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Abstract: The present research illustrates a Digital Twin Proof of Concept to support machine
prognostics with Low Availability of Run-to-Failure Data. Developed in the scope of the Industry
4.0 Lab of the Manufacturing Group of the School of Management of Politecnico di Milano, the
Digital Twin is capable to run in parallel to the drilling machine operations and, as such,
it enables to predict the evolution of the most critical failure mode, that is the imbalance
in the drilling axis. The real-time monitoring of the drilling machine is realized with a low-
cost and retrofit solution, which provides the installation of a Raspberry-Pi accelerometer,
able to enhance the extant automation. Relying on a joint use of real-time monitoring and
simulation, the Digital Twin implements a random coefficient statistical method through the
so-called Exponential Degradation Model, eventually demonstrating to increase the prediction
precision as monitoring data arrives. The Digital Twin Proof of Concept is described according
to the entire process from data acquisition to Remaining Useful Life prediction, following the
MIMOSA OSA-CBM standards.
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1. INTRODUCTION

In recent years, traditional manufacturing industries are
experiencing a tremendous shift motivated by the disrup-
tion of digital technologies within their factories. This new
trend, known as Industry 4.0, relies on the adoption of
technologies such as the Internet of Things (IoT), Big
Data, Cloud computing and Artificial Intelligence (AI) to
create a smart factory (De Carolis et al. (2017)). Within
this trend, attention is also shifting to the creation of
synergies between the physical world and the cyber one by
means of Cyber-Physical Systems (CPSs). They ease the
fast interconnection across the organization, from the field
to the top management, taking decentralized decisions
based on the data acquired and analyzed (Jazdi (2014),
Lee et al. (2015)). In such a technological landscape, a
”tool” that paves the way in the CPS integration is the
Digital Twin (DT), (Qi and Tao (2018)). The concept
of DT first started in the aerospace industry and it was
initially defined as the digital’s counterpart of a physical
system. Nowadays, the concept of DT is spreading fast
in manufacturing. Moving in this direction, the DT took
the role of monitoring the overall lifecycle of products
(Abramovici et al. (2016)) or production systems (Rosen
et al. (2015)). It is indeed defined as “an integrated multi-
physics, multi-scale, probabilistic simulation of a complex
product that uses the best available physical models, sen-
sor updates, etc., to mirror the life of its corresponding
twin” (Grieves (2014)). The DT may also act as the
digital counterpart to optimize the production system as
a system of assets (machineries, production equipment).

In this case, it facilitates the decision-making at different
asset lifecycle stages (Beginning of Life (BOL), Middle of
Life (MOL) and End of Life (EOL)) and control levels
(Strategic, Tactical and Operational levels) (Macchi et al.
(2018)). In particular, it may support the production
system condition monitoring and foster diagnostics and
prognostics (Qi and Tao (2018)).
Based on the necessity to provide further insight into this
smart maintenance vision of the DT, the work aims to
investigate how the DT can underpin the development
of Condition-Based Maintenance (CBM), with predictive
capabilities, in case of low availability of Run-To-Failure
(RTF) data of the asset under consideration.
The rest of the work is organized as follows: section 2
presents the background on some basics concepts from
literature. Section 3 sets the research objectives and the
research methodology. Section 4 develops the proof of
concept DT solution within a laboratory environment.
Finally, Section 5 summarizes the conclusions of the work
and proposes possible forthcoming research lines.

2. BACKGROUND

The DT processess data obtained from sensors embedded
in the asset and combines this information with historical,
current environmental data and operating parameters, in
order to determine, through simulation and data analytics,
the asset health and performance under certain circum-
stances, limiting unreliability situations. Therefore, CBM
may leverage on DT to control the production system in
real-time and to improve decision-making process by pre-
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dicting, through simulation and data analytics, its future
performance (Macchi et al. (2018)).

2.1 Condition Based Maintenance

CBM is a program that recommends maintenance deci-
sions based on the information collected through condition
monitoring. The main idea is to utilize the asset degra-
dation information, extracted and identified from on-line
sensing techniques, to reduce and eliminate unscheduled
downtimes and to optimize asset utilization (Jardine et al.
(2006)). Diagnostics and prognostics are two important
aspects activities in a CBM program. Diagnostics deals
with fault isolation and identification, before or after the
failure it has occurred. Prognostics is focused on the failure
mode evolution and deals with fault prediction, before
it occurs (Djurdjanovic et al. (2003), Lee et al. (2006),
Guillén et al. (2016)). A CBM program can be used both
to diagnosticate and to prognosticate the asset behavior
and the process is typically composed by the following
steps: i) Data Acquisition, ii) Data Manipulation, iii) State
Detection, iv) Health Assessment, v) Prognostic Assess-
ment, vi) Advisory Generation (ISO-13374-1:2003 (2003),
Bengtsson (2003), ISO-13374-4:2015 (2015)).

2.2 RUL Prediction Models

Prognostics plays an important role in CBM. This part
aims at forecasting a trend in the condition signals in order
to derive the time in which the fault is likely to occur, i.e.
the Remaining Useful Life (RUL) of the asset. In literature,
there are various approaches that can be followed to derive
the asset RUL (Lei et al. (2018)).
Physics model approaches model the degradation processes
of machines by building mathematical models on the basis
of the failure mechanisms or the first principle of damage
(Cubillo et al. (2016)). Although they might be useful to
model damage for simple mechanisms (e.g.: crack propaga-
tion in a steel sheet), they result to be too complicated for
complex systems, since to achieve high accuracy in RUL
prediction, it is necessary a complete understanding of the
different failure mechanisms.
Statistical models fit available historical values into ran-
dom coefficient models or stochastic process models in or-
der to predict RUL. Uncertainties caused by the variability
of these historical data (machine to machine variations,
variations within measurements, etc.) are introduced into
the model by means of random variances, as described
by Lei et al. (2016). This makes statistical-based models
result effective for describing the uncertainty linked to the
RUL prediction.
Artificial Intelligence approaches (AI) aim at learning the
degradation pattern of the machine relying just in the
observations. They are a good choice for RUL prediction
of complex mechanical systems that present a degradation
pattern difficult to model. Thanks to the advances in
Cloud Computing and Big Data, these models are gaining
more popularity in the research world, (Lei et al. (2018)).

3. RESEARCH DESIGN

3.1 Research Objectives

The paper aims at developing a DT for maintenance
purpose. Compared to conventional prognostic techniques,
DT enables to integrate, into a unique virtual model of its
physical counterpart (in this case the drilling machine),
both real-time monitoring and prediction, relying on his-
torical and real-time data. Real-time monitoring enables to
collect and store data gathered from the physical system,
and subsequently to make data analytics; simulation can
be then adopted to speed up the prediction of the degrada-
tion process in order to investigate future behaviour. More
specifically, the real-time data are collected to create a suf-
ficient sample to make a first pattern recognition through
data analytics; subsequently, simulation is adopted to
achieve the prediction of the degradation process by means
of a perturbation of the initial pattern. Afterwards, con-
nection with sensors to achieve late synchronizations with
the field allows to assess simulation results and to refine the
prediction by adjusting it to the current pattern recognized
in the degradation of the physical system. This goal is
defined for many reasons. A major problem is typically
due to the fact that most of the available literature on DT
for maintenance takes for granted that historical RTF data
of the asset under investigation are accessible. The truth
is that these historical records are not always accessible
in industrial environments. While it is true that Industry
4.0 is something that large companies are investing on,
it is evident that many other small firms barely man-
age asset maintenance data (De Carolis et al. (2017));
therefore, they typically have no historical records of RTF
data usable to develop a maintenance DT for their assets.
Furthermore, the high reliability needed for some kind of
assets (as also machine tools) leads to the fact that such
failures are hardly observed. The proposed use of data
analytics and simulation in the frame of the DT, based
on a progressive adjustment of historical information with
newly gathered data from field, aims to monitor and sim-
ulate the degradation process aligning to what is actually
occurring in field, without strictly requiring a record of
RTF data at the beginning.
Considering this challenge, the objective of this paper is
the development of a Proof of Concept maintenance DT
solution for a system/asset with low availability of RTF
data, describing the entire process from data acquisition
to RUL prediction, so that it can be easily extrapolated
to systems/assets of different nature.

3.2 Research Methodology

To reach this objective, there is a need for an environment
that eases the access to machinery. This machinery has to
be retrofitted installing a proper set of sensors, to obtain
the necessary data that allows conducting the required
experiments and to finally construct the maintenance DT.
The Industry 4.0 Lab (I4.0Lab) of the Manufacturing
Group of the School of Management in Politecnico di
Milano fulfils all these requirements (Fumagalli et al.
(2016)).
Furthermore, the following requirements are made to guide
the development of the maintenance DT:
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• The DT has to rely on some previous available knowl-
edge. According to the FMECA analysis carried out
on the I4.0 Lab asset, it will monitor and control
the drilling station, which has been resulted as the
most critical machine in terms of risk (frequency and
failure severity). Furthermore, since the drilling has
several failure modes, the maintenance DT will focus
on the most critical one: the possible imbalance in the
drilling axis.

• The DT has to make use of the standardized pro-
cess of MIMOSA OSA-CBM that follows the ISO-
13374 standard, going through all its steps (ISO-
13374-1:2003 (2003) and ISO-13374-4:2015 (2015)).
In such manner, the description of how to build the
maintenance DT will be as standard as possible and
it can be applied to assets of different nature as well.

• The DT has to operate as a ”watchdog agent” close
to the process (the term ”watchdog agent” is inspired
by Djurdjanovic et al. (2003)). As such, the DT adds
value to the process control by means of a CBM tool
operated as edge computing, in order to react with a
velocity of response suited for time-critical situations.

• The DT has to mirror the status of the machine, col-
lecting and synchronizing data coming from different
sources, such as the drilling PLC and sensors, in-
cluding those ones installed as a retrofitting solution.
Even not performing any kind of simulation based on
physics model of the real system, the DT should be
able to speed up the damage accumulation through
the simulation of the degradation signal resulting
from field.

For what concern the prognostic technique, the work re-
lies on the development of an Exponential Degradation
Model (EDM) (Gebraeel et al. (2005)). The EDM is a
parametrized model of the degradation signal related to
the failure of interest. Thus, it can be applied to a popula-
tion of machines: through its parametrization, it is indeed
scalable to more machines. In particular, stochastic param-
eters, that follow some distributional form, are introduced
to model the individual degradation characteristics, such
as the rate of degradation. The stochastic estimation is
obtained through a Bayesian updating capable to com-
bine two sources of information: (i) the distribution of
the parameters across the machines population; (ii) the
real-time sensor information collected through condition
monitoring, describing the degradation signal form of the
individual machine. Thanks to these characteristics, the
EDM results to be a good candidate to model machine
degradation when low RTF data are available. On one side,
it relies on looking at similar behaviour of similar machines
(i.e. the population) to model the degradation; in this way,
previous available results, also taken from literature, can
be used to conjecture the individual degradation form. On
the other side, it needs real-time sensor information to up-
date the model, adjusting what known from historical data
(and benchmarks in the population) to the current state
of the degradation process of each individual machine.

4. DEVELOPMENT OF THE MAINTENANCE DT
PROOF OF CONCEPT

This section describes the whole design process of building
the maintenance DT using MATLAB/Simulink. Following

the main objectives set before, the explanation goes step
by step through the different modules corresponding to
the OSA-CBM standard: from data acquisition to advisory
generation (Fig. 1).

Fig. 1. The Maintenance DT. Overall flow of the system.

4.1 Data acquisition

The PLC of the drilling machine provides signals referred
to the operational state of the machine. The DT ob-
tains these signals using the OPC-UA protocol and the
MATLAB-S function. These signals are then processed to
derive the operational state of the station, that could be
classified as idle, working, error, emergency and energy-
saving.
The operational state of the machine is not enough to
determine the real status of the asset. Since the drill is
a rotatory element, based on literature result, the moni-
toring of the vibration signal has been considered (Heng
et al. (2009)). A low-cost and retrofit solution is provided,
installing a Raspberry-Pi accelerometer to the drill axis as
shown in the middle of Fig. 2. This device collects data
with a frequency of sampling of 200 Hz. Considering that,
on average, every cycle last 11 seconds, for every cycle
2200 values of acceleration are sent to a predefined server,
which in turn stores the data in a Mongo Database. This
database is accessible within the MATLAB environment
by running a specific function that collects all the infor-
mation of a certain sample: accelerometer’s values in the
three directions x, y and z, date and timestamp.

Fig. 2. Data acquisition system.

4.2 Data manipulation

The DT processes the gathered data to obtain meaningful
information from it. When the PLC signals indicate that
the drill is in working state, the DT starts to gather the
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generation (Fig. 1).
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tains these signals using the OPC-UA protocol and the
MATLAB-S function. These signals are then processed to
derive the operational state of the station, that could be
classified as idle, working, error, emergency and energy-
saving.
The operational state of the machine is not enough to
determine the real status of the asset. Since the drill is
a rotatory element, based on literature result, the moni-
toring of the vibration signal has been considered (Heng
et al. (2009)). A low-cost and retrofit solution is provided,
installing a Raspberry-Pi accelerometer to the drill axis as
shown in the middle of Fig. 2. This device collects data
with a frequency of sampling of 200 Hz. Considering that,
on average, every cycle last 11 seconds, for every cycle
2200 values of acceleration are sent to a predefined server,
which in turn stores the data in a Mongo Database. This
database is accessible within the MATLAB environment
by running a specific function that collects all the infor-
mation of a certain sample: accelerometer’s values in the
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4.2 Data manipulation

The DT processes the gathered data to obtain meaningful
information from it. When the PLC signals indicate that
the drill is in working state, the DT starts to gather the
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acceleration from the database and, once the operational
state of the machine changes from Working to any other,
the DT stops the collection. Once the acceleration data
has been gathered, the Root Mean Square (RMS) of the
acceleration signal is computed for each component, as
defined by equation (1). The RMS gives an idea of the
amount of energy dissipated during the working process
by means of vibrations. In case damage occurs in the drill
axis, due to an imbalance, the vibration level will increase.
As this damage progresses, the energy dissipated by means
of vibrations will increase too and this will directly impact
the RMS value. Finally, the Asset Health Index (AHI) is
computed as the maximum RMSi, i = x , y , z value. In
Fig. 3, this value is illustrated by the blue line (envelope
curve). It gives an idea of what is the maximum average
level of energy dissipated by means of vibrations during
each working cycle.

RMSaccj =

√√√√ 1

N

N∑
i=1

x2
i , j = {x, y, z} (1)

Fig. 3. Asset Health Index (AHI) computed as the maxi-
mum RMSi value, i = x , y , z.

4.3 State Detection

Since there is no availability of historical data, it is
necessary to determine what level of RMS indicates the
healthy state of the machine. This task is achieved after
launching a test production order of 100 workpieces in
which the RMS of the three axes is measured. Then, these
data are analyzed following a novelty detection approach,
as described in Pimentel et al. (2014). To this end, a
normality test on the sampled data is firstly needed. The
results of the normality tests show that the RMS of the
three axes follows a normal distribution:

RMSi ∼ N(µi, σi) for i = x, y, z

After completing these tests, the healthy state is prop-
erly modeled. This means that every new sample can be
compared with the healthy class to see if it belongs to
it. Assuming that all the samples obtained belonged to
the healthy class, it is possible to model the confidence
intervals that the RMS should not surpass when the ma-
chine is working in healthy state. Based on the literature
regarding novelty detection, the confidence limit of the
RMS, i.e RMSUp, is set to a distance of 3 times the
standard deviation σ from the average value µ (Pimentel
et al. (2014)). This procedure is the same for all the three
axes.

RMSUp
i = µi + 3σi For i = x, y, z

4.4 Health assessment

The fact that the RMS of a given cycle is above the
previously established threshold does not directly imply
that the machine is in a fault state. Indeed, the fault
state could be related to a RMS value much higher than
RMSUp. What a RMS > RMSUp indicates for sure is
that the system is behaving in an abnormal way, even if
it is capable to perform the desired operation. For this
reason, the degradation trend of the asset is divided into
three states (see limits reported in Fig. 4):

• Healthy state, if RMS < RMSUp. In this state, the
system only monitors the acceleration signal without
performing any kind of RUL estimation. In this way
computational power is saved.

• Abnormal state, if RMS > RMSUp but the
machine is still able to deliver its function (RMS <
RMSfault). The DT starts predicting the RUL.

• Fault state, if RMS ≥ RMSFault. In this state
the machine cannot perform the operations it was
designed for in the proper way.

The limit between healthy and abnormal states (RMSUp)
is established by checking normality in a well-sampled
population. Conversely, the boundary of the fault state
(RMSFault) cannot be directly obtained since there is
no availability of RTF data. Anyhow, this threshold can
be defined based on the knowledge of the process under
analysis: even if the physics behind the failure mechanism
is difficult to model, it is still possible to determine the
limit of the fault state by comparing the machine with a
reference one. In literature, this practice is widely extended
(Chen et al. (2018)). In general, the level of this threshold
may also reflect the company’s risk aversion attitude. In
this work the boundary of the fault state will be treated as
a constant line and will rely on some similar results already
present in literature (Lei et al. (2018)). After analysing the
data set described in Nectoux et al. (2012), the beginning
of the fault state is assumed to be equal to 4 times the
value of RMSUp.

4.5 Prognostic assessment

Regarding the prognostic side of the DT, following the
main objective stated before, the availability of RTF data
is taken as null. The vibration trend is considered similar
to the one shown for the bearings analyzed in Nectoux
et al. (2012), where the RMS follows an exponential
trend. Due to these conditions, the choice of the RUL
estimation method concluded in the selection of a ran-
dom coefficient statistical method known as Exponential
Degradation Model (EDM) (Gebraeel et al. (2005)). The
EDM (equation (2) and Table 1) enables the prediction of
the future condition trend of systems in which no historical
degradation records are available.

ĤI(t) = R̂MS(t) = φ+ θ · e(βt+ε(t)−σ2

2 ) (2)

The maintenance DT has been programmed so that, after
every working cycle, it automatically updates the coeffi-
cients of the EDM model. This enables to progressively
adjust the model to the current degradation of the physical
system. In this way, it is possible to obtain a real-time RUL
prediction turning the DT into a “watchdog agent”, that
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Table 1. Margin settings

ĤI(t) Health index estimation for time t, in this case R̂MS(t).
φ Intercept term considered as a constant.
θ ln(θ) ∼ N(µθ, σ

2
θ) - log-normal random variable.

β Random variable, β ∼ N(µβ ,σ
2
β).

ε(t) Noise term, ε(t) ∼ N(µ = 0, σ2).

operates right next to the machine. Fig. 4 shows how, when

the system enters the abnormal state, the trend R̂MS is
plotted showing the message “Degradation Detect”. This
graph is updated after the end of each cycle.

Fig. 4. RMS trend prediction.

As seen in Fig. 4, the DT also provides the confidence
bounds of the prediction trend (orange dashed lines).
When the DT spots the abnormality for the first time,
this Confidence Interval (CI) is quite wide, however, as
the EDM uses the data to update the coefficients, the CI
get more narrow (Fig. 5).

Fig. 5. Width evolution of the prediction trend CI.

Furthermore, the RUL estimation obtained is associated
with a probability density function fRUL(t). By integrat-
ing the fRUL(t) it is possible to know the probability of
failure at any time in the future.

t∫

0

fRUL(t)dt = Pf (t)

4.6 Advisory generation

All the results previously described can be consulted
thanks to the Advisory Generation module of the DT
(bottom-left part of Fig. 1). Depending on the values of

the monitored parameters (RMSi), three possibilities are
given:

• No maintenance is needed: if all the monitored
values are inside the healthy state bounds (RMSi <

RMSUp
i

• Condition based maintenance action: if any of
the monitored parameters indicates that the drill is

in abnormal behavior state (RMSUp
i < RMSi <

RMSFault
i ). Maintenance should be schedule in tdays,

as it is indicated by the prognostics algorithm results.
• Corrective Maintenance: drill station should be
stopped if any of the monitored parameters indicates
that the drill is in fault state (RMSFault

i < RMSi).

As mentioned before, the DT derives the probability of
failure for every future cycle. Therefore, it is possible to
check the moment of time in which the degradation will
cause this Pf to go above a certain limit Pmax

f . This
moment of time gives an idea of when the maintenance
action has to be carried out.

tcycles =


t :

t∫

0

fRUL(t)dt = Pmax
f = 1−Rmin


 (3)

Where fRUL is the probability density function of RUL,
Rmin is the minimum acceptable reliability of the system
and tcycle is the ideal moment to conduct the maintenance
action. Since the time unit is cycles, which could be
really big considering the long degradation pattern, it is
converted to days (equation (4) and Table 2).

tdays =
tcycles

UR · PCdaily

(4)

Table 2. Margin settings

tdays Number of days remaining until R ≤ Rmin [days].
tcycles Number of cycles remaining until R ≤ Rmin [cycles].

UR Average utilization rate of the drill [% utilization].
PCdaily Daily production capacity of the drill [cycles/day].

For the case of the component under analysis, based on its
criticality, Rmin was set equal to 0.98.

5. DISCUSSION AND CONCLUSIONS

This paper develops a maintenance DT solution for a
drilling machine that lacks of historical data, describing
the entire process from data acquisition to RUL predic-
tion, following the MIMOSA OSA-CBM standards. The
machine is retrofitted through the installation of a low-cost
accelerometer. The DT mirrors the status of the machine,
collecting and synchronizing data coming from different
sources, such as the drilling PLC and the accelerometer.
It measures and analyzes the vibration signal to derive the
health status of the machine and it is able to speed up the
damage accumulation thanks to its simulation capabilities.
It performs all these computations concurrently to ma-
chine, so this information gets updated progressively along
time. As such, the DT adds value to the process control
by means of a CBM tool operated as edge computing,
in order to react with a velocity of response suited for
time-critical situations. Furthermore, it uses this infor-
mation to predict the future trend and to calculate the
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collecting and synchronizing data coming from different
sources, such as the drilling PLC and the accelerometer.
It measures and analyzes the vibration signal to derive the
health status of the machine and it is able to speed up the
damage accumulation thanks to its simulation capabilities.
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by means of a CBM tool operated as edge computing,
in order to react with a velocity of response suited for
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RUL and, based on the maximum desired probability of
failure, it also supports decision-making by providing the
appropriate moment to perform the repair operation. For
the RUL estimation, the maintenance DT implements a
random coefficient statistical method through the so-called
EDM. Thanks to this method, it is possible to apply the
maintenance DT directly in assets in which no historical
degradation records are available. The model is capable of
providing a RUL prediction with some confidence bounds
that get more precise as data arrives. The work paves the
road for future researches in this field by bringing together
the concepts of DT and CBM applied to machines. Some
improvements could be first of all with respect to the data
gathered. Indeed, it is possible to measure more signals
and to derive an asset health indicator that reflects even
better the drill status. Secondly, to implement the same
concept in other machines of the laboratory line and build
a maintenance DT for the whole assembly line. Last but
not least, to integrate the CBM DT with scheduling opti-
mization algorithm, to enhance in this way the decisional
power of the tool.
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