	this	situation,	prediction	accuracy	is	difficult	to	improve	because	the	dominant	source	of	error	cannot	be	identified.	Secondly,	in	most	of	the	research	works	the	random	multiplier	is	assumed	to
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Fatigue	crack	growth	(FCG)	is	an	important	degradation	process	of	many	critical	mechanical	equipment.	Probabilistic	FCG	models	are	often	used	to	account	for	the	variability	among	FCG	process	conditions.	In	the	well-

known	model	of	Yang	and	Manning,	a	deterministic	FCG	model	is	randomized	by	multiplying	the	crack	growth	rate	with	a	random	multiplier	assumed	to	obey	a	lognormal	distribution	and	unknown	parameters	are	jointly

estimated	through	Maximum	likelihood	estimation.	By	so	doing,	the	modeling	error	due	to	inappropriate	choice	of	the	deterministic	FCG	model	and	that	due	to	unsuitable	assignment	of	the	probability	distribution	of	the

random	multiplier	cannot	be	distinguished.	Besides,	 the	model	uncertainty	of	 the	random	multiplier	 is	not	explicitly	considered.	 In	 this	paper,	a	 two-step	 least-square	estimation	method	 is	proposed,	which	estimates	 the

unknown	parameters	in	the	deterministic	FCG	model	at	first,	and	generates	a	sample	set	for	the	estimation	of	the	random	multiplier	considering	model	uncertainty	by	way	of	Bayesian	model	selection.	In	Bayesian	model

selection,	three	types	of	Bayes	factor	are	considered	to	select	the	appropriate	candidate	model	and	a	simulation	experiment	is	carried	out	to	guide	their	selection.	The	effectiveness	and	feasibility	of	the	proposed	method	are

illustrated	through	two	case	studies	using	the	real	FCG	datasets.
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obey	a	lognormal	distribution	[8].	This	assumption	is	validated	by	the	classical	Kolmogorov-Smirnov	(K-S)	hypothesis	test,	wherein	the	lognormal	distribution	is	found	suitable	at	a	certain	level	of	confidence	and	without	comparison

with	other	candidate	distribution.	Therefore,	the	uncertainty	in	determining	the	best	distribution	model	should	be	considered.

Model	uncertainty	has	received	increased	attention	 in	reliability	engineering.	Yu	and	Chang	[9]	considered	model	uncertainty	 in	accelerated	 life	data	analysis	by	using	the	Bayesian	model	averaging	method.	The	Bayesian

model	averaging	method	was	also	utilized	to	assess	the	computational	fracture	models	by	Hamdia	et	al.	[10].	Zhang	and	Mahadevan	[11]	utilized	a	Bayesian	updating	approach	to	deal	with	the	model	uncertainty	between	the	physical

reliability	models	and	statistical	reliability	models.	Zio	and	Apostolakis	[12]	proposed	the	Adjustment	Factor	method	to	quantify	the	model	uncertainty	based	on	expert	judgment	for	a	nuclear	safety	problem.	The	method	was,	then,

extended	to	establish	a	confidence	band	for	the	reliability	of	model	prediction	in	[13].	Instead,	to	the	best	knowledge	of	the	authors,	the	lognormal	assumption	was	always	applied	without	consideration	of	model	uncertainty	in	the

application	of	Yang	and	Manning’s	model	[3,14,15].

In	this	paper,	a	two-step	least-square	(TSLS)	estimation	method	is	proposed	based	on	Yang	and	Manning’s	probabilistic	FCG	model.	The	proposed	method	can	estimate	the	unknown	parameters	in	the	deterministic	FCG	model

at	first,	and	assess	the	fitness	of	the	deterministic	FCG	model	by	classical	goodness-of-fit	methods	such	as	adjusted- .	Then,	samples	for	the	estimation	of	the	random	multiplier	can	be	generated	and	the	model	uncertainty	with

regard	to	different	probability	distributions	(e.g.	lognormal	distribution,	gamma	distribution,	inverse	Gaussian	distribution)	is	taken	into	account.	Here,	model	uncertainty	refers	to	the	uncertainty	involved	in	the	selection	of	the	best

model	from	a	set	of	candidates	[13],	and	different	methods	such	as	information	criteria	[16]	and	Bayesian	model	selection	[17]	have	been	developed	to	deal	with	it.	The	Akaike	information	criteria	(AIC)	measures	the	difference	between

candidate	models	and	true	data-generating	process	from	the	perspective	of	Kullback–Leibler	divergence	[16].	The	Bayesian	model	selection	method	compares	candidate	models	in	pairs	by	calculating	the	ratio	of	the	model	posterior

probabilities,	and	selects	the	candidate	model	with	the	highest	posterior	probability	as	reference.	In	this	paper,	Bayesian	model	selection	is	utilized	because	of	its	mathematical	stability	and	convenience	of	updating	inferences	using

real-time	data.	In	Bayes	model	selection,	the	better	a	model	fits	the	data,	the	larger	its	posterior	probability	is.	As	the	data	volume	approaches	infinite,	the	ratio	of	the	posterior	probability	of	the	right	model	to	that	of	the	wrong	model

will	approach	infinite.	In	engineering,	the	volume	of	obtained	data	may	not	be	large	enough	to	make	this	method	select	the	right	model.	Under	these	circumstances,	averaging	the	inferences	of	all	the	competing	models	can	give	more

comprehensive	results.	In	[18],	the	Bayesian	model	selection	method	is	able	to	achieve	better	simulating	results	compared	with	AIC	for	degradation	data	analysis.

In	Bayesian	model	selection,	Bayes	factor	is	the	ratio	of	marginal	likelihoods	corresponding	to	two	different	models	[19].	Note	that	model	posterior	probability	is	calculated	by	multiplying	the	model	prior	probability	with	the

marginal	likelihood	of	the	obtained	data.	The	ratio	of	two	model	posterior	probabilities	is	equal	to	the	Bayes	factor	when	the	model	prior	probabilities	are	set	to	be	uniformly	distributed.	To	select	the	appropriate	candidate	model,	three

types	of	Bayes	factor	are	considered	in	this	paper,	which	are:	(1)	Bayes	factor	with	uniform	parameter	prior	(UPP),	(2)	posterior	Bayes	factor	and	(3)	Bayes	factor	based	on	cross	validation	(BFCV).	Each	has	its	own	reasonability.	A

simulation	experiment	is	carried	out	to	compare	their	performance.	According	to	the	results,	the	BFCV	is	recommended.

Two	improvements	are	achieved	in	the	proposed	method	compared	with	the	method	of	Yang	and	Manning.	Firstly,	by	utilizing	the	adjusted- statistics,	different	kinds	of	deterministic	FCG	models	are	assessed	and	the	most

appropriate	one	can	be	selected	instead	of	choosing	one	arbitrarily.	Secondly,	the	model	uncertainty	with	respect	to	the	distribution	of	multiplier	is	considered	and	dealt	with	by	using	Bayesian	model	selection.	Based	on	the	Bayes

factor,	three	candidate	distributions	(Ggamma,	Iinverse	Gaussian	and	Llognormal)	can	compete	with	each	other	in	data	fitting.	With	the	model	prior	probabilities	set	to	be	uniformly	distributed,	larger	normalized	Bayes	factor	of	a

model	indicates	stronger	evidence	of	the	model	conforming	to	the	true	data-generating	distribution.	The	appropriate	model	can	be	built	according	to	the	inferences	from	all	the	candidates	based	on	the	calculated	normalized	Bayes

factors,	which	are	defined	as	model	weights	[20,21].	In	this	way,	the	assumption	of	the	lognormal	distribution	in	the	method	of	Yang	and	Manning	can	be	relaxed.

The	rest	of	this	paper	 is	organized	as	follows.	In	Section	2,	Yang	and	Manning’s	probabilistic	FCG	model	and	the	proposed	TSLS	method	are	 introduced	 in	consideration	of	 four	 types	of	deterministic	FCG	models	 [22].	In

Section	3,	Bayesian	model	selection	dealing	with	the	model	uncertainty	of	the	random	multiplier	in	Yang	and	Manning’s	probabilistic	FCG	model	is	explained,	and	three	types	of	Bayes	factor	are	presented.	In	Section	4,	a	simulation

experiment	is	carried	out	to	compare	the	performance	of	the	three	types	of	Bayes	factor.	In	Section	5,	the	effectiveness	and	feasibility	of	the	proposed	method	are	illustrated	through	two	case	studies	on	the	datasets	of	literature	[3]

and	[4].	Section	6	concludes	the	work.

2	TSLS	estimation	method	based	on	the	Yang	and	Manning’s	probabilistic	model
2.1	Yang	and	Manning’s	probabilistic	model

To	consider	the	randomness	in	the	fatigue	crack	growth	process,	Yang	and	Manning	[5]	proposed	a	very	general	formula	frame	to	randomize	deterministic	FCG	models	as	follows:

where	 indicates	a	general	non-negative	deterministic	crack	growth	rate	 function	which	could	be	constructed	as	a	surrogate	model	of	experimental	data	 [23],	or	determined	based	on	the	knowledge	of	 the	FCG	mechanism;	
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is	the	stress	intensity	factor	range;	 is	the	stress	ratio;	 is	the	maximum	stress	intensity	factor	in	a	load	cycle;	 is	the	maximum	stress	level;	 is	the	crack	length	at	time	 ;	 is	 the	random	part	characterizing	the

randomness	in	the	crack	growth	process.	In	this	paper,	Yang’s	assumption	[8]	that	 is	a	random	multiplier	obeying	a	certain	probability	distribution	is	applied	because	of	its	mathematical	simplicity	and	conservative	nature

[24].

Let	 denote	the	parameters	in	the	deterministic	FCG	model,	 denote	the	probability	density	function	(PDF)	of	the	multiplier ,	and	 denote	the	parameters	in	the	probability	distribution.	Then,	the	Eq.	(1)	can	be

reformulated	as:

After	the	logarithm	is	taken	on	both	sides	of	the	Eq.	(2),	we	can	obtain	that

where	 .

In	Yang’s	study	[8],	the	random	multiplier	was	assumed	to	follow	a	lognormal	distribution	with	a	mean	value	of	 and	an	unknown	variance	 .	As	a	result,	 followed	the	normal	distribution	with	a	mean	value	of	zero,	

,	and

The	PDF	of	crack	growth	rate	is

where	the	unknown	parameters	can	be	estimated	by	the	MLE	method	based	on	crack	growth	data.	Supposing	that	 the	crack	growth	data	set	 is	 ,	where	 indicates	 the	 -th	 crack	 growth

path	which	has	 monitored	crack	size	values,	 indicates	the	 -th	monitored	crack	size	value	of	the	 -th	crack	growth	path	and	 indicates	the	corresponding	crack	growth	rate	of	 .	Based	on	Eq.	(5),	the

maximum	likelihood	estimators	can	be	obtained	as

Because	of	practicability	and	computational	simplicity,	the	assumed	probability	distribution	of	the	random	multiplier	and	parameter	estimation	method	have	been	widely	applied	[3,14,15].	In	this	situation,	the	estimates	obtained

in	Eq.	(6)	are	the	same	as	the	least-square	(L-S)	estimates.	However,	two	problems	arise.	Firstly,	the	unknown	parameters	in	the	deterministic	FCG	model	and	that	of	lognormal	distribution	are	simultaneously	estimated	by	the	MLE

method.	In	this	situation,	their	estimates	jointly	maximize	the	likelihood	function	and	the	modeling	error	due	to	the	inappropriate	choice	of	the	deterministic	FCG	model	and	that	due	to	the	unsuitable	assignment	of	the	probability

distribution	of	the	multiplier	cannot	be	distinguished.	Prediction	accuracy	is,	then,	difficult	to	improve,	because	the	source	of	error	cannot	be	identified.	Secondly,	the	random	multiplier	in	most	of	the	research	works	is	assumed	to	obey

a	lognormal	distribution	[8].	But	this	assumption	was	only	validated	by	classical	Kolmogorov-Smirnov	(K-S)	hypothesis	test,	and	the	lognormal	distribution	is	suitable	only	at	a	certain	level	of	confidence	with	no	comparison	to	other

candidate	distributions.

As	a	result,	a	TSLS	estimation	method	is	here	proposed	based	on	Yang	and	Manning’s	probabilistic	FCG	model.	The	proposed	method	can	estimate	the	unknown	parameters	in	the	deterministic	FCG	model	at	first,	and	assess

the	deterministic	FCG	model	by	goodness-of-fit	methods.	Afterwards,	the	samples	for	the	estimation	of	the	random	multiplier	are	generated	and	the	model	uncertainty	for	different	probability	distributions	can	be	considered.
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2.2	TSLS	estimation	method
The	proposed	TSLS	method	employs	the	L-S	estimation	twice.	In	the	first	step,	the	random	multiplier	is	neglected	and	the	unknown	parameters	in	the	deterministic	FCG	model	are	estimated	from	all	the	obtained	data.
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In	the	second	step,	the	random	multiplier	of	each	crack	growth	path	is	estimated	as

where	the	 is	the	estimate	of	the	random	multiplier	for	the	 -th	crack	growth	path.
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By	so	doing,	all	the	obtained	data	are	used	to	estimate	the	unknown	parameters	in	the	deterministic	FCG	model,	and	the	goodness-of-fit	methods,	e.g.	Pearson	correlation	coefficient,	adjusted- ,	can	be	used	to	test	whether

the	chosen	deterministic	FCG	model	is	suitable.	Besides,	a	sample	set	for	the	estimation	of	the	random	multiplier	can	be	generated,	with	sample	size	equal	to	the	number	of	FCG	paths.	If	data	of	new	crack	growth	paths	are	obtained,

more	estimates	of	random	multiplier	can	be	obtained	for	the	different	crack	growth	paths,	and	information	reflecting	unit-to-unit	variation	is	available.	If	subsequent	data	of	certain	crack	growth	paths	are	later	obtained,	the	estimation

accuracy	of	the	corresponding	random	multipliers	can	be	further	improved.

In	this	paper,	four	types	of	deterministic	FCG	models	are	considered:	(a)	power	function;	(b)	polynomial	function;	(c)	rational	function;	(d)	function	based	on	curve	fitting	technique,	which	have	been	reviewed	in	[22].	Most	of

widely-used	crack	growth	models	belong	to	these	four	categories,	such	as	Paris	law	[25]	and	its	improved	forms	[26]	which	are	sorted	into	the	power	function,	and	Forman’s	model	which	describes	the	third	stage	of	fatigue	crack	growth

[27]	can	be	sorted	into	the	rational	function.	Their	detailed	formulas	are	as	follows:

Power	function

Polynomial	function

Rational	function

Function	based	on	curve	fitting	technique

The	parameters	which	need	to	be	estimated	are	 in	power	function,	 in	polynomial	function,	 in	rational	function,	and	 in	function	based	on	curve	fitting	technique.	By	replacing	 in	Eq.
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(7)	by	the	above	four	functions,	the	TSLS	estimates	of	the	unknown	parameters	and	the	random	multiplier	can	be	obtained	as
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In	this	paper,	adjusted- [28]	is	chosen	to	assess	the	deterministic	FCG	models.	The	larger	the	value	of	the	adjusted- is,	the	better	the	deterministic	FCG	model	is.	Adjusted- is	a	correction	of	 attempting	to	prevent	the

automatically	and	spuriously	increasing	of	 when	extra	parameters	are	added	into	the	model.	The	adjusted- can	be	obtained	as

where	 is	 the	 total	 size	 of	 the	 obtained	 dataset	 ,	 indicates	 the	 number	 of	 unknown	 parameters	 in	 the	 deterministic	 FCG	model	 ( in	 power	 function,	 in	 polynomial	 function,	 in	 rational	 function,	 and	 in

function	based	on	curve	fitting	technique),	 denotes	the	total	sum	of	squares	which	is	obtained	as

and	 denotes	the	residual	sum	of	squares	which	is	obtained	as
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After	that,	a	set	of	random	multiplier	estimates	can	be	obtained	based	on	the	chosen	deterministic	FCG	model	with	the	largest	value	of	adjusted- ,	and	some	methods,	e.g.	AIC	or	Bayesian	model	selection,	could	be	applied	to

consider	the	model	uncertainty	rather	than	utilizing	one	type	of	distribution.	Bayesian	model	selection	is	chosen	because	of	its	mathematical	stability	and	convenience	of	updating	inferences	using	real-time	data.	The	detailed	procedure

of	Bayesian	model	selection	is	introduced	in	Section	3.

3	Introduction	and	application	of	Bayesian	model	selection
In	Section	2,	the	TSLS	estimation	method	has	been	proposed	to	generate	the	samples	for	the	estimation	of	the	random	multiplier.	Based	on	the	generated	samples,	Bayesian	model	selection	is	applied	to	deal	with	the	model

uncertainty	 associated	with	 the	 random	multiplier.	 In	 this	 section,	 the	 theory	 and	 implementation	 of	 Bayesian	model	 selection	 are	 introduced.	Besides,	 to	 select	 the	 appropriate	 candidate	model,	 three	 types	 of	 Bayes	 factor	 are

considered.

3.1	The	Bayesian	model	selection	method
In	Bayesian	model	selection,	a	model	set	consisting	of	different	candidate	probability	distributions	is	constructed,	which	is	assumed	to	contain	the	true	data-generating	process.	Bayesian	model	selection	compares	candidate

models	in	pairs	by	calculating	the	ratio	of	the	model	posterior	probabilities,	and	selects	the	candidate	model	with	the	highest	posterior	probability	as	reference.	In	Bayes	model	selection,	the	better	a	model	fits	the	data,	the	larger	its

posterior	probability	is.	As	the	data	volume	approaches	infinite,	the	ratio	of	the	posterior	probability	of	the	right	model	to	that	of	the	wrong	model	will	approach	infinite.	If	the	true	data-generating	process	is	not	in	the	model	set,	the

most	similar	one	will	be	selected.	Supposing	that	 is	the	samples	for	the	estimation	of	the	random	multiplier	generated	by	using	the	TSLS	estimation,	 is	the	model	set,	then,	different	models

compete	with	each	other	by

In	Eq.	(25),	 is	the	model	prior	representing	the	prior	evidence	of	the	model	 before	the	data	are	obtained;	 is	the	marginal	likelihood	calculated	by

where	 is	the	prior	distribution	of	the	parameter	vector	 ,	 is	the	likelihood	function	calculated	by

As	a	ratio,	 indicates	stronger	evidence	of	the	model	 conforming	to	the	true	data-generating	distribution.	The	inference	of	Bayesian	model	selection	 is	given	based	on	both	the	prior	knowledge	and	the

obtained	data.	When	new	data	are	obtained,	by	setting	the	model	prior	probabilities	as	the	obtained	model	posterior	probabilities	during	the	last	Bayesian	model	selection	analysis,	the	new	inference	of	Bayesian	model	selection	can	be

calculated	based	on	both	the	historical	and	the	new	data.	In	this	way,	the	inference	can	be	revised	and	updated	iteratively.	In	Bayesian	model	selection,	Bayes	factor	is	the	ratio	of	marginal	likelihoods	corresponding	to	two	different

models	[19]:

Note	that	model	posterior	probability	is	calculated	by	multiplying	the	model	prior	probability	with	the	marginal	likelihood	of	the	obtained	data.	The	ratio	of	two	model	posterior	probabilities	is	equal	to	the	Bayes	factor	when

the	model	prior	probabilities	are	set	to	be	uniformly	distributed.	Based	on	the	Bayes	factor,	the	candidate	models	can	compete	with	each	other	in	data	fitting.	The	model	is	built	according	to	the	inferences	from	all	the	candidates	based

on	the	calculated	Bayes	factors.	The	evidence	of	candidate	model	in	terms	of	Bayes	factor	is	discussed	by	Jeffreys	[20],	which	is	shown	in	Table	1.	If	the	evidence	of	a	model	is	substantial,	it	will	be	selected	as	reference,	otherwise,
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averaging	the	inferences	of	the	competing	models	can	give	more	comprehensive	results	[21].

Table	1	Model	building	based	on	Bayes	factor.

Substantial	evidence	against	the	model	 is	abandoned

insufficient	evidence Model	 and	 are	averaged

Substantial	evidence	of	the	model	 is	selected

To	select	the	appropriate	candidate	model,	three	types	of	Bayes	factor	are	considered	in	this	paper.	The	best	Bayes	factor	is	considered	as	that	which	enables	the	Bayesian	model	selection	method	to	select	the	right	model.

3.2	Three	types	of	Bayes	factor
The	considered	three	types	of	Bayes	factor	are:	(1).	Bayes	factor	with	UPP;	(2).	Posterior	Bayes	factor	and	(3).	BFCV.	These	three	types	of	Bayes	factor	are	widely	applied	in	Bayesian	model	selection	[29–31],	and	each	has	its

own	reasonability.

3.2.1	Bayes	factor	with	UPP
UPP	is	a	natural	choice	under	the	Principle	of	indifference.	In	the	Principle	of	indifference,	if	here	is	no	evidence	that	some	values	of	the	parameter	are	more	possible	than	the	others,	equal	probability	should	be	assigned	to	all	the	parameter

values.	Therefore,	a	uniform	distribution	is	considered	as	an	objective	choice	before	any	data	is	obtained.

and	Eqs.	(26)	and	(28)	can	be	reformulated	as

Annotations:

A1. 	please	add	a	'p∈I_c,'	at	the	end	of	the	formula	

However,	when	the	parameter	space	is	unbounded,	the	setting	of	equal	probability	will	lead	to	the	infinite	of	total	probability.	Then,	the	closed-form	PDF	of	UPP	is	not	available.	To	overcome	it,	an	approximation	is	utilized,	which	is	introduced	in

Section	3.3.3.

3.2.2	Posterior	Bayes	factor
The	posterior	Bayes	factor	[29]	utilizes	the	Bayes	theorem	and	all	the	obtained	data	to	update	the	UPP	first;	then,	the	updated	parameter	distribution	is	used	for	the	calculation	of	the	Bayes	factor,	which	is	obtained	as

where
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and	 is	the	likelihood	function	of	all	the	obtained	data.

Annotations:

A1. 	please	add	a	'p∈I_c,'	at	the	end	of	the	formula	

3.2.3	Bayes	factor	based	on	cross	validation
The	BFCV	is	calculated	with	the	obtained	data	based	on	the	cross	validation	method	[32–34].	In	the	calculation	of	BFCV,	the	data	are	randomly	split	into	 mutually	exclusive	subsets	of	approximately	equal	size,	 .	One

subset	is	used	to	calculate	the	 in	Eq.	(27)	and	the	others	are	used	to	update	the	UPP	based	on	the	Bayes	theorem.	This	process	is	repeated	 times,	with	each	of	the	 subsets	used	exactly	once	to	calculate	the	 in	Eq.	(27).	The

average	of	the	 is	the	corresponding	marginal	likelihood.	Let	 denote	all	the	data	excluding	 .	Then,	Eqs.	(28)	and	(26)	can	be	reformulated	as

where

and	 is	called	the	fold	of	cross	validation.

Annotations:
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A2. 	please	add	a	'p∈I_c,'	at	the	end	of	the	formula	

The	BFCV	has	similar	behavior	with	the	posterior	Bayes	factor.	By	averaging	multiple	results,	it	performs	more	stably	at	the	expense	of	more	computing	time.	The	computing	time	and	stability	of	the	BFCV	will	increase	with	the	increase	of	 [35].

When	 is	equal	to	the	sample	size,	the	BFCV	can	be	called	as	the	Bayes	factor	based	on	leave-one-out	cross	validation	(BFLOOCV).	Note	that	the	number	of	FCG	paths	is	small	in	most	datasets;	the	BFLOOCV	is	employed	in	this	paper	to	extract	stable

results.	In	addition,	an	easy-to-compute	approximation	[30]	of	the	BFLOOCV	can	be	utilized	when	the	sample	size	is	large.

3.3	The	implementation	of	the	Bayesian	model	selection	method
3.3.1	Candidate	models

In	this	paper,	three	candidate	models	for	the	random	multiplier	distribution	are	considered:	(1)	gamma	distribution;	(2)	inverse	Gaussian	(IG)	distribution	and	(3)	lognormal	distribution.	The	lognormal	distribution	has	been	widely	applied	[3,14,15].

The	gamma	distribution	and	the	IG	distribution	are	considered	because	of	 the	following	reasons.	Firstly,	 the	gamma	and	IG	distributions	have	been	widely	applied	 in	degradation	data	analysis	 [36,37].	Secondly,	the	support	sets	of	the	gamma	and	IG

distributions	lead	the	random	multiplier	to	be	greater	than	zero,	which	coincides	with	Yang	and	Manning’s	assumption	that	the	FCG	is	monotonous.	Thirdly,	the	similarity	between	the	gamma,	IG	and	lognormal	distributions	suggests	that	the	gamma	and	IG

distributions	are	good	potential	alternatives	for	the	lognormal	[37].

Let	 ,	 and	 denote	the	gamma,	IG	and	lognormal	distributions,	respectively.	Their	detailed	PDFs	are	as	follows:
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3.3.2	Model	prior	

The	model	prior	probabilities	can	be	elicited	from	expert	judgment	or	derived	from	the	last	Bayesian	model	selection	analysis	using	historical	data.	When	no	information	is	available,	uniform	prior	can	be	applied.

3.3.3	Calculation	of	the	Bayes	factor
A	difficulty	in	calculating	the	Bayes	factor	is	the	calculation	of	the	marginal	likelihood	 in	Eq.	(26).	As	for	the	candidate	models,	closed-form	solutions	for	the	above	integration	are	not	easy	to	obtain.	In	this	paper,	the

Markov	Chain	Monte	Carlo	(MCMC)	method	is	utilized	to	calculate	the	marginal	likelihood.	MCMC	is	a	kind	of	sampling	algorithm	in	which	a	specific	Markov	chain	is	constructed.	The	stationary	distribution	of	the	Markov	Chain	can	be	regarded	as	the

desired	Bayesian	posterior	distribution.	After	the	burn-in	period,	the	state	values	of	the	constructed	Markov	Chain	are	sampled	and	the	Monte	Carlo	method	is	carried	out	to	obtain	Bayesian	inference.	In	the	calculation	of	the	Bayes	factor	with	UPP,	the

MCMC	samples	are	generated	from	the	parameter	posterior	distribution,	which	is	updated	based	on	all	the	obtained	data.	Let	 denote	the	samples.	Then,	based	on	the	harmonic	mean	method	proposed	by	Newton	and	Raftery	[38],

the	corresponding	marginal	likelihood	can	be	approximated	as

Annotations:

A1. 	please	add	a	formula	'c∈I_c,'	between	the	comma	and	the	letter	's'	

In	 the	 calculation	 of	 the	 posterior	 Bayes	 factor,	 the	 MCMC	 samples	 are	 generated	 from	 the	 parameter	 posterior	 distribution,	 which	 is	 also	 updated	 based	 on	 all	 the	 obtained	 data.	 Let	 denote	 the	 samples.	 The

corresponding	marginal	likelihood	can	be	approximated	as

Annotations:

A1. 	please	add	a	formula	'c∈I_c,'	between	the	comma	and	the	letter	's'	

In	 the	 calculation	 of	 the	 BFLOOCV,	 sets	 of	 MCMC	 samples	 are	 generated.	 The	 -th	 set	 of	 the	 MCMC	 samples	 are	 generated	 from	 the	 parameter	 posterior	 distribution,	 which	 is	 updated	 based	 on	 the	 data	 .	 Let	

denote	the	 -th	set	of	the	MCMC	samples.	The	corresponding	marginal	likelihood	of	the	BFLOOCV	can	be	approximated	as

where
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A1. 	please	add	a	formula	'c∈I_c,'	between	the	comma	and	the	letter	's'	

A2. 	please	add	a	formula	'c∈I_c,'	on	the	right	side	of	right	parenthesis	')'	

In	this	paper,	the	software	WinBUGS	executed	in	the	Windows	is	utilized	to	carry	out	the	MCMC	algorithm.	After	discarding	the	initial	5000	iterations	for	the	convergence,	5000	MCMC	samples	are	generated	to	calculate	the	marginal	likelihood

based	on	Eqs.	(41)–(44).	When	the	parameter	space	is	unbounded,	a	normal	distribution	with	a	large	variance	( in	WinBUGS)	is	set	to	approximate	the	corresponding	UPP	as

The	flowchart	of	the	whole	proposed	method	is	shown	in	Fig.	1.

4	Simulation	experiment
Three	types	of	Bayes	factor	are	considered	for	the	Bayesian	model	selection	in	Section	3.2.	In	this	section,	a	simulation	experiment	is	carried	out	to	guide	their	selection.	In	one	simulation	trial,	data	are	generated	from	the

candidate	models	in	Section	3.3.1	and	the	Bayesian	model	selection	method	is	carried	out	based	on	the	three	types	of	Bayes	factor.	Then,	the	results	of	multiple	simulation	trials	are	analyzed.	Under	the	condition	that	the	model	prior	is

set	the	same,	the	ratio	of	two	model	posterior	probabilities	is	equal	to	the	Bayes	factor.	A	better	Bayes	factor	is	considered	as	the	one	that	enables	Bayesian	model	selection	to	select	the	right	model.	The	case	that	simulating	data	are

generated	from	a	mixed	distribution	of	candidate	models	is	not	studied	in	this	paper.

The	simulation	experiment	consists	of	three	groups	for	which	the	data-generating	distributions	are	gamma,	IG	and	lognormal,	respectively.	In	each	group,	four	sample	sizes,	10,	20,	30,	40,	are	considered,	which	cover	the	path

numbers	in	most	FCG	datasets.	The	number	of	simulation	trials	for	each	case	is	set	as	400	with	tests	on	different	values	to	ensure	that	the	absolute	relative	difference	of	the	average	results	obtained	in	the	different	times	is	less	than

5%	for	each	group.	The	simulation	setting	is	shown	in	Table	2.

Table	2	Simulation	setting.

Data-generating	distribution Sample	size

Group	1 gamma 10 20 30 40

Group	2 IG 10 20 30 40

Group	3 lognormal 10 20 30 40

According	to	Yang’s	assumption	[8],	the	mean	of	the	random	multiplier	is	equal	to	one	and	to	make	the	shapes	of	data-generating	distributions	similar	to	each	other,	their	variances	are	assumed	to	be	the	same.	The	specific

parameter	values	are	shown	in	Table	3.
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Fig.	1	Flowchart	of	the	proposed	method.



Table	3	Parameter	values	of	data-generating	distributions.

Data-generating	distribution Parameter	value

Group	1 gamma

Group	2 IG

Group	3 lognormal

Three	indicators	are	used	to	assess	the	performance	of	the	three	types	of	Bayes	factor,	which	are	the	mean	error	(ME),	the	mean	square	error	(MSE)	and	the	proportion	of	the	best	(PB).	The	ME	is	defined	as

where	 is	 the	Bayes	 factor	 for	 the	model	 versus	 the	 data-generating	model,	which	 is	 obtained	 in	 the	 -th	 simulation	 trial.	 is	 the	 normalization	 constant.	 A	Bayes	 factor	with	 smaller	ME	will	 behave

better	in	average	sense.

The	MSE	is	defined	as

MSE	is	a	comprehensive	measure	of	bias	and	variance.	A	smaller	MSE	indicates	better	and	more	stable	performance.

The	PB	is	defined	from	the	perspective	of	frequency.	When	a	single	simulation	trial	is	completed,	the	errors	of	the	three	types	of	Bayes	factor	are	calculated	and	ordered	from	small	to	large;	then,	their	rankings	(the	best,	the

medium	and	the	worst)	are	recorded.	After	400	simulation	trials,	the	proportion	that	a	type	of	Bayes	factor	is	the	best,	the	medium	and	the	worst	can	be	obtained.	If	a	certain	type	of	Bayes	factor	is	always	the	best,	it	will	be	more	likely

to	be	the	best	in	the	future.

The	ME,	MSE	and	PB	for	each	group	are	shown	in	Figs.	2–4.
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Fig.	2	ME	of	the	three	types	of	Bayes	factor.

Fig.	3	MSE	of	the	three	types	of	Bayes	factor.



Based	on	the	above	results,	some	conclusions	can	be	drawn	as	follows:

(1) The	performance	of	the	posterior	Bayes	factor	and	the	BFLOOCV	are	similar	from	the	perspective	of	ME	and	MSE,	no	matter	what	the	data-generating	distribution	and	sample	size	are.

(2) The	errors	of	the	posterior	Bayes	factor	and	the	BFLOOCV	decrease	with	the	increase	of	sample	size,	which	indicates	a	good	large	sample	property	of	them.	However,	the	Bayes	factor	with	UPP	does	not	possess	this	property.

(3) In	most	instances,	the	BFLOOCV	has	the	highest	PB,	which	indicates	a	large	possibility	that	the	BFLOOCV	behaves	better	than	the	others.	Besides,	the	posterior	Bayes	factor	has	the	highest	proportion	of	the	medium	and	the	Bayes	factor	with

UPP	has	the	highest	proportion	of	the	worst.

As	a	result,	the	BFLOOCV	is	selected	in	this	paper	to	carry	out	the	Bayesian	model	selection	method.

5	Case	study
The	software	Matlab	is	utilized	to	calculate	the	statistic	inference	of	proposed	probabilistic	FCG	model.	In	order	to	show	the	feasibility	of	the	proposed	method,	two	case	studies	is	carried	out	by	using	the	FCG	data	from	[3,4].

As	for	the	FCG	data,	there	are	three	main	aspects	that	can	affect	the	data	quality:	unit-to-unit	variation,	measurement	error	and	sample	size.

The	unit-to-unit	variation	can	be	considered	and	characterized	in	our	model	by	the	proposed	TSLS	estimation	method.	Based	on	the	TSLS	estimation	method,	samples	of	different	FCG	paths	for	the	estimation	of	the	random

multiplier	can	be	generated.	Then,	the	random	multiplier	is	modeled	by	a	probabilistic	distribution	in	consideration	of	unit-to-unit	variation.

Smaller	measurement	error	can	lead	to	better	analysis	results.	In	this	paper,	the	effects	of	measurement	error	can	also	be	considered	in	our	model	when	dealing	with	model	uncertainty.	By	using	the	Bayesian	model	selection

method,	the	appropriate	probability	distribution	of	the	random	multiplier	can	be	obtained	taking	into	account	the	true	data-generating	distribution	and	the	distribution	of	measurement	error.	If	the	distribution	of	measurement	error	is

available,	Bayesian	filtering	method	[39]	can	be	employed	to	estimate	the	true	crack	length,	which	hasn’t	been	explored	in	this	paper.	We	plan	to	investigate	this	issue	in	future	work.

As	for	the	sample	size,	the	larger	it	is,	the	more	reliable	statistical	results	can	be	obtained.	In	this	paper,	the	Bayes	factor	based	on	leave-one-out	cross	validation	is	used	in	Bayesian	model	selection,	which	can	extract	stable

results	and	alleviate	the	influences	of	small	sample	size	to	a	certain	extent	as	illustrated	in	the	simulation	experiment.	However,	small	sample	size	cannot	lead	to	satisfactory	results	especially	when	the	data	happen	to	locate	at	the	tail

of	the	distribution.	In	fact,	small	sample	size	is	a	universal	challenge	and	appropriate	experimental	sample	size	is	problem-specific.	The	details	of	case	studies	are	as	follows:

Fig.	4	PB	of	the	three	types	of	Bayes	factor.



5.1	Case	1:	FCG	dataset	from	wu	and	Ni’s	work	[3]
In	[3],	a	group	of	30	2024-T351	aluminum	alloy	plates,	which	were	loaded	by	sinusoidal	signals	with	maximum	of	4.5 kN,	minimum	of	0.9 kN,	and	frequency	of	15 Hz,	are	measured.	The	detailed	observed	FCG	processes	are

shown	in	Fig.	5.

The	crack	growth	rates	of	each	FCG	process	are	calculated	by	using	the	5-points	Incremental	Polynomial	Method	given	in	the	ASTM	standard	E647-15e1	[40],	for	which	12	data	points	of	each	FCG	path	are	utilized	at	the	crack

size	of	 .	By	this	way,	a	dataset	 is	obtained	and	the	proposed	TSLS	estimation	method	is	applied.	In	the	first	step,	the	parameters	of	deterministic	FCG

models	are	estimated,	which	are	listed	in	Table	4.	The	corresponding	fitting	curves	are	plotted	in	Fig.	6.

Table	4	Parameter	estimates	of	deterministic	FCG	models.

Power	function 5.30e−14

7.04

polynomial	function 1.17e−2

−1.01e−3

0.02e−3

rational	function 6.20e−8

2.60

4.80

Fig.	5	FCG	dataset	from	[3].
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0.81

function	based	on	curve	fitting	technique 244.26e3

−0.99

−7.56e3

Then,	 the	 adjusted- is	 calculated	 to	 assess	 the	 accuracies	 of	 four	 types	 of	 deterministic	 FCG	 models.	 According	 to	 the	 results	 listed	 in	 Table	 5,	 the	 function	 based	 on	 curve	 fitting	 technique	 is	 the	 most	 appropriate

deterministic	FCG	model,	which	should	be	employed	in	the	second	step	of	the	TSLS	estimation.

Table	5	Adjusted- of	four	types	of	deterministic	FCG	models.

Deterministic	FCG	model Power	function Polynomial	function Rational	function Function	based	on	curve	fitting	technique

Adjusted- 0.8710 0.8758 0.8924 0.8925

In	 the	 second	 step,	 by	 solving	 Eqs.	 (9)	 and	 (21),	 12	 sets	 of	 samples	 for	 the	 estimation	 of	 the	 random	 multiplier	 are	 generated	 based	 on	 the	 FCG	 data	 of	 crack	 lengths	

.	Based	on	the	generated	samples,	model	uncertainty	with	regard	to	the	distribution	of	the	random	multiplier	can,	then,	be	considered	by	the	Bayesian	model	selection	method.	The	model	prior	probabilities	is

set	to	be	uniformly	distributed	and	the	calculated	Bayes	factors	of	each	candidate	model	are	normalized	and	plotted	in	Fig.	7.
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Fig.	6	Data	points	and	corresponding	fitting	curves.

		 R2	

		R2	

		R2

		 	

	



As	shown	 in	Fig.	7,	 three	candidate	distributions	 (Ggamma,	 Iinverse	Gaussian	 and	Llognormal)	 compete	with	 each	 other	 in	 data	 fitting.	Note	 that	 larger	Bayes	 factor	 of	 a	model	 indicates	 stronger	 evidence	 of	 the	model

conforming	 to	 the	 true	 data-generating	 distribution.	 The	 performance	 of	 lognormal	 distribution	 is	 not	 the	 best	 for	 the	 data	 of	 crack	 lengths	 ,	 which	 demonstrates	 the	 necessity	 of	 considering	model

uncertainty.	In	Bayesian	model	selection,	the	model	of	random	multiplier	is	built	according	to	the	inferences	from	all	the	candidates	based	on	the	calculated	normalized	Bayes	factors.	According	to	the	Jeffreys'	scale	of	evidence	for

model	 selection	 [20],	 if	 both	 and	 are	 greater	 than	 ,	 the	 lognormal	 distribution	 will	 be	 selected	 as	 reference,	 otherwise,	 averaging	 the	 inferences	 of	 all	 the	 competing	 models	 can	 give	 more

comprehensive	result	[21].	Kolmogorov-Smirnov	statistics	are	employed	to	evaluate	the	goodness	of	fit	of	the	built	model.	Smaller	Kolmogorov-Smirnov	statistics	indicates	better	goodness	of	fit.	A	comparison	between	the	proposed

model	and	the	Yang	and	Manning’s	model	is	provided	in	Fig.	8.	It	can	be	observed	that	the	proposed	model	fit	the	data	better	than	the	Yang	and	Manning’s	model.

5.2	Case	2:	FCG	dataset	from	Virker’s	work	[4]
In	[4],	a	group	of	2.54 mm	thick,	588.8 mm	long	and	152.4 mm	wide	panels	of	2024-T3	aluminum	alloy	were	tested	to	obtained	the	FCG	dataset,	for	which	the	detail	of	specimen	geometry	have	been	given	in	 [4].	The	crack

growth	rates	of	each	FCG	process	are	calculated	by	using	the	7-points	Incremental	Polynomial	Method.	39	data	points	of	each	FCG	path	are	utilized	at	the	crack	size	uniformly	distributed	on	the	logarithmic	axis,	and	the	proposed

TSLS	estimation	is	applied.

In	the	first	step,	the	parameters	of	deterministic	FCG	models	are	estimated,	which	are	listed	in	Table	6.	Then,	the	adjusted- is	calculated	to	assess	the	accuracies	of	four	types	of	deterministic	FCG	models.	According	to	the

results	listed	in	Table	7,	the	Polynomial	function	is	the	most	appropriate	deterministic	FCG	model,	which	should	be	employed	in	the	second	step	of	the	TSLS	estimation.

Table	6	Parameter	estimates	of	deterministic	FCG	models.

Power	function 0.0471

Fig.	7	The	normalized	Bayes	factor	for	data	of	different	crack	lengths.

	 	

	 BFLognormal,Gamma	 	 BFLognormal,IG	 	 3.162	

Fig.	8	The	comparison	of	two	methods	for	data	of	different	crack	lengths.
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2.8699

polynomial	function −38.8009

3.4177

0.4217

rational	function 0.0831

3.1214

1.6165

−0.4832

function	based	on	curve	fitting	technique 253.9450

−4.0506

0.0049

Table	7	Adjusted- of	four	types	of	deterministic	FCG	models.

Deterministic	FCG	model Power	function Polynomial	function Rational	function Function	based	on	curve	fitting	technique

Adjusted- 0.9064 0.9188 0.9067 0.9165

In	 the	second	step,	by	solving	Eqs.	 (9)	and	 (17),	 39	 sets	of	 samples	 for	 the	estimation	of	 the	 random	multiplier	 are	generated	and	model	uncertainty	with	 regard	 to	 the	distribution	of	 the	 random	multiplier	 can,	 then,	be

considered	by	the	Bayesian	model	selection	method.	The	model	prior	probabilities	are	set	to	be	uniformly	distributed	and	the	calculated	Bayes	factors	of	each	candidate	model	are	normalized	and	plotted	in	Fig.	9.

		b
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Fig.	9	The	normalized	Bayes	factor	for	data	of	different	crack	lengths.



As	shown	in	Fig.	9,	the	performance	of	lognormal	distribution	is	not	always	the	best,	which	demonstrates	the	necessity	of	considering	model	uncertainty.	Similar	to	Case	1,	the	model	of	random	multiplier	is	built	according	to

the	inferences	from	all	the	candidates	based	on	the	calculated	normalized	Bayes	factors.	Based	on	the	Kolmogorov-Smirnov	statistics,	a	comparison	between	the	proposed	model	and	the	Yang	and	Manning’s	model	is	provided	in	Fig.	10.

It	can	be	observed	that	the	proposed	model	fit	the	data	better	than	the	Yang	and	Manning’s	model.

6	Conclusion
In	this	paper,	the	TSLS	estimation	method	is	proposed	based	on	Yang	and	Manning’s	probabilistic	FCG	model.	The	method	estimates	the	unknown	parameters	in	the	deterministic	FCG	model,	and	generates	samples	for	the

estimation	 of	 the	 random	multiplier.	 By	 this	 way,	 the	modeling	 error	 due	 to	 inappropriate	 choice	 of	 deterministic	 FCG	models	 and	 that	 due	 to	 unsuitable	 assignment	 of	 probability	 distribution	 to	 the	 random	multiplier	 can	 be

distinguished.	In	the	proposed	method,	the	adjusted- is	used	to	select	the	appropriate	deterministic	FCG	model	and	Bayesian	model	selection	is	used	to	deal	with	the	model	uncertainty	associated	with	the	random	multiplier.	In	the

application	of	Bayesian	model	selection,	three	types	of	Bayes	factor	are	taken	into	account	and	a	simulation	experiment	is	carried	out	to	guide	their	selection.	According	to	the	simulation	results,	the	BFLOOCV	is	suggested.	Two	case

studies	based	on	real	FCG	data	are	presented	to	illustrate	the	feasibility	of	the	proposed	method	and	the	necessity	of	considering	model	uncertainty.
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