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Abstract— Optimization analyses are commonly used in 

microgrids to identify the most efficient and reliable operation 

of the available energy resources. Unfortunately, most of the 

times these programming problems rely on input parameters 

which are not accurately known. In this context, advanced 

computing paradigms for solving uncertainty optimization 

problems represent the most promising enabling methodology. 

These techniques may show their effectiveness during both the 

dispatch and the pre-dispatch phase, when operators need to 

solve the unit-commitment and the economic dispatch problems. 

To this aim, this paper discusses and compares experimentally 

some promising existing alternatives to deterministic methods to 

deal with the solution of optimization problems in the presence 

of data uncertainty. 
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I. INTRODUCTION 

Penetration of microgrids in power systems has been 
rapidly increasing in the last years, as they can serve multiple 
purposes in different contexts: in industrialized countries they 
are mostly employed to power energy-intensive production 
processes [1], whereas in developing countries they represent 
one of the main electrification strategies aimed at increasing 
electricity access [2]. Indeed, microgrid modelling has gained 
more and more attention, as microgrids come with many 
issues in terms of security of supply and quality of service. In 
particular, since nowadays high shares of renewable sources 
are generally integrated in power systems, the availability of 
primary resources needs to be taken into account, especially 
when the microgrid is not connected to the electrical 
distribution network. In this domain, the uncertainties 
affecting the input data should not be overlooked, especially 
in addressing energy dispatch and resource scheduling 
analyses. Data uncertainties in microgrid modelling stem from 
multiple and heterogeneous sources, such as the power 
profiles available from renewable generators, and the load 
power demand, which represent a complex issue to address 
especially for isolated systems (i.e. autonomous microgrids) 
in developing countries, where the behaviour of the customers 
is more difficult to predict. 

Although several approaches have been proposed in the 
literature for microgrid optimization in the presence of data 
uncertainty, the selection of the most effective technique is 
still an open problem, which requires further investigations. 
Armed with such a vision, this paper aims at presenting and 
comparing three distinct methods for uncertainty management 
in microgrid scheduling problems. 

The first technique considered in this study is based on a 
traditional deterministic unit-commitment model, which 
processes the forecasted values of the uncertain quantities, and 

tries to identify proper reserve requirements in order to hedge 
the risks related to the forecast errors of the unpredictable 
quantities [3], [4]. Recently, alternative and more 
sophisticated techniques based on a more rigorous 
formulation of the uncertain optimization problem have been 
presented in literature. In this context, many papers adopt 
stochastic methods [5]–[7], with the drawback of requiring 
information about the probability distributions of the different 
data instances: these are often difficult to source, especially 
for applications in developing countries. Therefore, this work 
employs procedures that do not heavily rely on these pieces of 
information. The first is robust optimization (RO), in which 
an uncertainty interval is associated to the uncertain quantities 
and the algorithm is structured in such a way that the system 
is protected against any possible realization of the inputs [8], 
[9]. The other technique tested is affine arithmetic (AA), 
which is a self-validated computing paradigm that identifies 
guaranteed enclosures for the computed quantities, 
considering any uncertainty affecting the input data as well as 
all internal truncation and round-off errors [10]. The 
advantage of the latter two approaches is that the user must 
specify only the extreme values of the uncertainty intervals, 
without providing any information about the probability 
distributions, and this is particularly advantageous in case of 
absence of more detailed data. 

The above methods will be compared with reference 

to a microgrid powered by wind turbines (WTs), photovoltaic 

(PV) panels and a storage battery bank (SBB), all connected 

to a DC busbar; back-up diesel generators (DGs) are 

connected to an AC busbar together with loads. The two 

busbars are connected through bidirectional converters. On 

both busbars dump loads are installed to withdraw the energy 

in excess, which can be present if batteries are already 

charged and either diesel generators work at their technical 

minimum, but a lower quantity of energy is requested, or 

renewable production is higher than the demand. The 

topology is shown in Fig.  1 and the uncertain quantities are 

PV production, wind production and loads. The goal of the 

model is to be as general as possible and to be applicable to 

most of the real case studies, just by activating or deactivating 

the different components. Indeed, Fig.  1 constitutes one 

possible microgrid topology but the formulation benefits 

from total generality. 
The rest of the paper is structured as follows: section II 

describes the structure of the deterministic algorithm, the 
objective function and the constraints; section III focuses on 
robust optimization while section IV gives details on the affine 
arithmetic approach; the numerical results of the different 
methods are presented and discussed in section V; finally, 
conclusions are drawn in section VI.  



 

Fig.  1: Plant scheme 

II. DETERMINISTIC OPTIMIZATION 

The purpose of the deterministic model is to define the 
optimal dispatching strategy of the microgrid. The main 
variables under the control of the algorithm resolution are the 
shares of renewable production powering the load or charging 
the batteries, the diesel production (different types of DGs are 
available and named 𝑔) and the variables coping with the 
operation of the battery bank.  

The objective function to be minimized is the sum of 
maintenance and operation costs and it is computed on a 24-
hours timeframe: 

min
(𝑥,𝑢)

𝑇𝑂𝐶𝑆 =  ∑ ∑ 𝐶𝑓𝑢𝑒𝑙𝐹𝐶ℎ,𝑔𝑔ℎ +

 ∑ ∑ 𝑈ℎ,𝑔𝑂𝑀𝐶𝑔𝑔ℎ + ∑ ∑ (𝑉ℎ,𝑔𝑆𝑈𝐶𝑔 +𝑔ℎ

 𝑍ℎ,𝑔𝑆𝐷𝐶𝑔)  

(1) 

𝑠. 𝑡. 𝑐𝑖(𝑥, 𝑢) = 0  𝑖 ∈ 𝐸  

 𝑐𝑖(𝑥, 𝑢) ≥ 0  𝑖 ∈ 𝐼  

where TOCS stands for Total Operation Costs of the System. 
𝐶𝑓𝑢𝑒𝑙  is the cost of diesel and 𝐹𝐶ℎ,𝑔  is the diesel hourly 

consumption of generator type 𝑔 ,  𝑈ℎ,𝑔  is the number of 

online DGs of type 𝑔 at hour ℎ, 𝑂𝑀𝐶𝑔  is the operation and 

maintenance cost for DGs of type 𝑔. The start-up cost 𝑆𝑈𝐶𝑔 

is considered for the started-up DGs 𝑉ℎ,𝑔 ; analogously, the 

shut-down cost 𝑆𝐷𝐶𝑔  is considered for the shut-down DGs 

𝑍ℎ,𝑔 . O&M costs of renewable generators, batteries and 

converters have been considered to be negligible. 

The decision process is subject to a set of constraint 
functions 𝑐𝑖(𝑥), defined in 𝐸, set of equality constraints, and 
𝐼, set of inequality constraints, with 𝑥 state variables and 𝑢 
control variables of the algorithm. The scope of the constraints 
covers technical capabilities of components, balances and 
physical laws [11]. 

In particular, the equilibrium of the system is defined by 
the overall balance constraint (at the AC busbars) that must be 
fulfilled at any time interval, during which powers are 
considered to be constant. In addition, there is a number of 
other constraints describing the balance of the system in order 
to limit the maximum power flowing through bidirectional 
converters and to describe the power entering or leaving the 
battery at each time step. Then, complementarity constraints 
are needed in order to avoid that converters act as rectifiers 
and inverters at the same time and that batteries charge and 
discharge at the same time. Specific constraints are needed for 
the description of the behaviour of diesel generators: they 

guarantee that DGs are within their maximum and minimum 
limit, related to the capability and the performance of the 
component and to the reserve requirement. Analogously, a 
block of constraints is specifically devoted to batteries: the 
operational limits are defined, in order to preserve them and 
to guarantee the provision of the needed reserve. 

To cope with unpredictability in real time, reserve 
constraints are needed to define the amount of power which 
must be available hour by hour, according to the 
unpredictability associated to RES and demand. The same 
amount of reserve is needed for both upward and downward 
service and it is provided by batteries and, when online, also 
by diesel generators:  

𝑅ℎ
𝑠𝑦𝑠

= 𝛼𝑙𝐷ℎ̃ + 𝛼𝑝 ∑  𝑁𝑝𝑃ℎ,𝑝
𝑝𝑣̃

𝑝 +

𝛼𝑤 ∑ 𝑁𝑤𝑃ℎ,𝑤
𝑤𝑡̃

𝑤   

∀ ℎ (2a) 

∑ 𝑅ℎ,𝑔
𝑑𝑔

𝑔 + ∑ 𝑅ℎ,𝑏
𝑠𝑏

𝑏 ≥ 𝑅ℎ
𝑠𝑦𝑠

  ∀ ℎ (2b) 

Equation (2a) sets the total reserve required by the system 

at hour ℎ  𝑅ℎ
𝑠𝑦𝑠

, based on the forecast errors 𝛼𝑥 , with 𝐷ℎ̃ 

forecasted value of load demand at hour ℎ , 𝑃ℎ,𝑝
𝑝𝑣̃

 forecasted 

value of production of PV panels of type 𝑝 at hour ℎ, 𝑃ℎ,𝑤
𝑤𝑡̃  

forecasted value of production of WTs of type 𝑤 at hour ℎ, 𝑁𝑝 

number of PV panels of type 𝑝, 𝑁𝑤 number of WTs of type 

𝑤. Equation (2b) describes the allocation of 𝑅ℎ
𝑠𝑦𝑠

 among DGs 

(𝑅ℎ,𝑔
𝑑𝑔

) and batteries (𝑅ℎ,𝑏
𝑠𝑏 ). 

III. ROBUST OPTIMIZATION 

The robust model is analogous to the deterministic model, 
except for the absence of the reserve constraints, as robust 
optimization treats unpredictability of RES and load by using 
a different approach: instead of relying on the forecasted 
values and avoiding to exploit at maximum level the 
controllable units in order to have reserve available in real 
time, it includes the uncertainty in the input quantities and 
guarantees an operation strategy that allows to meet the load 
in the worst possible case. This is the case of absolute 
robustness, that for some applications might result too 
conservative. Therefore, the constraints can be relaxed by 
means of a parameter Γ, the budget of uncertainty, which 
allows the user to tune the conservatism of the model by 
controlling the total deviation from forecasted values for 
which the optimization has to be performed [11], [12]. 

The uncertainty is modelled by the product 𝛿ℎ,𝑘
𝑗


ℎ,𝑘
𝑗

, with 

𝑗 ∈ {𝐿𝑂𝐴𝐷, 𝑃𝑉, 𝑊𝑇}, 𝑘 representing the categories to which 
different uncertainty intervals can be associated (e.g. different 
technologies of PV panels), where the parameter 𝛿ℎ

𝑥 
determines the maximum possible uncertainty by which the 

relevant quantities are affected, while 
ℎ
𝑗

 is a variable 

belonging to the interval [−1; 1] and quantifying, in relative 
terms, the actual shift from the deterministic value. The 
uncertain quantities can take on infinite different values within 
the intervals [13]; therefore, the problem needs to be 
reformulated to become tractable. In order to get a mixed- 
integer linear programming (MILP) problem, a three-steps 
procedure is adopted: worst-case reformulation, dual form, 
robust counterpart. 

The first step consists in the formulation of the worst 

scenario, namely maximum load (i.e. 
ℎ,𝑘
𝐿𝑂𝐴𝐷 = 1 ) and 



minimum RES generation (i.e. 
ℎ,𝑘
𝑃𝑉 = −1 and 

ℎ,𝑘
𝑊𝑇 = −1), by 

extracting the expressions of the forecast errors from the 
original constraints in the global model and solving inner 
minimization (RES generators)/maximization (load) 
problems: 

min/max ∑ (𝛿ℎ,𝑘
𝑗


ℎ,𝑘
𝑗 )𝑘    (3) 

𝑠. 𝑡. ∑ |
ℎ,𝑘
𝑗 | ≤ ℎ,𝑗𝑘   ∀ℎ  

 |
ℎ,𝑘
𝑗 | ≤ 1  ∀ℎ  

with ℎ,𝑗 total budget of uncertainty associated with 𝑗. 

Exploiting the strong duality theorem [12], the dual of 
each inner optimization problem is formed; its variables have 
no physical meaning but are associated to the constraints of 
the primal problem. Finally, the last step consists in the 
integration of the dual problems into the global algorithm: the 
objective function of the dual problem needs to be included in 
the constraint involved in the reformulation procedure, and the 
constraints of the inner problems must be added to the 
algorithm. Hence, the robust counterpart of the starting 
algorithm is obtained, and the model is now tractable as MILP. 
Details about the all the steps of the reformulation are 
provided in [14]. 

IV. AFFINE ARITHMETIC-BASED OPTIMIZATION 

In Affine Arithmetic (AA), each variable is expressed by 
the sum of a central value and a set of partial deviations, each 
one describing the variable variation from the central value 
due to an exogenous source of uncertainty. The latter is 
represented by a noise symbol, which is a symbolic variable 
uniformly distributed in the interval [-1,1]. 

For the considered problem, the input variables are 
affected by three independent exogenous sources of 
uncertainty, namely the demand, wind, and load forecasting 
errors, described by three noise symbols: 𝜀𝐷 , 𝜀𝑊  and 𝜀𝑃𝑉 . 
Hence, the affine forms describing the input variables are: 

𝐷̂ℎ = 𝐷ℎ,0 + 𝐷ℎ,1𝜀𝐷  ∀ ℎ (4) 

𝑃̂ℎ
𝑝𝑣

= 𝑃ℎ,0
𝑝𝑣

+ 𝑃ℎ,1
𝑝𝑣

𝜀𝑃𝑉  ∀ ℎ  

𝑃̂ℎ
𝑤𝑡 = 𝑃ℎ,0

𝑤𝑡 + 𝑃ℎ,1
𝑤𝑡𝜀𝑊  ∀ ℎ  

with 𝐷̂ℎ  affine form of the demand, 𝐷ℎ,0  central value, 

corresponding to the forecasted value, 𝐷ℎ,1 partial deviation; 

the same stands for 𝑃̂ℎ
𝑤𝑡,𝑡𝑜𝑡

 and 𝑃̂ℎ
𝑝𝑣,𝑡𝑜𝑡

. Consequently, all the 

computations involving the input variables should be replaced 
by the corresponding AA-based operators. To this aim, it is 
worth noting that the linear operators on real numbers are 
straightforwardly extended to affine forms, by considering the 
noise symbols as vector coordinates [15]. These operators 
preserve the original set of noise symbols, since they do not 
introduce endogenous uncertainty (i.e. approximation errors), 
and allow defining equality and inequality operators between 
affine forms [16]. 

Thanks to the adoption of these AA-based operators, it is 
possible to extend the minimization operator for a real-valued 
function 𝑓(𝑥) to an affine function 𝑓(𝑥̂) : 

min
𝑥

𝑓(𝑥̂)➔ 

min
𝑥0,𝑥1,…,𝑥𝑛

[𝑓0(𝑥0,𝑥1, … , 𝑥𝑛), ∑ |𝑓𝑙(𝑥0,𝑥1, … , 𝑥𝑛)|𝑛
𝑙=1 ] 

(5) 

Hence, the minimization of an affine function can be 
formulated as a deterministic multi-objective problem, and a 
suitable trade-off between minimizing the central value (i.e. 
minimization of the nominal value) and the radius, which is 
the sum of the absolute values of all the partial deviations (i.e. 
maximizing the robustness to data uncertainty), should be 
defined by the Analyst [16]. In this work, the adopted solution 
strategy for multi-objective optimization consists in simply 
minimizing the sum of the two objective functions. The 
uncertain decision problem under study can be formulated as 
follows: 

min
(𝑥,𝑢)

[𝑓0(𝑥, 𝑢) + ∑ |𝑓𝑙(𝑥, 𝑢)|𝑙 ]  (6) 

𝑠. 𝑡. 𝑐𝑖(𝑥, 𝑢) = 0  𝑖 ∈ 𝐸  

 𝑐𝑖(𝑥, 𝑢) ≥ 0  𝑖 ∈ 𝐼  

with 𝑢 vector of the deterministic control variables and 𝑥 
vector of the affine forms describing the state variables. As in 
RO, reserve constraints are not included in the model, since 
uncertainty management is intrinsic in the formalization of the 
problem. As an example, the affine form of the total power 
produced by DGs at hour ℎ is represented in (7): 

𝑃̂ℎ
𝑑𝑔,𝑡𝑜𝑡

= 𝑃ℎ,0
𝑑𝑔,𝑡𝑜𝑡

+ 𝑃ℎ,1
𝑑𝑔,𝑡𝑜𝑡

𝜀𝐷 +

𝑃ℎ,2
𝑑𝑔,𝑡𝑜𝑡

𝜀𝑃𝑉 + 𝑃ℎ,3
𝑑𝑔,𝑡𝑜𝑡

𝜀𝑊  

∀ ℎ (7) 

The equality and inequality operators should be replaced 
by the corresponding affine-based operators, and the objective 
function to be minimized is the upper bound of the affine 
function describing the operation costs, whose central value 
and radius are defined as follows: 

𝑓0(𝑥, 𝑢) = ∑ ∑ 𝐶𝑓𝑢𝑒𝑙 ∗ 𝐹𝐶ℎ,0
𝑔

𝑔ℎ + ∑ ∑ 𝑈ℎ,𝑔 ∗𝑔ℎ

𝑂𝑀𝐶𝑔 +  ∑ ∑ (𝑉ℎ,𝑔 ∗ 𝑆𝑈𝐶𝑔 + 𝑍ℎ,𝑔 ∗ 𝑆𝐷𝐶𝑔)𝑔ℎ   

(8a) 

𝑟𝑎𝑑(𝑓0) = ∑ ∑ 𝐶𝑓𝑢𝑒𝑙 ∗𝑔ℎ (|𝐹𝐶ℎ,1
𝑔

| + |𝐹𝐶ℎ,2
𝑔

| +

|𝐹𝐶ℎ,3
𝑔

|)  

(8b) 

The solution of this optimization allows to reliably solve 
the unit commitment problem by considering all the possible 
sources of uncertainties affecting the microgrid operation. The 
obtained solution is robust, since it satisfies all the problem 
constraints also for the worst-case instance of the input 
uncertainties. Moreover, the obtained state variables are 
described by affine forms, which allows to characterize the 
domains that are guaranteed to include all the expected 
microgrid states (i.e. solution bounds). Finally, the partial 
deviations of these affine forms allow to estimate the effect of 
each source of exogenous uncertainty on the state variables 
(i.e. uncertainty propagation). 

V. NUMERICAL RESULTS AND DISCUSSION 

In order to compare the two considered approaches to the 
scheduling of a microgrid, this section presents the results 
obtained on the real case of a missionary center in the city of  
Wau, in South Sudan, composed by a radio studio, the house 
of Comboni nuns, a workshop, the offices of the curia, the 
residence of the priests and a hospital. The case study has been 
selected because the data on demand have been reliably 
collected through accurate field surveys [17]; the inputs on 
solar and wind power production have been derived from the 
historical database of Renewable.ninja [18]. These are both 
the inputs of the deterministic algorithm for photovoltaic and 
wind generation and the baseline for the uncertain production 
profiles of the robust and AA model. 



The system is currently powered by 4 independent diesel 
generators of size 9 kW, 12.8 kW, 16 kW, 32 kW, which are 
supposed to be integrated, and possibly gradually replaced by 
renewable generators, namely by 30 kW of PV, 2 wind 
turbines of nominal power 10 kW and about 70 kWh of lead-
acid batteries. DGs are assumed not to have restrictions in 
terms of ramps and minimum up- and down-time. For what 
concerns PV panels, a fixed array (no tracking system) of 1 
kW has been selected, with an 8° tilt angle. According to the 
rule-of thumb suggested by [19], it is sensible to choose a 
unique average tilt angle throughout the whole year, in case 
the plant is located in a region where solar irradiation does not 
vary much during the year. Reference [19] suggests it to be 
simply equal to the latitude of the geographical area taken into 
consideration. Batteries are modelled with KiBaM [20] and 
both charging and discharging efficiency are taken equal to 
90%. Finally, converters adopted in the model are 
characterized by rectification and inversion efficiency of 90%. 
Input costs are summarized in Table 1. 

The deterministic and robust models have been 
implemented in GAMS 24.0.2 using CPLEX solver, while the 
AA model has been implemented in Matlab R2014b with 
standard optimization toolbox. The goal is to elaborate the 
optimal scheduling for the next day: hence, 24-hours’ time 
snapshots have been used as inputs. Each input value 
represents the hourly average value of each input during the 
time interval considered. 

Forecast errors for the three uncertain quantities have been 
defined, but further remarks should be made. In fact, although 
maximum forecast errors have been set, in some hours they 
might exceed the deterministic value of the input. In this case, 
the following procedure has been adopted: when the demand 
is lower than the maximum error, the amplitude of the 
uncertainty interval is reduced to a lower value; when the 
forecasted renewable production is lower than its maximum 
error (in some hours, it is close to zero), the uncertainty 
interval is assumed to be null (see Table 2). In particular, as 
often the case when dealing with developing countries, there 
was not any information about the variability of the load; 
therefore, based on background experience, a maximum 
fluctuation of 3 kW has been assumed during the day, reduced 
to 1 kW during the night. For what concerns renewable 
production, information about the error was available, 
differentiated for the two sources. For PV, the outputs are 
characterized by an RMSE of about 10% [21]: hence, a 
maximum error of 0.1 kW per array sized 1 kW has been 
assumed. For what concerns wind production, a study on the  

European territory has been made in [22], obtaining quite 
different results depending on the country, the RMSE being 
approximately in the interval 5÷10%. Taking into account the 
reduced amount of information available for Africa, RMSE 
has been therefore supposed to be higher and equal to 15%. 
Then, since 10 kW wind turbines are assumed to be installed, 
the resulting maximum forecast error is 1.5 kW. Finally, the 
budget of uncertainty, aimed at defining the degree of 
conservatism of the model, is set so that absolute robustness is 
reached (i.e.,ℎ,𝑗 = 𝑘) and the system is protected against any 

possible realization of the inputs. 

The results of RO and AA have been made comparable 
with the outputs of the deterministic model by manipulating 
the reserve constraints so that the total reserve available is as 
close as possible to the total uncertainty associated to the 
inputs in RO and AA optimization. As shown in Fig.  2, it is 
impossible to get to a perfect superposition because the two 
elements are defined in different ways: the reserve is modelled 
in such a way that it changes hour by hour, according to the 
actual demand and RES production level (see constraint (2a)); 
the total uncertainty of RO and AA is instead tailored on the 
size of RES generators and on maximum demand. 
Additionally, further values of maximum forecast errors have 
been defined for the hours in which quantities are low. 

Therefore, two steps have been set for each 𝛿ℎ,𝑘
𝑗

/central value 

(see Table 2) and the total uncertainty evolves through discrete 
variations. The result shown in Fig.  2 has been obtained by 
manipulating the forecast error coefficients of (2a), in order to 
obtain a total reserve profile which could resemble as much as 
possible the total uncertainty curve, using reasonable figures. 
The final values of 𝛼𝑙 , 𝛼𝑝, 𝛼𝑤  are 25%, 15% and 40% 

respectively.  

As shown in Fig.  3, the three techniques provide different 
scheduling strategies. Both deterministic and AA optimization 
employ DGs for 3 hours per day; moreover, they both use the 
energy stored in batteries during the first half of the day to 
power the load during the afternoon and then return to the 
initial state of charge thanks to the energy provided by the 
wind turbines. The worst-case RO, not surprisingly, produces 
a more conservative scheduling, namely a much more 
intensive use of DGs and a smoother operation of batteries; 
renewable energy is completely exploited. These results lead 
to a significantly higher operation cost in the case of RO (see 
Table 3).

TABLE 1: INPUT COSTS FOR THE OPTIMIZATION 

𝐂𝐟𝐮𝐞𝐥 𝐎𝐌𝐂𝐠 𝐒𝐔𝐂𝐠 𝐒𝐃𝐂𝐠 

[€/l] [€/h] [€] [€] 

0.23 0.0161 0.01 0.01 

TABLE 2: MAXIMUM DEVIATIONS FROM FORECAST VALUES 

Demand when Dh̃ < 3 kW 𝛿h
LOAD/𝐷ℎ,0 = 1 kW  

when Dh̃ ≥ 3 kW 𝛿ℎ
𝐿𝑂𝐴𝐷/𝐷ℎ,0 = 3 kW  

PV when P
h,p

pṽ
< 0.1 kW δh

PV/𝑃ℎ,0
𝑝𝑣

= 0 kW  

when P
h,p

pṽ
≥ 0.1 kW δh

PV/𝑃ℎ,0
𝑝𝑣

= 0.1 kW  

Wind when Ph,w
wt̃ < 1.5 kW δh

WT/𝑃ℎ,0
𝑤𝑡 = 0 kW  

when Ph,w
wt̃ ≥ 1.5 kW δh

WT/𝑃ℎ,0
𝑤𝑡 = 1.5 kW  

 

 
Fig.  2: Comparison between total reserve provided in the deterministic 
approach and total deviations of inputs form forecasted values in robust and 

AA model 



  

  
Fig.  3:Daily scheduling of resources according to the deterministic, robust and AA optimization

The crucial element determining the relevant difference of 
the output lays in the different approach in treating inputs. In 
the deterministic optimization, forecasted values of load 
demand and RES availability are used to define the operation 
of programmable resources, which need to be available to 
provide the scheduled reserve in case of unbalance (i.e. 
deviation from forecasts in real time). AA produces similar 
results, as the forecasted quantities constitute the central 
values of the input variables. For what concerns RO, the 
reformulation procedure, needed to make the problem 
tractable as MILP, produces a new deterministic problem to 
be solved in the worst-case scenario. Less RESs are available 
and more power is requested to the system; therefore, DGs are 
often employed during the day. The advantage of the RO 
proposed is the presence of the budget of uncertainty, that can 
be easily tailored on the case under study according to the 
desired conservatism of the results.  

Hence, RO provides a scheduling strategy that guarantees 
the targeted continuity of supply while AA gives more flexible 
results, suitable for less demanding systems. 

Finally, it is worth observing as in AA all the control 
variables of the optimization problem are expressed by affine 
forms, which allow the analysts to obtain valuable information 
about the expected microgrid operation state. For example, by 
analyzing the affine form (7) at hour 9: 

𝑃̂9
𝑑𝑔,𝑡𝑜𝑡

= 5.9618 + 1.1523𝜀𝐷 − 0.0081𝜀𝑃𝑉 +
0.0037𝜀𝑊  

(9) 

much information can be inferred. First, the generated power 
is guaranteed to vary in the range [4.7977, 7.1259] kW, 
considering all the possible instances of the input 
uncertainties. Second, the generated power deviates from the 
nominal value of 5.9618 kW due to the effect of the load 
(±1.1523), photovoltaic (±0.0081) and wind (±0.0037) 
forecasting uncertainty, respectively. This allows estimating 

the impact of each source of input uncertainty on the control 
variables, hence supporting the development of large-scale 
sensitivity analysis. Lastly, during real-time operation, when 
the uncertain input data degenerate to deterministic variables, 
the optimal generators dispatch can be computed as: 

P9
𝑑𝑔,𝑡𝑜𝑡

= 5.9618 + 1.1523𝜀𝐷̅ − 0.0081𝜀𝑃̅𝑉 +
0.0037𝜀𝑊̅  

(10) 

with the noise symbols derived from: 

𝜀𝐷̅ =
Dℎ−Dℎ,0

Dℎ,1
;  𝜀𝑃̅𝑉 =

Ph
pv

−Ph,0
pv

P
h,1
pv ; 𝜀𝑊̅ =

Ph
wt−Ph,0

wt

Ph,1
wt   

(11) 

VI. CONCLUSIONS 

Efficient and reliable operation of autonomous microgrids 
require the deployment of advanced techniques for 
representing and managing the multiple and heterogeneous 
sources of uncertainty affecting the input data. To address this 
complex issue, three computing paradigms for uncertain 
optimization analyses have been presented, and their 
performances have been assessed and compared 
experimentally on a realistic case study.  

The results obtained show that an analyst aiming at solving 
uncertain microgrid programming problems is confronted 
with an accuracy/complexity trade-off. On one side, there are 
solution techniques based on conservative reserve allocation, 
which offer a rough qualitative insight of the solution in a very  

TABLE 3: OPTIMIZATION RESULTS 

 Deterministic 

optimization 

Robust 

optimization 

AA 

optimization 

TOCS [€] 1.309 5.958 1.2390±0.035 

Computational 

burden [s] 

0.422 0.266 1.688 

 



short time. On the other side, there are affine arithmetic and 
robust optimization-based methods that return a more reliable 
description of the uncertainty evolution; this comes at the cost 
of a longer simulation time in the AA case and of the sensitive 
definition of the most suitable budget of uncertainty in the RO 
case, that heavily influences the resulting operation costs. 

The Authors are confident that the obtained results would 
help making the choice once information about the use of the 
simulation output, the available computing resources and the 
maximum allowable risk are available. 

A future possible development of this study is the 
comparison of the three methods on the design phase of a 
microgrid, for which computational burden and accurate 
modelling are much more challenging already in the scope of 
deterministic optimization and for which the weight of 
uncertainty on the results is much heavier, as extremely long 
timeframes are taken into consideration. 
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