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ABSTRACT
We introduce the notion of incompatibility witness for quantum channels, defined as an affine functional that is non-negative on all pairs of
compatible channels and strictly negative on some incompatible pair. This notion extends the recent definition of incompatibility witnesses
for quantum measurements. We utilize the general framework of channels acting on arbitrary finite-dimensional von Neumann algebras, thus
allowing us to investigate incompatibility witnesses on measurement-measurement, measurement-channel, and channel-channel pairs. We
prove that any incompatibility witness can be implemented as a state discrimination task in which some intermediate classical information is
obtained before completing the task. This implies that any incompatible pair of channels gives an advantage over compatible pairs in some
such state discrimination task.
Published under license by AIP Publishing. https://doi.org/10.1063/1.5126496

I. INTRODUCTION
Two input-output devices, such as measurements, channels or instruments, are called incompatible if they are not parts of a common

third device.1 The concept of incompatibility, taken at this level of generality, gives a common ground for several important notions and
statements of quantum information. For instance, the “no cloning” theorem declares that two identity channels are incompatible, and state-
ments about optimal quantum cloning devices are then statements about compatibility of some channels, such as depolarizing channels.2–7

As another example, antidegradable channels are exactly those channels that are compatible with themselves, whereas entanglement breaking
channels are those channels that are compatible with arbitrary many copies of themselves.8

The traditional and most extensively studied topic in the area of incompatibility is the incompatibility of pairs of measurement devices. It
has been recently shown that two quantum measurements are incompatible if and only if they give an advantage in some state discrimination
task.9–11 Physically speaking, the connection with state discrimination tasks and incompatibility of measurement devices can be understood by
comparing two state discrimination scenarios, where partial information is given either before or after measurements are to be performed.12

Indeed, only for compatible pairs of measurements, the state discrimination capability is unaffected by the stage when partial information
is given, as pairs of this kind can be postprocessed from a single measurement device performed with no reference to partial information.
In the present paper, we show that this physical interpretation, with a slight modification, carries also to the incompatibility of quantum
channels.

In Ref. 9, the above result was obtained by introducing the concept of incompatibility witnesses and then proving that, up to detection
equivalence, every incompatibility witness is associated with some state discrimination task with partial intermediate information. We gen-
eralize this approach and prove that a similar statement holds for all incompatible pairs of quantum channels. To do it, we first define the
concept of channel incompatibility witness (CIW) and then prove that all such witnesses can be brought into a standard form related to a
variation of the state discrimination task described in Ref. 9. The state discrimination task we will consider does not require to couple the
measured system with any ancillary system. In particular, the advantage of our approach is that it does not rely on entanglement.

In the formulation used in the current work, channels are completely positive linear maps between finite-dimensional von Neumann
algebras. This framework (or something closely related to it) has been used in several earlier studies, e.g., Refs. 13 and 14. A measurement
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can be seen as a channel from an abelian von Neumann algebra, and our formalism therefore covers the main theorem of Ref. 9 as a special
case. It also allows us to treat the incompatibility between channels and measurements that is the underlying source for fundamental noise-
disturbance trade-off in quantum measurements.15–18

Our investigation is organized as follows: After having recalled some elementary facts about channels and von Neumann algebras in
Sec. II and described the convex compact set of all compatible pairs of channels in Sec. III, in Sec. IV, we provide the definition and main
properties of channel incompatibility witnesses. Section V then describes the particular state discrimination task we will be concerned with
and contains the proof that any incompatibility witness is associated with a task of this kind for some choice of the state ensemble to be
detected. Finally, Secs. VI and VII contain some examples of channel incompatibility witnesses. The examples of Sec. VI are derived from
the measurement incompatibility witnesses constructed in Ref. 9 by means of two mutually unbiased bases, while the example of Sec. VII is
related to the optimal approximate cloning method of Refs. 3 and 4.

II. PRELIMINARIES
We consider systems described by finite-dimensional von Neumann algebras, that is, complex ∗-algebras that are isomorphic to block

matrix algebras endowed with the uniform matrix norm ∥⋅∥. If A is such an algebra, its predual A∗ coincides with the linear dual A∗. We
denote by ⟨a, A⟩ the canonical pairing between elements a ∈ A∗ and A ∈ A. The notations Asa and A+ are used for the set of all self-adjoint
and all positive elements of A, respectively. The analogous subsets of A∗ are

Asa
∗ = {a ∈ A∗ ∣ ⟨ a , A ⟩ ∈ R ∀A ∈ Asa},

A+
∗ = {a ∈ A∗ ∣ ⟨ a , A ⟩ ≥ 0 ∀A ∈ A+}.

The states of A constitute the convex set S(A) = {a ∈ A+
∗ ∣ ⟨ a , 𝟙A ⟩ = 1}, where 𝟙A is the identity element of A. A measurement with

a finite outcome set X is described by a map M : X → A such that M(x) ∈ A+ for all x ∈ X and∑x∈XM(x) = 𝟙A. The probability of obtaining
an outcome x by performing the measurement M in the state a is then ⟨a, M(x)⟩. A measurement M is called informationally complete if
the associated probability distributions are different for all states, i.e., for any two states a ≠ a′ there is an outcome x such that ⟨a, M(x)⟩
≠ ⟨a′, M(x)⟩. The informational completeness of M is equivalent to the condition that the real linear span of the set {M(x) ∣ x ∈ X} coincides
with the real vector space Asa (cf. Ref. 19).

A finite-dimensional quantum system is associated with the von Neumann algebra L(H) of all linear maps on a finite-dimensional
complex Hilbert space H, whereas a finite classical system is described by the von Neumann algebra ℓ∞(X) of all complex functions on a finite
set X. The respective norms are the uniform operator norm ∥A∥ = max{∥Au∥/∥u∥ ∣ u ∈ H/{0}} and the sup norm ∥F∥ = max{∣F(x)∣ ∣ x ∈ X}.
In these two extreme cases, the states of the system are described by positive trace-one operators and classical probability distributions,
respectively. The framework of general von Neumann algebras allows us to consider also hybrid systems, like, e.g., the classical-quantum
output of a quantum measuring process, or quantum systems subject to superselection rules.

Let B be another finite-dimensional von Neumann algebra. A channel connecting the system A with the system B is a linear map
Φ : A∗ → B∗ such that its adjoint Φ∗ is completely positive and unital. The adjoint of Φ is the linear map Φ∗ : B→ A defined by

⟨ a , Φ∗(B) ⟩ = ⟨Φ(a) , B ⟩

for all a ∈ A∗ and B ∈ B.
A measurement M : X → A can be regarded as a channel M̂ : A∗ → ℓ1(X), where ℓ1(X) = ℓ∞(X)∗ is the ℓ1-space of all complex functions

on X. This identification is obtained by setting M̂(a) = ⟨ a , M(⋅) ⟩, or, equivalently, M̂∗(δx) =M(x), where δx ∈ ℓ∞(X) denotes the Kronecker
delta function at x.

When A = B = L(H), any channel connecting the system A with the system B is a quantum channel in the usual sense. Moreover, any
measurement M : X → L(H) is a quantum measurement in the usual sense and can be identified with a positive operator valued measure.20

In this case, the predual L1(H) = L(H)∗ is the normed space of all linear operators on H endowed with the trace-class norm. When instead
A = B = ℓ∞(X), channels connecting A with B constitute classical data processing and just coincide with measurements M : X → ℓ1(X)
(cf. Ref. 21).

III. INCOMPATIBILITY OF CHANNELS
The incompatibility of quantum channels has been defined and studied in Refs. 8, 22, and 23. That definition has been generalized

in Ref. 24 for different types of devices in general probabilistic theories, while in Ref. 25, it has been extended to cover the case of two
channels with arbitrary outcome algebras. In the following, we state the definition of (in)compatible channels explicitly in our current
framework.

If B1 and B2 are two von Neumann algebras, we denote by B1⊗B2 their algebraic tensor product canonically regarded as a von Neu-
mann algebra; see, e.g., Ref. 26, Sec. IV, Definition 1.3. The projection onto the ith algebra is the channel Πi : (B1⊗B2)∗ → Bi∗ with Π∗1 (B1)
= B1 ⊗ 𝟙B2

and Π∗2 (B2) = 𝟙B1
⊗ B2 for all Bi ∈ Bi. The ith margin of a channel Φ : A∗ → (B1⊗B2)∗ is then defined as the composition channel
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Πi ○Φ. Two channels Φ1 : A∗ → B1∗ and Φ2 : A∗ → B2∗ are compatible if there exists a channel Φ such that Φ1 = Π1 ○Φ and Φ2 = Π2 ○Φ.
In this case, we say that Φ is a joint channel of Φ1 and Φ2. Otherwise, Φ1 and Φ2 are called incompatible.

The compatibility of Φ1 and Φ2 is preserved if they are concatenated with other channels Ψi : Bi∗ → Ci∗. Indeed, if Φ is a joint channel
of Φ1 and Φ2, then the composition (Ψ1 ⊗Ψ2) ○Φ is a joint channel of Ψ1 ○Φ1 and Ψ2 ○Φ2. The tensor product of two channels is defined
by the relation (Ψ1 ⊗Ψ2)∗ = Ψ∗1 ⊗Ψ∗2 .

In the particular case B1 = ℓ∞(X1) and B2 = ℓ∞(X2), compatibility of channels coincides with the usual notion of compatibility for
measurements due to the aforementioned identification M ≃ M̂; see Ref. 8, Proposition 5. Indeed, let πi be the projection onto the ith factor of
the Cartesian product X1 × X2, and recall that two measurements M1 : X1 → A and M2 : X2 → A are called compatible if there exists a third
measurement M : X1 × X2 → A such that its margins πiM(xi) = ∑(y1 ,y2)∈π−1

i (xi)M(y1, y2) coincide with Mi. The equivalence of the two notions
of compatibility then directly follows from the equality Πi ○ M̂ = π̂iM.

Similarly, when B1 = ℓ∞(X) and B2 = L(H), any channel connecting the system A with the system B1⊗B2 can be identified with
an instrument.20 In this case, the compatibility of two channels Φ1 : A∗ → ℓ1(X) and Φ2 : A∗ → L1(H) amounts to measurement-channel
compatibility in the sense of Ref. 15.

We denote by C(A;B1,B2) the convex compact set of all pairs of channels (Φ1, Φ2), where Φi : A∗ → Bi∗. Convex combinations in
C(A;B1,B2) are defined componentwise. We let Cc(A;B1,B2) be the subset of all compatible pairs of channels. This subset is itself convex and
compact, since it is the image of the convex compact set of channels Φ : A∗ → (B1⊗B2)∗ under the affine mapping Φ↦ (Π1 ○Φ, Π2 ○Φ). In
the following, we show that the inclusion Cc(A;B1,B2) ⊆ C(A;B1,B2) is strict unless A is a commutative algebra or either B1 or B2 is trivial.
A different but related result has been proven in Ref. 27.

Proposition 1. Cc(A;B1,B2) = C(A;B1,B2) if and only if A is an abelian von Neumann algebra or Bi = C for i ∈ {1, 2}.

Proof. If Bi = C for, say, i = 1, then the trivial channel Φ1 = ⟨ ⋅ , 𝟙A ⟩ is the unique channel connecting the system A with the system
B1. This channel is compatible with any channel Φ2 : A∗ → B2∗. Indeed, Φ2 is itself a joint channel of Φ1 and Φ2 since B1⊗B2 = B2. Thus,
Cc(A;B1,B2) = C(A;B1,B2) in this case.

If A is abelian, there exists a finite set X such that A is isomorphic to the von Neumann algebra ℓ∞(X). Since ℓ∞(X)∗ = ℓ1(X) and
(ℓ∞(X)⊗ℓ∞(X))∗ = ℓ1(X × X), we can define a broadcasting map Γ : A∗ → (A⊗A)∗ as

[Γ( f )](x, y) =
⎧⎪⎪⎨⎪⎪⎩

f (x) if x = y,

0 if x ≠ y.

The adjoint Γ∗ is positive and unital, and hence, Γ is a channel. Indeed, for any linear map having an abelian von Neumann algebra as
its domain or image, positivity implies complete positivity by Ref. 28, Theorems 3.9 and 3.11. The two margins of Γ are the identity channel
id : A∗ → A∗. Therefore, the fact that compatibility is preserved in concatenation implies that any two channels Φ1 = Φ1○ id and Φ2 = Φ2 ○ id
are compatible. We conclude that Cc(A;B1,B2) = C(A;B1,B2) also in this case.

Finally, if Cc(A;B1,B2) = C(A;B1,B2), then either Bi = C for some i ∈ {1, 2}, or for all i ∈ {1, 2}, there exist two disjointly supported states
bi,1, bi,2 ∈ S(Bi). In the latter case, either A = C and thus A is abelian, or, for any two fixed projections P1,1, P2,1 ∈ A/{0,𝟙A}, let P1,2, P2,2 ∈ A
be such that Pi,1 + Pi,2 = 𝟙A for i = 1, 2. Furthermore, let Φi : A∗ → Bi∗ be the linear map defined as

Φi(a) = ∑
k=1,2
⟨ a , Pi,k ⟩ bi,k.

The unitality of Φ∗i is clear. Moreover, since Φ∗i is positive and its image Φ∗i (Bi) = span{Pi,1, Pi,2} is a commutative algebra, it follows that Φ∗i
is completely positive by Ref. 28, Theorem 3.9. Thus, Φi is a channel, and by the assumed hypothesis, we can pick a joint channel Φ of Φ1 and
Φ2. If Qi,1 and Qi,2 are the support projections of the states bi,1 and bi,2, respectively, then

0 ≤ Φ∗(Q1,h ⊗Q2,k) ≤
⎧⎪⎪⎨⎪⎪⎩

Φ∗(Q1,h ⊗ 𝟙B2
) = Φ∗1 (Q1,h) = P1,h,

Φ∗(𝟙B1
⊗Q2,k) = Φ∗2 (Q2,k) = P2,k

for all h, k = 1, 2. Consequently, Φ∗(Q1,h ⊗ Q2,k)Φ∗(Q1,h′ ⊗ Q2,k′ ) = 0 whenever (h, k) ≠ (h′, k′), and hence, the projections

P1,1 = Φ∗(Q1,1 ⊗Q2,1) + Φ∗(Q1,1 ⊗Q2,2), P2,1 = Φ∗(Q1,1 ⊗Q2,1) + Φ∗(Q1,2 ⊗Q2,1)

commute. Since the choice of P1,1 and P2,1 was arbitrary, this proves that all projections commute in A, which again implies that A is
abelian. □

The next corollary is a restatement of Ref. 29, Theorem 3 within the framework of von Neumann algebras. Interestingly, the assumption
that A is finite-dimensional is essential for its validity (see Ref. 30, Theorem 3.10).

Corollary 1. The identity channel id : A∗ → A∗ is compatible with itself if and only if A is abelian.
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Proof. Since any channel Φ : A∗ → A∗ is the composition Φ = Φ ○ id, the inclusion (id, id) ∈ Cc(A;A,A) is equivalent to the equality
Cc(A;A,A) = C(A;A,A) and then to A being abelian by Proposition 1. □

IV. CHANNEL INCOMPATIBILITY WITNESSES
From now on, we will always assume that the inclusion Cc(A;B1,B2) ⊆ C(A;B1,B2) is strict. In view of Proposition 1, this amounts to

require that A is not abelian and dimBi ≥ 2 for all i = 1, 2.
For convenience, we denote Φ⃗ = (Φ1, Φ2). A (channel) incompatibility witness (CIW) is a map ξ : C(A;B1,B2)→ R having the following

three properties:

(W1) ξ(Φ⃗) ≥ 0 for all Φ⃗ ∈ Cc(A;B1,B2),
(W2) ξ(Φ⃗) < 0 at least for some incompatible pair Φ⃗ ∈ C(A;B1,B2), and
(W3) ξ(tΦ⃗ + (1 − t)Ψ⃗) ) = tξ(Φ⃗) + (1 − t)ξ(Ψ⃗) for all Φ⃗, Ψ⃗ ∈ C(A;B1,B2) and t ∈ (0, 1).

We denote by W(A;B1,B2) the set of all such maps ξ.
If ξ ∈W(A;B1,B2) and ξ(Φ⃗) < 0, we say that ξ detects the incompatible pair of channels Φ⃗; the set of all detected pairs is denoted by D(ξ).

The larger the set D(ξ), the more efficient is the CIW ξ in detecting incompatibility. Given another ξ′ ∈W(A;B1,B2), we say that ξ′ is finer
than ξ whenever D(ξ) ⊆ D(ξ′). Furthermore, two witnesses ξ and ξ′ are called detection equivalent if D(ξ) = D(ξ′). For any choice of ξ, we can
always construct another CIW ξ which is finer than ξ by setting

ξ(Φ⃗) = ξ(Φ⃗) −min{ξ(Ψ⃗) ∣ Ψ⃗ ∈ Cc(A;B1,B2)}. (1)

In the case ξ = ξ, we say that ξ is tight (see Fig. 1).
We observe that, when restricting to the particular case in which A is a full matrix algebra and the algebras Bi are abelian, the above

definition of CIW coincides with the definition of incompatibility witnesses for quantum measurements introduced in Ref. 9. Indeed, as we
have already seen, measurements Mi : Xi → A and channels Φi : A∗ → Bi∗ are naturally identified if Bi = ℓ∞(Xi), and the two notions of
compatibility for measurements and channels are the same under this identification. Properties (W1)–(W3) are then a rewriting of the similar
ones stated in Ref. 9. Related investigations on incompatibility witnesses have been reported in Refs. 31 and 32.

By standard separation results for convex compact sets, witnesses are enough to detect all incompatible pairs of channels.

Proposition 2. For any incompatible pair of channels Φ1 : A∗ → B1∗ and Φ2 : A∗ → B2∗, there exist a channel incompatibility witness
ξ ∈W(A;B1,B2) detecting the pair (Φ1, Φ2).

Proof. Denote by Lsa(A∗;Bi∗) the real vector space of all complex linear maps Φi : A∗ → Bi∗ satisfying Φi∗(Asa
∗ ) ⊆ Bsa

i∗. Then, the
sets C(A;B1,B2) and Cc(A;B1,B2) are convex compact subsets of the Cartesian product Lsa(A∗;B1∗) ×Lsa(A∗;B2∗). If Φ⃗ ∉ Cc(A;B1,B2),
by Ref. 33, Corollary 11.4.2, there exist elements ϕi ∈ Lsa(A∗;Bi∗)∗ and δ ∈ R such that ∑i=1,2⟨ϕi, Φi⟩ > δ and ∑i=1,2⟨ϕi, Ψi⟩ ≤ δ for

FIG. 1. The set of incompatible pairs of channels which are detected by an incompatibility witness ξ (cross-hatched region) and those which are detected by the tight version
ξ of ξ (hatched region). The red point is detected by ξ but not by ξ, while the black point is not detected by either witness.
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all Ψ⃗ ∈ Cc(A;B1,B2). Here, Lsa(A∗;Bi∗)∗ denotes the linear dual of Lsa(A∗;Bi∗), and ⟨ϕi, Φi⟩ is the canonical pairing between ele-
ments ϕi ∈ Lsa(A∗;Bi∗)∗ and Φi ∈ Lsa(A∗;Bi∗). Setting ξ(Ψ⃗) = δ −∑i=1,2⟨ϕi , Ψi ⟩ for all Ψ⃗ ∈ C(A;B1,B2), we thus obtain a CIW for which
Φ⃗ ∈ D(ξ). □

V. CHANNEL INCOMPATIBILITY WITNESSES AS A STATE DISCRIMINATION TASK
We consider the following state discrimination task, in which Bob is asked to retrieve a string of classical information which Alice sends

to him through some communication channel which can be classical, quantum, or semiquantum:

(i) Alice randomly picks a label z with probability p(z) and she encodes it into a state az . The label z is chosen within either one of two
finite disjoint sets X1 and X2. The state az belongs to the predual of the von Neumann algebra A which describes Alice’s system.

(ii) Alice then sends the state az to Bob. At a later and still unspecified time, she also communicates him the set Xi from which she picked
the label z.

(iii) Bob processes the received state az by converting it into a bipartite system B = B1⊗B2. This amounts to applying a channel Φ : A∗
→ (B1⊗B2)∗, thus obtaining the bipartite state Φ(az) on Bob’s side.

(iv) In order to retrieve the label z, Bob performs two local measurements M1 on the subsystem B1 and M2 on the subsystem B2. Each
measurement Mj has outcomes in the corresponding label set Xj. The probability that Bob jointly obtains the outcomes x1 and x2
from the respective measurements M1 and M2 is thus ⟨Φ(az), M1(x1) ⊗M2(x2)⟩.

(v) Finally, according to the set Xi communicated by Alice, Bob’s guess for the label z is the outcome xi.

The disjoint sets X1 and X2, the probability p on the union X1 ∪ X2 and the states {az ∣ z ∈ X1 ∪ X2} used by Alice in her encoding are
fixed and known by both parties. In addition, the two measurements M1 and M2 used by Bob are fixed. Only the channel Φ : A∗ → (B1⊗B2)∗
can be freely chosen by Bob.

According to the time when Alice communicates to Bob the chosen set Xi, two scenarios then arise.

(a) Preprocessing information scenario: Alice communicates the value of i to Bob before he processes the received state az . Bob can then
optimize the choice of Φ according to Alice’s information. If Φ(i) is the channel he uses when Alice communicates him the set Xi, his
probability of guessing the correct label is

Pprior
guess = ∑

i=1,2
∑

x1∈X1
x2∈X2

p(xi)⟨Φ(i)(axi ) , M1(x1)⊗M2(x2) ⟩

= ∑
i=1,2
∑
z∈Xi

p(z)⟨Πi ○Φ(i)(az) , Mi(z) ⟩.

This quantity depends only on the two margin channels Φ1 = Π1 ○Φ(1) and Φ2 = Π2 ○Φ(2). Since Φ(1) and Φ(2) are arbitrary, the pair
(Φ1, Φ2) can be any element of C(A;B1,B2).

(b) Postprocessing information scenario: Alice communicates the value of i to Bob after he processes the received state az . Bob is then
forced to choose Φ without knowing the set Xi chosen by Alice. His channel Φ is thus the same regardless of the value of i. In this
scenario, Bob’s probability of guessing the correct label is

Ppost
guess = ∑

i=1,2
∑

x1∈X1
x2∈X2

p(xi)⟨Φ(axi ) , M1(x1)⊗M2(x2) ⟩

= ∑
i=1,2
∑
z∈Xi

p(z)⟨Πi ○Φ(az) , Mi(z) ⟩.

The latter quantity depends on the two margins Φ1 = Π1 ○Φ and Φ2 = Π2 ○Φ of a single channel Φ. These need to be a pair of
compatible channels (Φ1, Φ2) ∈ Cc(A;B1,B2).

The two scenarios are depicted in Fig. 2.
It is useful to merge the probability distribution p on X1 ∪ X2 and the states {az ∣ z ∈ X1 ∪ X2} into a single map E : X1 ∪ X2 → A∗,

defined as E(z) = p(z) az . We call this map a state ensemble with label set X1 ∪ X2. Its defining properties are that E(z) ∈ A+
∗ for all z and

∑z∈X1∪X2
E(z) ∈ S(A). We further denote by P the pair of disjoint sets (X1, X2), and we collect the two measurements M1 and M2 within a

single vector M⃗ = (M1, M2). The procedure described in steps (i)–(v) is thus completely determined by the triple (P ,E, M⃗), together with
the choice between scenarios (a) and (b).

In the two guessing probabilities described above, the pair of sets P , the state ensemble E and the measurement vector M⃗ are fixed
objects, while the channels Φi = Πi ○Φ(i) and Φ are variable quantities. To stress it, we rewrite
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FIG. 2. Alice encodes a label z ∈ X i into a state az , which then she sends to Bob. Bob uses a channel Φ to convert az into a bipartite system, and subsequently, he
performs a local measurement on each subsystem. According to the value of i communicated by Alice, Bob’s guess for z is the result obtained in the ith subsystem. In the
preprocessing information scenario (a), Alice announces the value of i before Bob arranges the channel Φ, thus allowing him to optimize his choice for the ith measurement.
In the postprocessing information scenario (b), Alice announces i only after Bob has performed both measurements. In all scenarios, the channel Φ can be modified by Bob,
while his measurements remain fixed.

Pprior
guess(Φ1, Φ2 ∥P ,E, M⃗) = ∑

i=1,2
∑
z∈Xi

⟨Φi(E(z)) , Mi(z) ⟩, (2)

Ppost
guess(Φ ∥P ,E, M⃗) = Pprior

guess(Π1 ○Φ, Π2 ○Φ ∥P ,E, M⃗). (3)

Optimizing these probabilities over the respective sets of channels, we obtain Bob’s maximal guessing probabilities in the two
scenarios:

Pprior
guess(P ,E, M⃗) = max{Pprior

guess(Φ⃗ ∥P ,E, M⃗) ∣ Φ⃗ ∈ C(A;B1,B2)}, (4)

Ppost
guess(P ,E, M⃗) = max{Pprior

guess(Φ⃗ ∥P ,E, M⃗) ∣ Φ⃗ ∈ Cc(A;B1,B2)}. (5)

Clearly, Pprior
guess(P ,E, M⃗) ≥ Ppost

guess(P ,E, M⃗). Whenever the inequality is strict, the expression

ξP ,E,M⃗(Φ⃗) = Ppost
guess(P ,E, M⃗) − Pprior

guess(Φ⃗ ∥P ,E, M⃗) ∀Φ⃗ ∈ C(A;B1,B2) (6)

defines a tight CIW ξP ,E,M⃗ ∈W(A;B1,B2). We call it the CIW associated with the state discrimination task (P ,E, M⃗). Remarkably, no
generality is lost in considering only CIWs of this form, as it is shown in the following main result.

Theorem 1. Suppose that X1 and X2 are two finite disjoint sets, that M1 : X1 → B1 and M2 : X2 → B2 are two informationally complete
measurements, and let P = (X1, X2) and M⃗ = (M1, M2). Then, for any channel incompatibility witness ξ ∈W(A;B1,B2), there exists a state
ensemble E : X1 ∪ X2 → A∗ and real constants α > 0 and Ppost

guess(P ,E, M⃗) ≤ δ < Pprior
guess(P ,E, M⃗) such that

ξ(Φ⃗) = α[δ − Pprior
guess(Φ⃗ ∥P ,E, M⃗)] ∀Φ⃗ ∈ C(A;B1,B2). (7)

In particular, ξ = αξP ,E,M⃗, and thus, the channel incompatibility witness ξP ,E,M⃗ is finer than ξ.

We emphasize that in Theorem 1 the sets X1, X2 and the measurements M1, M2 are fixed quantities, while the state ensemble E and
the real constants α, δ depend upon the CIW at hand. Thus, the only free parameters which effectively enter the description of an arbitrary
CIW are just the quantities E, α and δ. For a tight CIW, the free parameters actually reduce to only E and α. We further note that by Ref. 34,
Proposition 1, there exist informationally complete measurements M1 : X1 → B1 and M2 : X2 → B2 such that the cardinalities of the respective
outcome sets are ∣Xi∣ = dimBi. As a consequence of this fact, one can always choose X1, X2 with cardinalities ∣Xi∣ = dimBi.

Proof of Theorem 1. As already seen in the proof of Proposition 2, the set C(A;B1,B2) is a convex subset of the Cartesian product
Lsa(A∗;B1∗) ×Lsa(A∗;B2∗), where we denote by Lsa(A∗;Bi∗) the real vector space of all complex linear maps Φi : A∗ → Bi∗ satisfying
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Φi∗(Asa
∗ ) ⊆ Bsa

i∗. Then, for any CIW ξ ∈W(A;B1,B2), by Ref. 9, Proposition S2 of the Supplementary Material, there exist a dual element
(ϕ1, ϕ2) ∈ Lsa(A∗;B1∗)∗ ×L(A∗;B2∗)∗ and δ0 ∈ R such that

ξ(Φ⃗) = δ0 − ∑
i=1,2
⟨ϕi , Φi ⟩ ∀Φ⃗ ∈ C(A;B1,B2).

The dual space Lsa(A∗;Bi∗)∗ is identified with the real algebraic tensor product Asa
∗ ⊗ Bsa

i by setting

⟨ a⊗ Bi , Φi ⟩ = ⟨Φi(a) , Bi ⟩ ∀a ∈ Asa
∗ , Bi ∈ Bsa

i , Φi ∈ Lsa(A∗;Bi∗).

Then, since the set {Mi(z) ∣ z ∈ Xi} spans Bsa
i , we have

ϕi = ∑
z∈Xi

ai(z)⊗Mi(z)

for some choice of elements {ai(z) ∣ z ∈ Xi}. Now, fix any faithful state of A, that is, any a0 ∈ S(A) such that ⟨a0, A⟩ > 0 for all A ∈ A+ with
A ≠ 0. Such a state exists by standard arguments [see, e.g., Ref. 26, Sec. I.9, Exercise 3.(b)]. Then, if β ∈ R is such that

β > max{∥ai(z)∥ ∣ z ∈ Xi, i = 1, 2}
min{⟨ a0 , A ⟩ ∣ A ∈ A+, ∥A∥ = 1} ,

we have ⟨βa0 + ai(z), A⟩ > 0 for all A ∈ A+ with A ≠ 0 and z ∈ Xi, i = 1, 2. Therefore, we can define the state ensemble E : X1 ∪ X2 → A∗
given by

E(z) = 1
α
(βa0 + ai(z)) ∀z ∈ Xi, i = 1, 2,

where the normalization constant α > 0 is

α = ∑
i=1,2
∑
z∈Xi

⟨ βa0 + ai(z) , 𝟙A ⟩.

For the state ensemble E, we have

ξ(Φ⃗) = δ0 − ∑
i=1,2
∑
z∈Xi

⟨ ai(z)⊗Mi(z) , Φi ⟩ = δ0 − ∑
i=1,2
∑
z∈Xi

⟨Φi(ai(z)) , Mi(z) ⟩

= δ0 + 2β − α∑
i=1,2
∑
z∈Xi

⟨Φi(E(z)) , Mi(z) ⟩ = α[δ − Pprior
guess(Φ⃗ ∥P ,E, M⃗)],

in which we set δ = (δ0 + 2β)/α. Since ξ is a CIW, property (W1) and (5) imply the inequality δ ≥ Ppost
guess(P ,E, M⃗), while on the other hand

property (W2) and (4) require that δ < Pprior
guess(P ,E, M⃗). By inserting (7) into (1) and using again (5), we immediately obtain the equality

ξ = αξP ,E,M⃗, and hence, the CIW ξP ,E,M⃗ is finer than ξ. □

As a consequence of Theorem 1, for any pair of incompatible channels (Φ1, Φ2) ∈ C(A;B1,B2), there exists some state discrimination
task in which Bob can improve his guessing probability by choosing among Φ1 and Φ2 according to the preprocessing information. From an
equivalent point of view, whenever Bob’s strategy is to arrange his channel Φi after he knows the value of i, one can find a triple (P ,E, M⃗)
that reveals Bob’s use of preprocessing information. This is the content of the next corollary.

Corollary 2. Let P = (X1, X2) and M⃗ = (M1, M2), with Xi and Mi as in Theorem 1. Two channels Φ1 : A∗ → B1∗ and Φ2 : A∗ → B2∗
are incompatible if and only if there exists some state ensemble E : X1 ∪ X2 → A∗ such that

Pprior
guess(Φ1, Φ2 ∥P ,E, M⃗) > Ppost

guess(P ,E, M⃗). (8)

As in the statement of Theorem 1, also in the above corollary, the sets X1, X2 and the measurements M1, M2 are independent of the
incompatible channels Φ1 and Φ2. Indeed, only the state ensemble E needs to be arranged to detect incompatibility.

Proof of Corollary 2. The “if” statement trivially follows from the definition (5) of the guessing probability Ppost
guess(P ,E, M⃗), and so we

prove the “only if” part. By Proposition 2, there exists a witness ξ ∈W(A;B1,B2) such that Φ⃗ ∈ D(ξ). On the other hand, by Theorem 1, we
can construct a state ensemble E : X1 ∪ X2 → A∗ such that the CIW ξP ,E,M⃗ is finer than ξ. This means that in (6), we have ξP ,E,M⃗(Φ⃗) < 0, that
is, Pprior

guess(Φ⃗ ∥P ,E, M⃗) > Ppost
guess(P ,E, M⃗). □
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In Corollary 2, the probability Ppost
guess(P ,E, M⃗) can be calculated analytically or numerically, or at least upper bounded tightly enough,

by solving a convex optimization problem. On the other hand, the probability Pprior
guess(Φ1, Φ2 ∥P ,E, M⃗) is assessable by using Alice’s classical

information and then performing quantum measurements only on Bob’s side. Since no entangled state is shared in the state discrimination
protocol, Corollary 2 provides a more practical way to detect incompatibility than schemes based on Bell experiments or steering. In particular,
as a fundamental fact, entanglement is not needed to detect incompatibility.

A particular instance of the scheme introduced in this section is the discrimination task with pre- and postmeasurement information
described and studied in Refs.12 and 35–37. In the latter task, Bob is asked to retrieve Alice’s label z ∈ X1 ∪ X2 by simply performing a
measurement N on the received state az , without making any processing of az before that. The outcome set of N is assumed to be the
Cartesian product X1 × X2. When Bob obtains the outcome (x1, x2) and Alice communicates him that z ∈ Xi, his guess for z is the value xi.
According to the time when Bob is informed about i—either before or after he performs the measurement—the choice of N optimizing the
correct guessing probability may be different. Consequently, also in this task, Bob’s maximal guessing probability may vary according to the
pre- or postmeasurement information scenario.

The state discrimination task with pre- or postmeasurement information can be recast into the general scheme described at the beginning
of this section by fixing the commutative algebras Bi = ℓ∞(Xi) as Bob’s subsystems, identifying the measurement N with the channel N̂ : A∗
→ ℓ1(X1 × X2) and letting Mi : X → Bi be the projective measurements corresponding to simply reading off the outcome of N. In this way,
Ref. 9, Theorems 1 and 2 are particular instances of the above Theorem 1 and Corollary 2.

VI. FROM MEASUREMENT TO CHANNEL INCOMPATIBILITY WITNESSES
In this section, we provide examples of a tight channel incompatibility witness ξ ∈W(A;B1,B2) for each of the three cases B1 = B2

= ℓ∞(X) (incompatibility of two measurements), B1 = ℓ∞(X) and B2 = L(H) (incompatibility of a measurement and a channel) and B1
= B2 = L(H) (incompatibility of two channels). We always consider the standard quantum input A = L(H). Moreover, we assume that the
cardinality of the outcome set X equals the dimension d of the Hilbert space H. Our examples are based on the fact that, by using the next
simple observation, the results of Ref. 9 immediately yield instances of CIWs also for B1 and B2 being non-abelian.

Proposition 3. Suppose ξ ∈W(A;B1, ℓ∞(X)) and let P : X → B2 be a measurement such that P(x) is a nonzero projection of B2 for all
x ∈ X. Define the map ξP : C(A;B1,B2)→ R as

ξP(Φ⃗) = ξ(Φ1, P̂ ○Φ2) ∀Φ⃗ ∈ C(A;B1,B2). (9)

Then, ξP ∈W(A;B1,B2). Moreover, ξP is tight if ξ is such.

Proof. Properties (W1) and (W3) for ξP follow from the analogous properties for ξ and from the fact that Φ1 = id ○ Φ1 and P̂ ○Φ2
are compatible if Φ1 and Φ2 are. In order to prove property (W2), fix any faithful state b0 ∈ S(B2). For all x ∈ X, let b0,x ∈ S(B2) be given
by ⟨b0,x, B⟩ = ⟨b0, P(x)BP(x)⟩/⟨b0, P(x)⟩ for all B ∈ B2. Furthermore, define the linear map Ψ : ℓ1(X)→ B2∗ with Ψ(f ) = ∑x∈X f (x)b0,x.
Such a map is a channel, since its adjoint Ψ∗ : B2 → ℓ∞(X) is unital and ℓ∞(X) is abelian. Then, it is easy to check that the composition
channel P̂ ○Ψ is the identity map of ℓ1(X), from which it follows that, for any measurement M : X → A, we have P̂ ○Ψ ○ M̂ = M̂. In par-
ticular, for Φ2 = Ψ ○ M̂, we have ξP(Φ1, Φ2) < 0 if (Φ1, M̂) ∈ D(ξ), thus showing property (W2) for ξP. If instead Φ1 and M̂ are compatible
and ξ(Φ1, M̂) = 0, then also Φ1 = id ○Φ1 and Φ2 = Ψ ○ M̂ are compatible and ξP(Φ1, Φ2) = 0, thus implying that ξP is tight whenever ξ is
such. □

The composition channel Ψ ○ M̂ introduced in the previous proof is the measure-and-prepare channel associated with the measurement
M and the family of states {b0,x ∣ x ∈ X} ⊂ S(B2). Explicitly,

(Ψ ○ M̂)(a) =∑
x∈X
⟨ a , M(x) ⟩ b0,x ∀a ∈ A∗.

Note that Ψ ○ M̂ is a channel even if the supports of the states {b0,x ∣ x ∈ X} are not orthogonal.
We start constructing our examples by recalling a family of inequivalent tight witnesses ξμ ∈W(L(H); ℓ∞(X), ℓ∞(X)) which was

described in Ref. 9, Theorem 3. This family is constructed by fixing two mutually unbiased bases {ex ∣ x ∈ X} and {f x ∣ x ∈ X} of H, and it
depends on the direction of a two-dimensional vector μ ∈ R2. Here, we recall only the following example, which corresponds to the equally
weighted choice μ = (1, 1) for the parameter μ:

ξmm(M̂, N̂) = 1
2d
{
√

d(
√

d + 1) −∑
x∈X
[⟨ ex ∣M(x)ex ⟩ + ⟨ f x ∣N(x) f x ⟩]}. (10)

In the previous formula, ⟨ ⋅ ∣ ⋅ ⟩ is the inner product of the Hilbert space H. The measurement-measurement incompatibility witness (10)
vanishes when evaluated on the compatible pair of quantum measurements
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M0(x) = γ(d)∣ex⟩⟨ex∣ + (1 − γ(d))
𝟙
d

, N0(x) = γ(d)∣ f x⟩⟨ f x∣ + (1 − γ(d))
𝟙
d

, (11)

where 𝟙 is the identity operator on H and γ(d) is the real constant

γ(d) =
√

d + 2
2(
√

d + 1)
. (12)

This implies that the measurements

M(x) = γ∣ex⟩⟨ex∣ + (1 − γ)
𝟙
d

, N(x) = γ∣ f x⟩⟨ f x∣ + (1 − γ)
𝟙
d

,

are incompatible if and only if γ(d) < γ ≤ 1, a result that was earlier obtained in Refs. 38 and 39 by using different methods.
The previous measurement-measurement witness can be immediately turned into a tight witness ξmc ∈W(L(H); ℓ∞(X),L(H)) by means

of Proposition 3. Indeed, it is enough to fix another orthonormal basis {hx ∣ x ∈ X}, set P(x) = ∣hx⟩⟨hx∣ and define

ξmc(M̂, Λ) = (ξmm)P(M̂, Λ) = ξmm(M̂, P̂ ○Λ)

= 1
2d
{
√

d(
√

d + 1) −∑
x∈X
[⟨ ex ∣M(x)ex ⟩ + ⟨ hx ∣Λ(∣ f x⟩⟨ f x∣) hx ⟩]}.

(13)

We have ξmc(M̂0, ΛN0 ) = 0 for the compatible pair (M̂0, ΛN0 ), in which M̂0 is given by (11) and ΛN0 is the measure-and-prepare quantum
channel

ΛN0 (a) =∑
x∈X

tr[aN0(x)]∣hx⟩⟨hx∣ ∀a ∈ L1(H) (14)

with N0 still given by (11). Here, tr denotes the trace of H.

In order to find an example of a tight witness ξcc ∈W(L(H);L(H),L(H)), we can still proceed along the same lines as above. Specifically,
we can use the witness (11) and any two bases {gx ∣ x ∈ X} and {hx ∣ x ∈ X} of H in order to construct ξcc by means of Proposition 3. In this way,
dropping the irrelevant factor 1/(2d), the resulting witness is

ξcc(Θ, Λ) =
√

d(
√

d + 1) −∑
x∈X
[⟨ gx ∣Θ(∣ex⟩⟨ex∣) gx ⟩ + ⟨ hx ∣Λ(∣ f x⟩⟨ f x∣) hx ⟩] (15)

for all (Θ, Λ) ∈ C(L(H);L(H),L(H)).

VII. INCOMPATIBILITY WITNESS RELATED TO APPROXIMATE CLONING
As we have seen, the measurement-channel and the channel-channel incompatibility witnesses ξmc and ξcc derived in Sec. VI are adap-

tations of the measurement-measurement witness ξmm found in Ref. 9 and constructed by means of two mutually unbiased bases. Here, we
show that, by using a different method, another tight witness ζcc ∈W(L(H);L(H),L(H)) can also be derived by fixing only one arbitrary
orthonormal basis {ex ∣ x ∈ X} of H and setting

ζcc(Θ, Λ) = d(d + 1) − ∑
x,y∈X
⟨ ex ∣ (Θ + Λ)(∣ex⟩⟨ey∣) ey ⟩. (16a)

Actually, the dependence of ζcc on the choice of the basis of H is not relevant. Indeed, (16a) can be rewritten in a basis independent form by
using the trace Tr of the linear space L(H) so that

ζcc(Θ, Λ) = d(d + 1) − Tr[Θ + Λ]. (16b)

For the witness ζcc, we have ζcc(Θ0, Λ0) = 0 when Θ0 and Λ0 are the two margins of the optimal approximate cloning channel found in
Refs. 3 and 4, i.e., the depolarizing quantum channels

Θ0(a) = Λ0(a) = γ(d2)a + (1 − γ(d2))tr[a] 𝟙
d

(17)

with γ(d2) defined by (12).
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One can show with some calculation that the witnesses ξcc and ζcc are detection inequivalent, since inserting Θ0 and Λ0 into (15)
yields

ξcc(Θ0, Λ0) = (
√

d + 2)(
√

d − 1) + γ(d2)[2 −∑
x∈X
(∣⟨ ex ∣ gx ⟩∣

2
+ ∣⟨ f x ∣ hx ⟩∣

2)],

which is strictly positive for all d ≥ 2 and any choice of the bases {gx ∣ x ∈ X} and {hx ∣ x ∈ X}. Thus, for suitably small ε > 0, the CIW ξcc does
not detect the incompatible channels Θ = (1 + ε)Θ0 − εtr[⋅]𝟙/d and Λ = (1 + ε)Λ0 − εtr[⋅]𝟙/d, which instead are detected by ζcc.

In a similar way, if we insert the compatible measure-and-prepare channels

ΘM0 (a) =∑
x∈X

tr[aM0(x)]∣gx⟩⟨gx∣, ΛN0 (a) =∑
x∈X

tr[aN0(x)]∣hx⟩⟨hx∣ (18)

into (16), where M0 and N0 are the compatible measurements (11), we obtain

ζcc(ΘM0 , ΛN0 ) = (d + 2)(d − 1) + γ(d)[2 −∑
x∈X
(∣⟨ ex ∣ gx ⟩∣

2
+ ∣⟨ f x ∣ hx ⟩∣

2)],

which is strictly positive for all d ≥ 2 and any bases {gx ∣ x ∈ X} and {hx ∣ x ∈ X}. Since on the other hand ξcc(ΘM0 , ΛN0 ) = 0, a similar reasoning
as in the previous paragraph yields that D(ξcc) ⊈ D(ζcc). Thus, neither ξcc is finer than ζcc, nor ζcc is finer than ξcc, thus proving that the two
witnesses ξcc and ζcc are genuinely unrelated.

The rest of this section is devoted to the proof that the map ζcc defined in (16) is a tight CIW and that ζcc(Θ0, Λ0) = 0 when Θ0 and Λ0
are the compatible channels defined in (17).

For any pair of channels (Θ, Λ) ∈ C(L(H);L(H),L(H)), let

ζ0(Θ, Λ) =
d

∑
i,j=1
⟨ ei ∣ (Θ + Λ)(∣ei⟩⟨ej∣)ej ⟩

be the linear part of the witness (16). By denoting

ω = 1√
d

d

∑
i=1

ei ⊗ ei,

the maximally entangled state associated with the given basis, the linear functional ζ0 can be rewritten as

ζ0(Θ, Λ) = d2{tr [∣ω⟩⟨ω∣(Θ∗ ⊗ id∗)(∣ω⟩⟨ω∣)] + tr [∣ω⟩⟨ω∣(Λ∗ ⊗ id∗)(∣ω⟩⟨ω∣)]},

where id : L1(H)→ L1(H) is the identity channel.
Now, suppose Θ and Λ are compatible, and let Φ be a joint channel for them. Moreover, denote by F : H⊗H→ H⊗H the flip operator

F(u ⊗ v) = v ⊗ u. Then, using the marginality conditions Φ∗(A⊗ 𝟙) = Θ∗ and Φ∗(𝟙⊗ B) = Λ∗ together with the relation A⊗ 𝟙 = F(𝟙⊗ A)F,
we have

ζ0(Θ, Λ) =d2{tr [∣ω⟩⟨ω∣(Φ∗ ⊗ id∗)((F ⊗ 𝟙)(𝟙⊗ ∣ω⟩⟨ω∣)(F ⊗ 𝟙))] + tr [∣ω⟩⟨ω∣(Φ∗ ⊗ id∗)(𝟙⊗ ∣ω⟩⟨ω∣)]}
=d2tr [(Φ⊗ id)(∣ω⟩⟨ω∣) E],

(19)

where E is the self-adjoint positive operator

E = (F ⊗ 𝟙)(𝟙⊗ ∣ω⟩⟨ω∣)(F ⊗ 𝟙) + 𝟙⊗ ∣ω⟩⟨ω∣.

Hence, for any compatible pair (Θ, Λ), we have the following upper bound for (19):

ζ0(Θ, Λ) ≤ d2λmax(E), (20)

where λmax(E) is the maximal eigenvalue of E.
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We now evaluate λmax(E) by finding the eigenspace decomposition of E. To this aim, we introduce the two operators S± = 1
2 (𝟙 ± F),

which are the orthogonal projections onto the symmetric and antisymmetric subspaces of H⊗H, respectively. Since

E((el ⊗ em ± em ⊗ el)⊗ u) = 1
d
[

d

∑
i=1
⟨ em ∣ u ⟩(el ⊗ ei ± ei ⊗ el)⊗ ei ±

d

∑
i=1
⟨ el ∣ u ⟩(em ⊗ ei ± ei ⊗ em)⊗ ei], (21)

we conclude that

E(S±(H⊗H)⊗H) = {
d

∑
i=1

(v ⊗ ei ± ei ⊗ v)⊗ ei ∣ v ∈ H}.

Since E commutes with both projections S+ ⊗ 𝟙 and S− ⊗ 𝟙, and moreover S+ + S− = 𝟙, we have the orthogonal decomposition

E(H⊗H⊗H) = E(S+(H⊗H)⊗H)⊕ E(S−(H⊗H)⊗H).

Now, we show that E(S+(H⊗H)⊗H) and E(S−(H⊗H)⊗H) are the eigenspaces corresponding to the only two nonzero eigenvalues λ±(E)
= (d ± 1)/d of E. Indeed, another application of (21) yields

E(
d

∑
i=1

(v ⊗ ei ± ei ⊗ v)⊗ ei) =
d ± 1

d

d

∑
i=1

(v ⊗ ei ± ei ⊗ v)⊗ ei.

We thus conclude that λmax(E) = (d + 1)/d, and hence, for any compatible pair (Θ, Λ), by (20), we have

ζ0(Θ, Λ) ≤ d(d + 1). (22)

On the other hand, since for the identity channel we have

ζ0(id, id) = 2d2∣⟨ω ∣ω ⟩∣2 = 2d2 > d(d + 1),

it follows that (16) defines a CIW.
Finally, as we already noticed, by Refs. 3 and 4, the two depolarizing channels Θ0 and Λ0 defined in (17) are compatible, and an easy

calculation yields ζ0(Θ0, Λ0) = d(d + 1). The bound (22) is thus attained on Cc(L(H);L(H),L(H)), and hence, the witness (16) is tight.

VIII. DISCUSSION
We have proved that incompatibility can always be detected by means of a state discrimination protocol. We have done it for sys-

tems described by arbitrary finite-dimensional von Neumann algebras, thus encompassing all possible hybrid quantum-classical cases. Our
approach was based on the notion of channel incompatibility witness and its connection with a state discrimination task with intermediate
partial information. Once we established this connection in Theorem 1, the main result in Corollary 2 easily followed from standard separa-
tion results for convex compact sets. We pointed out that all incompatible pairs of channels can be detected by tuning only the state ensemble
on Alice’s side, while Bob can keep his measurements fixed to this purpose.

The essential point in the presented formalism is that the set of all compatible channels is a convex compact subset of all pairs of
channels. In fact, a similar mathematical technique works for any binary relation R ⊂ C(A;B1,B2) that is convex and compact. The state
discrimination protocol is hence useful to detect also other resources, mathematically described as subsets of C(A;B1,B2) with convex compact
complements.

We finally provided four examples of channel incompatibility witnesses with standard quantum input A = L(H). The first example (10)
applies to measurement-measurement incompatibility and was taken from Ref. 9, while the second (13) and the third (15) are adaptations
of the former one. The last example of channel-channel incompatibility witness (16) is unrelated to the measurement-measurement case. It
would be interesting to develop it into a whole family of inequivalent witnesses in analogy with the results of Ref. 9. We also point out that the
measurement-channel case deserves further study, as the only presented example relies upon the measurement-measurement case. We defer
more detailed investigations on these topics to future work.

During the preparation of the manuscript, we became aware of recent related works by Uola, Kraft, and Abbott40 and by Mori.41
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