
Counter machines, Petri Nets, and Consensual Computation✩

Stefano Crespi Reghizzia,b, Pierluigi San Pietroa,b

aDipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Italia
bCNR IEEIT, Milano

Abstract

We establish the relation between two language recognition models that use coun-
ters and operate in real-time: Greibach’s partially blind machines operating in real
time (RT-PBLIND), which recognize Petri Net languages, and the consensually
regular (CREG) language model of the authors. The latter is based on synchro-
nized computational threads of a finite automaton, where at each step one thread
acts as the leader and all other threads as followers. We introduce two new nor-
mal forms of RT-PBLIND machines (and Petri Nets), such that counter operations
are scheduled and rarefied, and transitions are quasi-deterministic, i.e., the finite
automaton obtained by eliminating counter moves is deterministic. We prove that
the CREG family can simulate any normalized RT-PBLIND machine, but it also
contains the non-RT-PBLIND language {anbn | n > 1}∗.

Keywords: formal languages, multi-counter machine, real-time partially blind
machine, Petri Net language, Petri Net normal form, quasi-deterministic counter
machine, consensual language, multiset machine, modulo scheduling.

1. Introduction

Multi-Counter Machines (MCM) have been used since half a century to model
integer computer programs [20, 21] and to recognize formal languages, yet their
theory is less established than, say, the theory of push-down machines and context-
free languages. Several MCM types exist depending on the operations permitted on
counters, on determinism, and on other constraints about reversals and spontaneous
moves (see e.g., [11, 13, 17]). Other language families offer a double characteriza-
tion by grammars and by machines, but only the most restricted MCM subfamilies
(such as the one-counter languages) enjoy some sort of generative model.

✩Work partially supported by MIUR project PRIN 2010LYA9RH-006.
Email addresses: stefano.crespireghizzi@polimi.it (Stefano Crespi Reghizzi),

pierluigi.sanpietro@polimi.it (Pierluigi San Pietro)

Preprint submitted to Theoretical Computer Science October 29, 2015

Our nontraditional approach to MCM languages offers some promise to clarify
the complex computations that have so far hindered their full understanding. No-
tably, we obtain the possibility to specify counter languages by means of regular
expressions that describe interacting computational threads in a rather perspicuous
way.

This paper focuses on a classical and important MCM family: the real-time

partially blind machines [13] to be denoted by RT-PBLIND. Counters are non-
negative integers that can be tested for zero only in the final configuration; if the
machine attempts to decrement a zero counter, it crashes. In terms of languages,
such machines are equivalent to a natural family of Petri Nets firing sequences [13].
They are more powerful than the more popular reversal-bounded MCM [17]. The
RT-PBLIND language family is closed with respect to union and intersection, con-
catenation, and alphabetic (direct or inverse) homomorphism; it includes also lan-
guages that have a nonsemilinear Parikh image.

The other model, the consensually regular languages (CREG), was introduced
by the authors in [5] and further studied in [6, 7, 9, 8, 10]. Deferring its formal
presentation to Sect. 3, we intuitively describe its functioning. Consider a nonde-
terministic real-time finite-state automaton (NFA), and classify each edge of the
transition graph as leader or follower. To consensually recognize an input word w

of length |w|, the NFA may need one or more computations, called threads, each of
them accepting the word, and such that at each step 1 ≤ i ≤ |w|, one, and only one,
thread traverses a leader edge. Therefore at time i all remaining threads traverse a
follower edge. In some sense, this matching discipline is similar to a token-passing
scheduling policy, the temporary leader being the thread with the token. The stan-
dard finite-state recognition corresponds to the case of a thread that, for all moves,
is a leader. The adjective consensual expresses the metaphor that the leader thread
reads the current input character, but without the consent of all other threads the
computation cannot proceed.

The number of threads i.e., the parallelism of the consensual device, is bounded
by the input length, since a thread that at all times is a follower would be useless.
The memory of the consensual device is encoded in the current states of all ac-
tive threads, and can be represented by a multi-set of states, which motivates the
name of multiset machine. Such machine could be rightly called a multi-counter
machine, but we prefer to reserve this name to the classical models.

Word recognition for an RT-PBLIND (Petri Net) language requires logarithmic
space complexity, and the same property holds for the multi-set machine. Apart
from this similarity, the two models look at first glance very different, but, in an
effort to assess the power of CREG, we recently proved that some RT-PBLIND
languages are consensually regular: the deterministic RT-PBLIND [8] languages,
and the commutative languages that have a semilinear Parikh image [10]. Here we

2

prove a much more general and unexpected result: the strict inclusion of nondeter-
ministic RT-PBLIND (therefore also of Petri net) languages in CREG. While the
two mentioned inclusions had been proved by special transformations of consen-
sual languages, here we directly simulate an RT-PBLIND machine on a multiset
machine. An RT-PBLIND move may be nondeterministic in two manners: by
moving to multiple next states (as an NFA) and by performing different increments
or decrements of counters. For the latter manner, we prove that any RT-PBLIND
machine can be transformed to an equivalent RT-PBLIND machine, called quasi-

deterministic (QD), such that the underlying finite-state automaton is deterministic.
Then we show how to simulate any QD RT-PBLIND machine on a multiset ma-
chine. At last, the strict inclusion RT-PBLIND ⊂ CREG and the incomparability
of non-RT PBLIND machines and CREG are proved by means of witnesses.

To obtain the QD normal form, we reschedule each counter operation at an
ordinal time, which belongs to a specific congruence class, modulo a large enough
integer. Machine moves are in this way simplified (at most one counter is affected
in one move) and counter operations are rarefied. Such transformations are not new
for the more powerful MCM types that are allowed to test counters for zero [11],
but in our case we had to develop a very thorough analysis.

We briefly mention similarities and differences of CREG with respect to some
language families other than the multi-counter ones, which have been already con-
sidered.

Essential features of concurrent and parallel computations are captured in var-
ious, old and recent, formal models. Several models compose sequential threads,
represented by strings, by means of the interleaving or shuffle operation. The con-
current regular expressions of [12] are an example; a more recent one is the work
on shuffled languages [2]. To augment the effect of the pure shuffle operation on
regular languages, various directions have been explored. Several authors, e.g., the
two latter citations, add the transitive closure of the shuffle. Another possibility for
enlarging the language family, exploits the synchronized shuffle operation, which
exists in different versions, see [26]. Our consensual model is based on a lock-
step synchronization called matching, that bears some similarity to a synchronized
shuffle.

We notice another interesting analogy between the multiset consensual device
and other devices based on multiple coordinated runs of a finite-state machine.
Such devices have been proposed in different settings, as in the machine that rec-
ognizes the shuffle closure of regular languages [19]. A recent more complex de-
vice is the concurrent machine that recognizes the shuffled languages of [2]: such
machine stores in its configuration an unbounded number of states, organized as
a tree, that assigns a partial order to state activation. In contrast, the consensual
device simply stores a multiset of states, and requires that all states consensually

3

fire at each step.
At last, there is an enduring interest for models that are able to represent the

commutation or partial commutation of words, starting from classical language
families. Two recent examples are the restarting automata [23] and the context-
free grammars enhanced with rules that interchange adjacent subrees [22]. The
consensual model is not entirely dissimilar and is able to recognize a subfamily of
commutative languages [10].

To sum up, in our opinion the consensual model is not directly comparable with
any existing proposals, and can be considered as a minimalist attempt to capture
some language features pertinent to concurrent and parallel computations, using a
simple yet intriguing extension to the finite-state model.

Concerning applications, our new normal forms may be interesting for proving
properties of multi-counter machines and Petri Nets. Since consensual languages
can be defined by finite automata or by regular expressions on an alphabet, which
enriches the terminal alphabet with leader/follower roles, it becomes possible to
define multi-counter and Petri Net languages using such established notations. We
hope that this novel specification style will be convenient in some areas, such as
formal specifications, where counter machines are used.

The paper is organized as follows. Sect. 2 deals with RT-PBLIND machines
and Petri Nets. It defines the classical models and introduces two new normal
forms: the rarefied and modulo-scheduled form, and the QD form. It describes the
corresponding normal forms of Petri Nets. Sect. 3 defines the CREG languages
and devices and recalls known properties. Sect. 4 constructs the multiset machine
recognizing CREG languages, and proves that family CREG strictly contain fam-
ily RT-PBLIND but is incomparable with PBLIND. Sect. 5 presents some open
problems. The Appendix includes further examples of the main constructions.

2. Partially Blind Multi-counter Machines

We define the nondeterministic, real time multi-counter machine known as par-
tially blind. Then we define transformations affecting the parallelism and timing of
counter operations. Then, we define the new quasi-deterministic machine model,
and we prove that it can simulate any machine of the general types. This simulation
is interesting per se and is the key to the main result in the Sect. 4.

Let Σ denote a finite terminal alphabet and ε the empty word. For a word w,
|w| denotes the length of w; the i-th letter of w is w(i), 1 ≤ i ≤ |w|, i.e., w =

w(1)w(2) . . .w(|w|); the number of occurrences in w of a letter a ∈ Σ is denoted as
|w|a.

A finite automaton (FA) A is a tuple (Σ,Q, δ, q0, F) where: Q is a finite set
of states; δ : Q × Σ → 2Q is the state-transition function, q0 is the initial state,

4

and F ⊆ Q is the set of final states. If for every pair q, a, |δ(q, a)| ≤ 1, then A

is deterministic (DFA), otherwise is nondeterministic (NFA). For a DFA we write
δ(q, a) = q′ instead of {q′}.

2.1. Models of multi-counter real-time automata

We deal almost exclusively with machines operating in real-time (RT), i.e.,
such that each move reads an input character. We list the classic definitions for
counter machines, see for instance [13, 16]. A counter is just an integer variable.

Given an integer m > 0, a counter valuation is a vector
−→
X ∈ Nm. Each element of

the vector is denoted by
−→
X (i) and is called the value of the i-th counter. Let Im be

the set of all words in {−1, 0, 1}m; each word is interpreted as an increment vector
−→
Y operating on N

m. Intuitively,
−→
Y encodes an m-tuple of simultaneous operations,

such that if
−→
Y (i) = 1, 0 or -1, then the i-th counter is, respectively, incremented,

left unchanged or decremented.

Definition 2.1 (Real-Time Nondeterministic Partially Blind machine). A nondeter-

ministic, real-time, partially blind, multi-counter machine (RT-PBLIND) is a tuple

M = 〈Σ, S , γ,m, s1, Sfin〉, where:

• Σ is a finite alphabet;

• S is a finite set of states, s1 ∈ S is initial, and Sfin ⊆ S is the set of final states;

• m ≥ 0 is the number of counters;

• γ ⊆ S × Σ × Im × S is a set of transitions, called the transition relation.

Notice that the domain of γ does not refer to counter values, i.e., M cannot
check them: zero-testing is not allowed (hence,M is “blind”), except at the end of
computation. Moreover, only nonnegative counter values are allowed, therefore if
M attempts to decrement a null counter during a run, then the run is non-accepting
– informally, the machine “crashes”.

A configuration ofM is a pair in S ×Nm. The initial configuration is (s1,
−→
0 m); a

configuration (s,
−→
0 m), with s ∈ Sfin, is final. A move ofM is an element of relation

−→M ⊆
(
S × Nm) × Σ × (S × Nm)

defined, ∀a ∈ Σ,∀si, s j ∈ S ,∀
−→
X i,
−→
X j ∈ N

m, as follows:

(si,
−→
X i)

a
−→M (s j,

−→
X j) if ∃

−→
Y ∈ Im | (si, a,

−→
Y , s j) ∈ γ and

−→
X j =

−→
X i +

−→
Y (1)

Relation −→M is extended as usual to (S × N
m) × Σ∗ × (S × N

m): if w ∈ Σn for
n > 0, then (s,

−→
X)

w
−→M (sn,

−→
X n) if there exist

−→
X 1, . . .

−→
X n−1 ∈ N

m, si1 , . . . , sin ∈ S

such that:
(s,
−→
X)

w(1)
−→M (si1 ,

−→
X 1)

w(2)
−→M · · ·

w(n)
−→M (sin ,

−→
X n). (2)

5

When (s,
−→
X) is the initial configuration, sequence (2) is called a run of M with

label w and length n. If, moreover, (sin ,
−→
X n) is a final configuration, the run is ac-

cepting. The language accepted by an RT-PBLINDM is the set L(M) of labels of
accepting runs ofM. An example of machine is shown in Fig. 1 (left). The fam-

ily of languages accepted by RT-PBLIND machines will be denoted by the same
acronym, and similarly for the other devices considered. We list some properties.

Proposition 2.2 (Properties of RT-PBLIND language family). [14]

• RT-PBLIND is the least family of languages that contains the Dyck language over

two letters D2 = {w ∈ {a, b}
∗ | |w|a = |w|b and if w = xy then |x|a ≥ |x|b} and that is

closed under intersection, union, non-erasing alphabetic homomorphism, inverse

alphabetic homomorphism;

• RT-PBLIND is not closed under Kleene ∗, since it includes {anbn | n ≥ 1} but not

L3 =
({

anbn | n ≥ 1
})∗ (3)

• RT-PBLIND is closed under concatenation and reversal operation; it strictly in-

cludes reversal-bounded counter languages [17]; it is incomparable with context-

free languages; it includes also non-semilinear (in the Parikh sense) languages.

At the end of Sect. 4, we consider a more general machine model, denoted by
PBLIND, that may perform spontaneous moves, i.e., the domain of the transition
function is changed to γ ⊆ S × Σ ∪ {ε} × Im × S .

2.2. Petri Nets

Petri Nets (PN) are a widespread formal model of concurrent systems and can
be viewed also as a device for recognizing languages. Various PN language fam-
ilies have been studied (e.g., [18]), and we focus on the definition in [14], which
was intended to be as close as possible to MCM. We recall the classical result
that this family of PN languages coincides with RT-PBLIND. Later, we discuss the
significance of our new normal forms for PNs’.

Definition 2.3. [14] A k-place Petri Net (PN) P = (k,Σ, T, F) consists of a finite

number k of places denoted as P(1), . . . , P(k), a finite set Σ of input symbols, a

subset F ⊆ {P(1), . . . , P(k)} of accepting places, and a finite set T ⊆ N
k × Σ × N

k

of labelled transitions. An instantaneous description (ID) of P is a member of

Σ
∗ × N

k. In an ID (w, n1, . . . , nk), we call w the input to be processed, and ni the

number of tokens in place Pi.

Define the relation 7→ ⊆ Σ∗ × N
k × Σ∗ × N

k as follows. If there exist an ID

(aw, y1, . . . , yk), with a ∈ Σ,w ∈ Σ∗, and a transition (u1, . . . , uk, a, v1, . . . , vk) ∈ T

such that ui ≤ yi for all 1 ≤ i ≤ k, then

(aw, y1, . . . , yk) 7→ (w, y1 − u1 + v1, . . . , yk − uk + vk) .

6

and speak of this move as “firing” the above transition. An ID (ε, n1, . . . , nk) is

accepting if, for some P(j) ∈ F, n j = 1 and ni = 0 for all i , j.

We denote by
∗
7→ the reflexive and transitive closure of 7→. The language ac-

cepted by P is

L(P) =
{
w ∈ Σ∗ | there is an accepting ID I such that (w, 1, 0, . . . , 0)

∗
7→ I

}
.

L(P) is called the computation sequence set (CSS) of P, or Petri Net language.

Clearly [14], such PNP is already defined as a state-less RT-PBLIND machine,
if we regard places as counters, with the following restrictions and modifications.
In one move P can operate on any number of counters; it can add or subtract
integers larger than 1; first it subtracts, then it adds. P starts with the 1 in the first
counter and 0 in all others. P accepts when all but one final counter (place) contains
0. Such multicounter machine can be easily converted by standard constructions
into the RT-PBLIND model of Def. 2.1.

Theorem 2.4. (stated by Greibach [14] without claiming originality)
The family CSS of Petri Net languages coincides with the family of languages, not

containing the empty word, recognized by RT-PBLIND machines.

The PN equivalent to an RT-PBLIND machine is shown in Fig. 1.

2.3. A Rarefied Normal Form for RT-PBLIND machines

It is known, at least since [11], that for certain counter machine models, it is
possible to rarefy counter operations, i.e., to impose that the machine alters its
counters at most every v steps, for some integer v > 0. The construction of the
equivalent “rarefied” counter machine sketched in [11] (Th. 1.1 and Th. 1.2) relies
on a compressed representation of counter values: when in the original machine

counter i has value
−→
X (i), the new machine stores in counter i the value

−→
X (i) = ⌊

−→
X (i)

v
⌋

instead, retaining the residue p =
−→
X (i) mod v in finite-state memory. Hence, given

a residue p and a compressed counter value
−→
X (i), the original counter has value

−→
X (i) = v

−→
X (i) + p. In the model of [11], counters can be negative, but their signs

can also be represented in the finite-state memory (by testing a counter for 0 before
decrementing it): one can further assume that counters may store only nonnegative
values.

We are going to present a similar construction for RT-PBLIND, which is more
complicated because both of the zero testing limitation of RT-PBLIND and of the
stronger “rarefaction” condition that we need, introduced in the next definitions.

7

Definition 2.5 (Scheduled machine). The i-th counter, 1 ≤ i ≤ m, of an RT-

PBLIND machine M = 〈Σ, S , γ,m, s1, Sfin〉 is scheduled with module v ≥ 2 and

residues ⊟,⊞, with 0 ≤ ⊟ < ⊞ ≤ v − 1, if for all w ∈ Σ∗, for all a ∈ Σ, for all

s, s′ ∈ S , for all
−→
X ,
−→
X′ ∈ N

m, such that (s1,
−→
0 m)

w
−→M (s,

−→
X)

a
−→M (s′,

−→
X′), the

following conditions hold:

if
−→
X′(i) =

−→
X (i) + 1, then |wa| = ⊞ mod v;

if
−→
X′(i) =

−→
X (i) − 1, then |wa| = ⊟ mod v.

If counter i is scheduled with modulo v and residues ⊟,⊞, then it can be incre-
mented only if the length, modulo v, of the input string read so far is ⊞ and it can
be decremented only if the above length is ⊟. 1 Since ⊟ < ⊞ and counters start at
zero, in the very first move machineM cannot modify any (scheduled) counter.

q3

q1 q2

q4 q5

→

→

→

a/
−→
X (1)+

a/
−→
X (1)+

b/
−→
X (1)−

b/
−→
X (1)−

b
b/
−→
X (1)−

b

b q3 b

q1 a q2 a −→
X (1)

b q4 b q5

b

→

↑

↑

Figure 1: (Left) RT-PBLIND (nondeterministic) 1-counter machine. For readability, increment and

decrement operations on counter 1 are denoted by
−→
X (1)+ and

−→
X (1)−, respectively. The language

recognized is L2.7 = {a
nbn | n > 0}∪

{
anb2n | n > 0

}
. (Right) Equivalent Petri Net; initial configuration

with one token in place q1 and final configuration with one token either in q3 or in q5.

Definition 2.6 (Rarefied machine). An RT-PBLIND machine with m counters is

h-rarefied, h > 0, if there exist an integer v ≥ 2hm and a sequence R of 2m non-

negative integers 〈⊟1,⊞1, . . . ,⊟m,⊞m〉 such that for all r, r′ in R, with r′ > r, we

1Some readers may notice the analogy with the cyclic process scheduling techniques applied in
real-time operating systems [25].

8

s4 s5

s1 s2 s3

s6 s7 s8 s9

→

→

↑

→

a

a/
−→
X (1)+

b

b

a

b,
−→
X (1)−

b

b/
−→
X (1)−

b

b b/
−→
X (1)− b

b

Figure 2: RT-PBLIND (nondeterministic) machine with the counter scheduled by module v = 2 and
residues ⊟ = 0,⊞ = 1. The machine is equivalent to the machine and the PN in Fig. 1.

have both r′ − r ≥ h and v − r′ + r ≥ h, and such that each counter i, 1 ≤ i ≤ m, is

scheduled with module v and residues ⊟i,⊞i.

Intuitively, if a machine is h-rarefied, then any two counter modifications are
separated by at least h − 1 steps that do not modify counters. (Such steps will
be exploited in a later construction that needs to place further operations on extra
counters.) In particular, even in a 1-rarefied machine, at most one counter can be
modified in a single move. Clearly, if h > 1, a h-rarefied machine is also (h − 1)-
rarefied.

Example 2.7. Scheduled multi-counter machine
We show in Fig. 1 (left) an RT-PBLIND machine with one counter and the equiv-
alent Petri Net (right). Then Fig. 2 shows an equivalent machine with counting
operations scheduled in accordance with Def. 2.5. We choose the minimum value
v = 2 for the module, and we schedule decrement and increment actions respec-
tively at residue ⊟ = 0,⊞ = 1. The machine is thus 1-rarefied.

Theorem 2.8. For every RT-PBLIND machine, for all h ≥ 1 there exists an equiv-

alent h-rarefied RT-PBLIND machine.

Proof. LetM = 〈Σ, S , γ,m, s1, Sfin〉 be an RT-PBLIND, and let v be an integer such
that v ≥ 2hm. We may assume that S admits a partition into v subsets, denoted

J0K, J1K, · · · , Jv − 1K such that: for all w ∈ Σ∗, s ∈ S ,
−→
X ∈ N

m, if (s1,
−→
0 m)

w
−→M

(s,
−→
X), then s ∈ J|w| mod vK. If this is not the case, just define an equivalent

RT-PBLIND machine as the product of M with a FA (Σ,Q, δ, q0,Q), where Q =

{q0, . . . , qv−1}, and for all a ∈ Σ, δ(qi, a) = q j with j = i + 1 mod v. The standard
construction of the product is omitted.

We show that given a counter i, 1 ≤ i ≤ m, for every 0 ≤ ⊟ < ⊞ ≤ v − 1,
there exists an equivalent RT-PBLIND machine, called M(v,⊟,⊞), such that it

9

is scheduled for the i-th counter, with module v and residues ⊟,⊞, and does not
modify the behavior of the remaining counters. The main statement follows then
immediately. In fact, by applying repeatedly the construction (shown below), we
eventually obtain a machine which is h-rarefied for every h > 0 such that 2hm ≤ v,
by making each one of its counters scheduled and by selecting for each counter a
distinct pair of residues.

Define the finite set of relative integers P = {−v+1, . . . , 2v−1}. LetM(v,⊟,⊞)
be 〈Σ, T, η,m, t0, Tfin〉, where T = S ×P×{0,−1}, t0 = 〈s1, 0, 0〉, Tfin = Sfin×{0}×{0}
and the transition relation η is defined below, after an intuitive explanation.

Intuition about the definition ofM(v,⊟,⊞). The idea is thatM(v,⊟,⊞) is a “com-

pressed” version of M, i.e., it uses a compressed representation of counter
−→
X (i),

together with its finite-state memory, to avoid counter operations when they are not

scheduled. In particular, if (s,
−→
X) is a configuration ofM, for a state s ∈ S and a

vector
−→
X ∈ Nm, then the “compressed” version of this configuration forM(v,⊟,⊞)

is
(
〈s, p, b〉,

−→
X

)
, where p ∈ P is a “pseudo-residue”, b ∈ {0,−1} is a “flag” needed

to detect if the counter may have become negative (as detailed below), and
−→
X ∈ Nm

is a vector such that
−→
X (i) = v

−→
X (i) + p,

−→
X (j) =

−→
X (j),∀ j , i. Thus,

−→
X (i) contains

the value of
−→
X (i), but “reduced” by factor v, with p acting as a sort of “residue” to

store the result of original counter increments/ decrements executed in unwanted

positions. For instance, if the pseudo-residue p = 2,
−→
X (i) is decremented in M

and, at the current position, the counter is not scheduled for a decrement, then
−→
X

is left unchanged and the pseudo-residue becomes 1; if the pseudo-residue p = 0,
−→
X (i) is decremented inM and, at the current position, the counter is scheduled for

a decrement then
−→
X is decremented and the new pseudo-residue is v − 1.

The pseudo-residue is needed to keep track of the value of counter i between
two subsequent scheduled operations on i. Since such interval can be larger than
v−1 and filled with original increments/decrements of counter i, the pseudo-residue
is not a residue in the arithmetical sense, since it can be greater than v − 1 or even

negative. Next, we consider cases where increments or a decrements of
−→
X (i) must

be delayed further to comply with the schedule.
First, the pseudo-residue can become greater than v. In fact, suppose that the

pseudo-residue has value p = v − 1, after reading a number of symbols equal to ⊞

mod v. Therefore, p is too small forM(v,⊟,⊞) to make an increment of
−→
X (i). If

M, while reading the next v symbols in the input string, goes through a sequence

of up to v − 1 further increments of
−→
X (i), then the run ofM(v,⊟,⊞) may arrive at

a configuration (〈s′, p′, b〉,
−→
X), p′ as large as v− 1+ v− 1 = 2v − 2, since

−→
X (i) may

10

only be incremented when in state s′ (at that time it will decrement p′ of the value
v).

Second, the pseudo-residue can become negative; it may happen that a crash of
M remains hidden for a finite number of steps. To manage this situation, we use the
third component ofM(v,⊟,⊞) states, i.e., the flag. Consider the case when p = 0,

after reading a number of symbols equal to ⊟ mod v. Therefore,
−→
X cannot be

decremented before reading v input symbols more: in between,Mmay go through

a sequence of up to v − 1 consecutive decrements of
−→
X (i). Therefore, M(v,⊟,⊞)

must be able to store negative values in the pseudo-residue, as small as −(v − 1).
When a pseudo-residue becomes negative, it may be that machineM has actually

crashed: if
−→
X (i) = 0, thenM must have tried to decrement a zero counter, while if

−→
X (i) > 0, thenM has not crashed but just decremented

−→
X (i) and then continued.

However,M(v,⊟,⊞), as described so far, cannot distinguish these two cases, since

it can neither test if
−→
X (i) = 0 nor decrement

−→
X (i), since the counter is not scheduled

for the current position. Therefore,M(v,⊟,⊞) cannot check if its configuration is
“valid”, in the sense that it corresponds to a reachable configuration ofM: for in-

stance, (〈s,−1, 0)〉,
−→
0 m) is clearly not valid, since it would correspond to a negative

value for
−→
X (i). Since the only way for M(v,⊟,⊞) to check whether

−→
X (i) = 0 is

to decrement
−→
X (i), M(v,⊟,⊞) must decrement counter

−→
X (i) as soon as possible

(i.e., in the next scheduled position). The necessity of such future decrement is
stored in the finite-memory control in the flag b, where the value −1 “remembers”

that M(v,⊟,⊞) must still decrement counter
−→
X (i), since the pseudo-residue has

turned negative. Notice that it would not be enough to check if the pseudo-residue
is negative, since successive increments may hide a preceding negative value: for

instance, (〈s, 1,−1)〉,
−→
0 m) is not valid, although it might apparently correspond to

a configuration of M where
−→
X (i) = 1, since to reach (〈s, 1,−1)〉,

−→
0 m), machine

M(v,⊟,⊞) must have gone through the invalid configuration (〈s,−1, 0)〉,
−→
0 m).

Definitions and properties. As explained intuitively before, not all configurations
of M(v,⊟,⊞) are “valid”, i.e., they actually correspond to configurations of M.

There are two cases of invalid configurations: first, when
−→
X (i) = 0 and p < 0,

which correspond to an actual negative value of the counter
−→
X (i); second, when

−→
X (i) = 0 and b = −1, which models the case where the counter

−→
X (i) should have

become negative before possibly turning nonnegative again. Formally, a configu-

ration (〈s, p, b〉,
−→
X) ofM(v,⊟,⊞) is valid when:

−→
X (i) > 0 ∨ (p ≥ 0 ∧ b = 0). (4)

11

The correspondence from valid configurations ofM(v,⊟,⊞) to configurations
ofM is formalized by the partial mapping ֌: T × Nm → S × Nm:

for all s ∈ S ,
−→
X ∈ Nm, p ∈ P, b ∈ {0,−1}, if (〈s, p, b〉,

−→
X) is valid, then

(
〈s, p, b〉,

−→
X

)
֌ (s,

−→
X), with

−→
X (i) = v

−→
X (i) + p,

−→
X (j) =

−→
X (j) for j , i.

We now define relation η. For all a ∈ Σ, for all s, s′ ∈ S , for all
−→
Y ,
−→
Y ∈ Im, for

all p, p′ ∈ P, b, b′ ∈ {0,−1}, if (s, a,
−→
Y , s′) ∈ γ then

(〈s, p, b〉, a,
−→
Y , 〈s′, p′, b′〉) ∈ η if, and only if:

1.
−→
Y (j) =

−→
Y (j) for all j , i;

2. p′ = p +
−→
Y (i) − v

−→
Y (i);

and
(I) if s ∈ J⊟K and (p < 0 ∨ p +

−→
Y (i) < 0 ∨ b = −1), then

−→
Y (i) = 1 and b′ = 0;

(II) else if s < J⊟K and (p < 0 ∨ p +
−→
Y (i) < 0), then

−→
Y (i) = 0 and b′ = −1;

(III) else if s ∈ J⊞K and (p +
−→
Y (i) ≥ v ∧ b = 0), then

−→
Y (i) = −1 and b′ = b;

(IV) otherwise,
−→
Y (i) = 0 and b′ = b;

Nothing else is in η.
The following properties derive from the definition of η and ֌, for all s, s′ ∈

S , p, p′ ∈ P, b, b′ ∈ {0,−1},
−→
X ∈ Nm,

−→
Y ∈ Im, a ∈ Σ,

(
〈s, p, b〉, a,

−→
Y , 〈s′, p′, b′〉

)
∈ η:

(A) Let (〈s, p, b〉,
−→
X) be valid, with (〈s, p, b〉,

−→
X) ֌ (s,

−→
X). If also configuration

(〈s′, p′, b′〉,
−→
X +
−→
Y) is valid, then there exists

−→
Y ∈ Im such that (s, a,

−→
Y , s′) ∈ γ

and (〈s′, p′, b′〉,
−→
X +
−→
Y) ֌ (s′,

−→
X +
−→
Y).

(B) If (〈s, p, b〉,
−→
X) is not valid, then (〈s′, p′, b′〉,

−→
X +
−→
Y) is not valid as well.

For the proof of (A), it is enough to show that:
−→
X (i) +

−→
Y (i) = v

(
−→
X (i) +

−→
Y (i)
)
+ p′.

By definition of η, p′ is p +
−→
Y (i) − v

−→
Y (i) hence,

v

(
−→
X (i) +

−→
Y (i)
)
+ p′ = v

−→
X (i) + v

−→
Y (i) + p +

−→
Y (i) − v

−→
Y (i),

which, since by hypothesis
−→
X (i) = v

−→
X (i) + p, is equal to

−→
X (i) +

−→
Y (i).

The proof of (B) follows from negating the definition of a valid configuration:

we have
−→
X (i) = 0 ∧ (p < 0 ∨ b = −1). First notice that, if s ∈ J⊟K, then there is no

configuration reachable from (〈s, p, b〉,
−→
X) while reading a. In fact, by definition

12

of η (since p < 0 ∨ b = −1) there exists
−→
Y ∈ Im such that

−→
Y (i) = −1 and p′ =

p +
−→
Y (i) − v

−→
Y (i) = p +

−→
Y (i) + v; but

−→
X (i) = 0, hence M(v,⊟,⊞) must “crash”

by reading a (since it tries to decrement a zero counter). Therefore, s < J⊟K. If
b = −1, then by definition of η also b′ = −1 (since the case b = −1, b′ = 0 in η is
possible only when s ∈ J⊟K). If p < 0, then again in the definition of η the only
possible case is (II), hence also b′ = −1.

An immediate consequence of (B) is that only a valid configuration can lead
to acceptance. Hence, invalid configurations are not productive, in the sense that
there is no final configuration reachable from an invalid one.

Proof of L(M(v,⊟,⊞)) ⊆ L(M). We show, by induction on the length k ≥ 0

of a word w ∈ Σk, that for all 〈s, p, b〉 ∈ T,
−→
X ∈ N

m, if (〈s, p, b〉,
−→
X) is valid

and (〈s1, 0, 0〉,
−→
0 m)

w
−→M(v,⊟,⊞) (〈s, p, b〉,

−→
X), then there exists

−→
X ∈ N

m such that

(〈s, p, b〉,
−→
X) ֌ (s,

−→
X) and (s1,

−→
0 m)

w
−→M (s,

−→
X).

The inclusion of L(M(v,⊟,⊞)) in L(M) follows then immediately: a final

configuration has the form (〈s, 0, 0〉,
−→
0 m), with s ∈ Sfin, hence it is valid: therefore,

(〈s, 0, 0〉,
−→
0 m) ֌ (s,

−→
0 m), which means that alsoM reaches a final configuration.

The base case w = ε is obvious, since (〈s1, 0, 0〉,
−→
0 m) ֌ (s1,

−→
0 m). As-

sume the induction hypothesis for w ∈ Σk, hence (〈s, p, b〉,
−→
X) ֌ (s,

−→
X), and let

a ∈ Σ: (〈s, p, b〉,
−→
X)

a
−→M(v,⊟,⊞) (〈s′, p′, b′〉,

−→
X +
−→
Y), for some s′, p′b′,

−→
Y . Hence,

(〈s, p, b〉, a,
−→
Y , 〈s′, p′, b′〉) ∈ η. By definition of η, there exists

−→
Y ∈ Im such that

(s, a,
−→
Y , s′) ∈ γ, p′ = p +

−→
Y (i) − v

−→
Y (i) and

−→
Y (j) =

−→
Y (j) for j , i. There-

fore, if it is not the case that
−→
X (i) = 0 and

−→
Y (i) = −1 (which make M crash),

(s,
−→
X)

a
−→M (s′,

−→
X +
−→
Y). By Property (A) above, if (〈s′, p′, b′〉,

−→
X +
−→
Y) is valid

then (〈s′, p′, b′〉,
−→
X +
−→
Y) ֌ (s′,

−→
X +
−→
Y), thus proving the induction hypothesis for

wa.
If, instead,

−→
X (i) = 0 and

−→
Y (i) = −1 (i.e., if M crashes), then we show that

〈s′, p′, b′〉,
−→
X + Y(i)) is not valid, thus ending the proof. By induction hypothesis,

−→
X (i) =

−→
X (i) = 0, hence p = 0. If

−→
X (i) = 0, then, sinceM(v,⊟,⊞) does not crash

reading a, it must be s < J⊟K. Since p = 0 and
−→
Y (i) = −1, then p +

−→
Y (i) < 0: we

are in Case (II) of the definition of η. Therefore b′ = −1 and
−→
X (i)+Y(i) =

−→
X (i) = 0:

〈s′, p′, b′〉,
−→
X + Y(i)) is not valid.

Proof of L(M) ⊆ L(M(v,⊟,⊞)). For all integers k, r, with k ≥ 0 and 0 ≤ r ≤ v−1,
define [k]v,r = k if k ≤ r, [k]v,r = 1 + (k + v − r − 1 mod v). Hence, for a word
w of length k > r, the value [k]v,r is the distance between the rightmost position of
w (i.e., k) and the rightmost position (excluding k itself) equal, modulo v, to r. For

13

instance, if k = 18, r = 6, v = 10, then we have [18]10,6 = 1 + (18 + 10 − 6 − 1)
mod 10 = 2, which is the distance between positions 18 and 16; if k = 44, r =
6, v = 10, then we have [44]10,6 = 1 + (44 − 6 − 1) mod 10 = 8, which is the
distance between positions 44 and 36. Notice that if k is equal to r modulo v then
by definition [k]v,r = v since the smallest value equal to r modulo v is in this case
k − v, e.g., for k = 18, r = 8, v = 10, [18]10,8 = 10.

We show by induction on the length k ≥ 0 of a word w ∈ Σk that for all

s ∈ S ,
−→
X ∈ Nm if

(s1,
−→
0 m)

w
−→M (s,

−→
X)

then there exists a configuration φ = (〈s, p, b〉,
−→
X), for some p ∈ P, b ∈ {0,−1},

−→
X ∈

N
m, such that all the following conditions hold:

φ is valid, φ֌ (s,
−→
X), (5)

−[k]v,⊟ < p < v + [k]v,⊞ and (6)

(〈s1, 0, 0〉,
−→
0 m)

w
−→M(v,⊟,⊞) φ. (7)

The claim that L(M) ⊆ L(M(v,⊟,⊞)) follows then immediately. In fact, if
−→
X (i) = 0, then

−→
X (i) = 0 ∧ p = 0 ∧ b = 0, because p > −[k]v,⊟ > −v, hence it

is impossible that, e.g.,
−→
X (i) = 1 ∧ p = −v holds. By definition ofM(v,⊟,⊞), if

s ∈ Sfin, then 〈s, 0, 0〉 ∈ Tfin.

The base case w = ε is obvious. Let w ∈ Σk and let (s1,
−→
0 m)

w
−→M (s,

−→
X)

a
−→M

(s′,
−→
X +
−→
Y) for a ∈ Σ, s′ ∈ S ,

−→
Y ∈ Im. Hence, (s, a,

−→
Y , s′) ∈ γ.

By induction hypothesis, (〈s1, 0, 0〉,
−→
0 m)

w
−→M(v,⊟,⊞) (〈s, p, b〉,

−→
X), with

(〈s, p, b〉,
−→
X) ֌ (s,

−→
X). We show that

(〈s, p, b〉,
−→
X)

a
−→M(v,⊟,⊞) φ

′ (8)

for some configuration φ′ = (〈s′, p′, b′〉,
−→
X +
−→
Y), satisfying Cond. (5) and (6), thus

also verifying Cond. (7). By definition of η, since (s, a,
−→
Y , s′) ∈ γ there exists

−→
Y ∈ N

m such that (〈s, p, b〉, a,
−→
Y , 〈s′, p′, b′〉) ∈ η, with

−→
Y (j) =

−→
Y (j) for all j , i

and p′ = p +
−→
Y (i) + v

−→
Y (i).

We first argue that Cond. (6) is verified for p′ if k < ⊞, no matter the case of
η. In fact, no transition defined in Parts (III) and (I) of the definition of η applies,
since for k ≤ ⊟ we have p ≥ 0 (else since X = 0 the configuration would not be
valid), and for k < ⊞ < v we have p < v − 1. Therefore, for 0 ≤ k ≤ ⊟ we have
0 ≤ p ≤ k and for ⊟ < k < ⊞, clearly −[k]v,⊟ < p ≤ k. By definition, for k < ⊞,

14

since p′ = p +
−→
Y (i), it must be p − 1 ≤ p′ ≤ p + 1, i.e., −[k]v,⊟ − 1 < p′ ≤ k + 1,

and since [k + 1]v,⊟ = [k]v,⊟ + 1, [k]v,⊞ = k, and [k + 1]v,⊞ = k + 1, we have
−[k + 1]v,⊟ < p′ ≤ [k + 1]v,⊞ < v+ [k + 1]v,⊞, which is Cond. (6). Therefore, in the
following proof when showing that Cond. (6) holds we always assume k ≥ ⊞.

We first claim that:
(-) if s < J⊟K, then −[k + 1]v,⊟ < p′.
(+) if s < J⊞K, then p′ < v + [k + 1]v,⊞.
Claim (-) is immediate, since if s < J⊟K, then [k]v,⊟ < v, hence [k + 1]v,⊟ =

1+ [k]v,⊟. Then, p′ = p+
−→
Y (i) ≥ p−1 > −[k]v,⊟−1 = −[k+1]v,⊟. Claim (+) is also

immediate, since in this case [k]v,⊞ < v, hence [k + 1]v,⊞ = 1 + [k]v,⊞. Therefore,

p′ = p +
−→
Y (i) ≤ p + 1 < v + [k]v,⊟ + 1 = v + [k + 1]v,⊟.

I) Case s ∈ J⊟K and p < 0 ∨ p +
−→
Y (i) < 0 ∨ b = −1.

Hence,
−→
Y (i) = 1, b′ = 0, p′ = p +

−→
Y (i) + v. We claim that

−→
X > 0. By

contradiction, assume
−→
X = 0. In this case, if p < 0∨ b = −1, then (〈s, p, b〉,

−→
X)

would not be valid, contradicting the induction hypothesis, while if p = 0 and

p +
−→
Y (i) < 0, then

−→
Y (i) = −1, therefore

−→
X′ =

−→
X (i) +

−→
Y (i) = v

−→
X (i) + p +

−→
Y (i) =

v
−→
X (i)−1 = −1, which is impossible. Since

−→
X > 0, it follows from the definition

of η that Eq. (8) holds, with p′ = p +
−→
Y (i) + v ≥ 0 (since p ≥ −v + 1 and thus

p +
−→
Y (i) ≥ −v) and

−→
X
′

=
−→
X −
−→
i .

By definition, (〈s′, p′, 0〉,
−→
X
′

) is valid, since p′ ≥ 0 ∧ b′ = 0. Clearly, for

j , i,
−→
X
′

(j) =
−→
X (j), while

−→
X
′

(i) =
−→
X (i) − 1. But

−→
X′(i) =

−→
X (i) +

−→
Y (i) =

v
−→
X (i)+ p+

−→
Y (i) = v(

−→
X
′

(i)+1)+ p+
−→
Y (i) = v

−→
X
′

(i)+ v+ p+
−→
Y (i) = v

−→
X
′

(i)+ p′,

i.e., (〈s′, p′, 0〉,
−→
X
′

) ֌ (s,
−→
X′), thus showing Cond. (5) for φ′.

We now show that Cond. (6) holds for p′. Since s < J⊞K, by (+) we only
need to prove −[k + 1]v,⊟ < p′. We notice that, since s ∈ J⊟K, [k]v,⊟ = v and
[k + 1]v,⊟ = 1: condition −[k + 1]v,⊟ < p′ trivially holds since we have shown
above that p′ ≥ 0.

II) Case s < J⊟K and p < 0 ∨ p +
−→
Y (i) < 0. Hence,

−→
Y (i) = 0, b′ = −1, p′ =

p +
−→
Y (i). Since this transition does not modify the value of

−→
X (i), we have that

Eq. (8) holds, with
−→
X
′

=
−→
X . We claim that

−→
X (i) > 0, therefore (〈s′, p′,−1〉,

−→
X
′

)

is valid. By contradiction, assume
−→
X (i) = 0. Hence, p ≥ 0 ∧ b = 0, since

configuration (〈s, p, b〉,
−→
X) must be valid, therefore, p = 0∧ p+

−→
Y (i) < 0. This

means that
−→
Y (i) = −1; since by induction hypothesis

−→
X (i) = v

−→
X (i) + p = 0,

then
−→
X′(i) =

−→
X (i) +

−→
Y (i) < 0, which is impossible.

Clearly,
−→
X′(i) =

−→
X (i) +

−→
Y (i) = v

−→
X (i) + p +

−→
Y (i) = v

−→
X (i) + p′, i.e, we have

15

(〈s′, p′,−1〉,
−→
X
′

) ֌ (s,
−→
X′), thus completing Cond. (5) for φ′. We now show

that Cond. (6) holds for p′ = p +
−→
Y (i). By (-), we only need to prove p′ <

v + [k + 1]v,⊞. Since p < 0 ∨ p +
−→
Y (i) < 0, we have p′ = p +

−→
Y (i) ≤ p + 1 ≤ 0,

therefore p′ < v < v + [k + 1]v,⊞.

III) Case s ∈ J⊞K and p +
−→
Y (i) ≥ v ∧ b = 0.

Hence,
−→
Y = −1, b′ = b = 0, p′ = p +

−→
Y (i) − v ≥ 0. Then, Eq. (8) holds,

with
−→
X
′

=
−→
X + 1 > 0. It follows that (〈s′, p′, b′〉,

−→
X
′

) is valid. Also,
−→
X′(i) =

−→
X (i)+

−→
Y (i) = v

−→
X (i)+ p+

−→
Y (i) = v(

−→
X
′

(i)−1)+ p+
−→
Y (i) = v

−→
X
′

(i)−v+ p+
−→
Y (i) =

v
−→
X
′

(i) + p′, thus showing Cond. (5) for φ′. We show that Cond. (6) holds for

p′ = p +
−→
Y (i). Since s < J⊟K, by (-) we only need to prove p′ < v + [k + 1]v,⊞.

Also, since s ∈ J⊞K, we have [k]v,⊞ = v and [k + 1]v,⊞ = 1. Therefore,

p′ = p+
−→
Y (i) − v < (v+ [k]v,⊞) +

−→
Y (i) − v = [k]v,⊞ +

−→
Y (i) = v+

−→
Y (i) ≤ v+ 1 =

v + [k + 1]v,⊞, i.e, p′ < v + [k]v,⊞.

IV) All remaining cases. Since this transition does not modify the value of
−→
X (i),

we have that Eq. (8) holds, with p′ = p +
−→
Y (i), b′ = b and

−→
X
′

=
−→
X .

Since (〈s, p, b〉,
−→
X) is valid, then we have two cases: if

−→
X > 0, then

−→
X
′

> 0,

therefore φ′ is valid. If
−→
X =
−→
X
′

= 0, then p ≥ 0 ∧ b = 0. We show that in this
case also p′ ≥ 0, therefore φ′ is valid. By contradiction, let p′ < 0. Hence, p =

0 and
−→
Y (i) = −1. Clearly,

−→
X′(i) =

−→
X (i)+

−→
Y (i) = v

−→
X (i)+ p+

−→
Y (i) = v

−→
X (i)+ p′.

Therefore, also
−→
X (i) = v

−→
X (i)+ p = 0, hence

−→
X′(i) =

−→
X (i)+

−→
Y (i) =

−→
X (i)−1 < 0,

which is impossible. Cond. (5) is verified for φ′, since
−→
X′(i) =

−→
X (i) +

−→
Y (i) =

v
−→
X (i) + p +

−→
Y (i) = v

−→
X (i) + p′, i.e, (〈s′, p′,−1〉,

−→
X
′

) ֌ (s,
−→
X′). We now show

that Cond. (6) holds for p′ = p +
−→
Y (i). We consider the only three possible

subcases for s: s ∈ J⊟K, s ∈ J⊞K and s < J⊟K ∧ s < J⊞K.
Subcase s ∈ J⊟K. Since s < J⊞K, by (+) we need to prove only −[k + 1]v,⊟ <

p′. Since s ∈ J⊟K and we are not in Case (I) of the definition of η, we

have [k]v,⊟ = v and p +
−→
Y (i) ≥ 0. Then, [k + 1]v,⊟ = 1. Therefore,

p′ = p +
−→
Y (i) ≥ 0 > −1 = −[k + 1]v,⊟.

Subcase s ∈ J⊞K. Since s < J⊟K, by (-) we only need to prove p′ < v + [k +
1]v,⊞. From s ∈ J⊞K, it follows that k mod v = ⊞, hence [k]v,⊞ = v, i.e.,

[k+1]v,⊞ = 1. Therefore, p′ = p+
−→
Y (i) ≤ p+1 < v+[k]v,⊞+1 = v+[k+1]v,⊞.

Since s ∈ J⊞K, but we are not in Case (III) of the definition of η, we have

two cases: p +
−→
Y (i) < v or p +

−→
Y (i) ≥ v ∧ b = −1. In the former case,

p′ = p +
−→
Y (i) < v < v + [k + 1]v,⊞, i.e., Cond. (6) holds. We claim that the

16

latter case is impossible, thus ending the proof. Assume by contradiction

p +
−→
Y (i) ≥ v ∧ b = −1. Since (〈s1, 0, 0〉,

−→
0 m)

w
−→M(v,⊟,⊞) φ, there exist

si1 , . . . , sik ∈ S , p1, . . . , pk ∈ P, b1, . . . , bk ∈ {0,−1},
−→
X 1 . . .

−→
X k ∈ N

m, with

sik = s, pk = p, bk = b = −1 and
−→
X k = X, such that:

(〈s1, 0, 0〉,
−→
0 m)

w(1)
−→M(v,⊟,⊞) (〈si1 , p1, b1〉,

−→
X 1)

w(2)
−→ · · ·

w(k)
−→ (〈sik , pk, bk〉,

−→
X k).

Let t, with 1 ≤ t < k, be the largest value such that bt = 0, bt+1 = −1,

i.e., (〈sit , pt, bt〉,
−→
X t)

w(t)
−→M(v,⊟,⊞) (〈sit+1 , pt+1, bt+1〉,

−→
X t+1), applying a move

in the form of Case (II) in the definition of η. Hence, pt ≤ 0. Since k

mod v = ⊞ and t mod v = ⊟, then t < k. We claim that the largest
position j in w such that j mod v = ⊟ is just equal to t. By contradiction,
assume that there is j > t, but j , k, such that si j

∈ J⊟K. Since by definition
of t we have bt+1 = bt+2 = · · · = bk = −1, also b j = −1, i.e, si j

, p j, b j verify
the conditions of Case (I) of η (which are mutually exclusive with Cases
(II), (III) and (IV)). Therefore, the step from si j

, p j, b j to si j+1 , p j+1, b j+1

applies a move in the form of Case (II), hence b j+1 = 0, a contradiction.
Since k mod v = ⊞ , ⊟ and t mod v = ⊟, it follows that k − t ≤

v − 1. Every transition applied while reading the k − (t + 1) symbols w(t +
1), . . . ,w(k), must have the form of Case (II) or the form of Case (IV) of
the definition of η. Hence, pt may incremented only of at most 1 in each of
the following k − (t + 1) steps, i.e., pk ≤ pt + (k − t − 1) ≤ v − 2. It then

follows that p = pk ≤ v− 2. Therefore, p+
−→
Y (i) ≤ p+ 1 ≤ v− 1. However,

we assumed at the beginning that p +
−→
Y (i) ≥ v ∧ b = −1, a contradiction

with p +
−→
Y (i) ≤ v − 1.

Subcase s < J⊟K∧ s < J⊞K. Cond. (6) then holds for p′, by Claims (-) and (+).

2.4. Quasi-deterministic RT-PBLIND machines

We precisely define the quasi-deterministic form of counter machines and prove
that it is a normal form for RT-PBLIND machines.

We need some further notation on vectors. For all integers i,m, 1 ≤ i ≤ m, let
−→
i ∈ I m be the vector with value 1 in position i and value 0 elsewhere. Then, −

−→
i is

the vector with value -1 in position i and 0 elsewhere, and, for j , i,
−→
j −
−→
i ∈ I m is

the vector with value −1 in position i, value +1 in position j and value 0 elsewhere.

We want to restrict the allowed increment vectors
−→
Y to the case that at most

one increment and one decrement are present in a single move. Define:

Jm
= {
−→
i | 1 ≤ i ≤ m} ∪ {−

−→
i | 1 ≤ i ≤ m} ∪ {

−→
j −
−→
i | 1 ≤ i, j ≤ m} (9)

17

Notice that
−→
0 m ∈ Jm (for i = j). An RT-PBLIND machineM = 〈Σ, S , γ,m, s1, Sfin〉

has the simple operation property if γ ⊆ S × Σ× Jm × S . A simple-operation, real-
time machine is as powerful as one performing unrestricted operations. This can
be shown by using the same rarefaction technique of the proof of Th. 2.8. Notice
that a rarefied RT-PBLIND enjoys the simple operation property too.

LetM = 〈Σ, S , γ,m, s1, Sfin〉 be a simple-operation RT-PBLIND machine.
A state covering is a family B of non-empty distinct subsets of S , also called

blocks, such that
⋃

B∈B B = S . Given a covering B for an RT-PBLIND machine
M = 〈Σ, S , γ,m, s1, Sfin〉, one can define a finite nondeterministic automaton, called
a covering automatonMB =

(
Σ,B, δ, B0,Bfin

)
, where:

• B0 is a block of B, that contains s1;
• Bfin is the set of blocks in B which include a state in Sfin;
• for all a ∈ Σ, B′, B′′ ∈ B, the triple 〈B′, a, B′′〉 ∈ δ if, and only if, for all s′ ∈ B′,

for all s′′ ∈ S ,
−→
Y ∈ Jm if 〈s′, a,

−→
Y , s′′〉 ∈ γ, then s′′ ∈ B′′.

It is obvious that for some w ∈ Σ∗,
−→
X ∈ Nm, if (s1,

−→
0 m)

w
−→M (s′,

−→
X) is a run, then

the covering automatonMB has a run B0
w
−→MB B′, for some B′ with s′ ∈ B′.

Definition 2.9 (QD covering). LetM be a simple-operation RT-PBLIND machine

and let B be a covering forM. B is quasi-deterministic (QD) forM if the covering

automaton MB is deterministic and, for all a ∈ Σ, B, B1 ∈ B, s
′, s′′ ∈ B, s′1, s

′′
1 ∈

B1,
−→
Y 1,
−→
Y 2 ∈ Jm:

if

(
s′, a,

−→
Y 1, s

′
1

)
∈ γ and

(
s′′, a,

−→
Y 2, s

′′
1

)
∈ γ, then:

−→
Y 1 =

−→
Y 2 or

−→
Y 1 =

−→
0 m or

−→
Y 2 =

−→
0 m. (10)

Cond. (10) says that from any state belonging to the same block M either
performs the same simple operation on counters, or does not modify the counters.
This is designed to rule out cases where the same input word w = w(1) . . .w(|w|)
may lead to two or more runs that, at the same time position j, 1 ≤ j ≤ |w|, execute
different (simple) operations.

The following corollary is derived immediately from the definition of sched-
uled machines. Since a partition of the state set is also a covering, it defines a
covering automaton.

Corollary 2.10. LetM = 〈Σ, S , γ,m, s1, Sfin〉 be a h-rarefied RT-PBLIND machine,

h > 0, of module v ≥ h · 2m. Then, there exists a partition of S into v subsets,

denoted B = {S 0, S 1, . . . , S v−1} such that:

1. for all w ∈ Σ∗, if (s1,
−→
0 m)

w
−→M (s,

−→
X), then s ∈ S j, with j = |w| mod v;

18

2. the covering automatonMB induced by partition B is QD.

We now introduce a machine model characterized by the property that the state
covering where every block is just a single state is QD.

Definition 2.11 (Quasi-Deterministic RT-PBLIND machine). A RT-PBLIND ma-

chineM = 〈Σ, S , γ,m, s1, Sfin〉 is called Quasi-Deterministic, or a QD-RT-PBLIND

machine, if M has the simple operation property and the trivial state covering

B = {{si} | si ∈ S } is quasi-deterministic forM.

We show that a QD real-time machine can simulate a nondeterministic one,
in spite of the limited counter testing capability available in PBLIND operations.
For that we have to assume that the input word is terminated by an end marker,
denoted by symbol ⊣ < Σ, since otherwise the real-time constraint would prevent
the QD machine to terminate correctly in some cases.

Lemma 2.12. For every 3-rarefied RT-PBLIND machineM = 〈Σ, S , γ,m, s1, Sfin〉,

there exists an equivalent QD-RT-PBLIND machine Mqd = 〈Σ ∪ {⊣}, T, η,m +

|S |, t0, {tfin}〉, accepting L(M) ⊣. Moreover, machineMqd performs counter opera-

tions in every move, i.e., η ⊆ T × Σ ×

(
Jm − {

−→
0 m}

)
× T.

Proof. To ease understanding, we intuitively explain howMqd simulatesM. The
|S | extra counters serve as binary flags, to represent the current state sh of M.
WhenM moves from sh to si,Mqd decrements the flag of sh (thus testing that the
current state is sh) and increments the flag of si to set the new state. Unfortunately,
if flag updating is simultaneous with a counter operation on one of the original m

counters ofM, machineMqd cannot do it and must defer updating to the following
step; more precisely, whenM moves from si to s j, machine Mqd decrements the
flag of sh (which was left behind) and increments the flag of s j. The latter counter
operation is always feasible thanks to the rarefaction hypothesis.
Another situation worth explaining occurs on a final accepting move of M from
state sh to a final state. If machineMqd has flag sh set to 1, it must simply set it to
0. But if the sh flag is still unset (its setting having been deferred to the next move
as explained before), then machineMqd needs the extra move on end marker ⊣, to
test that the current state is correct, and to simulate the accepting move ofM. An
example of the construction is presented after the formal proof.

Let B be the partition of S in Cor. 2.10 and let B0 ∈ B be the block including
s1. Let n = |S |, with S = {s1, s2, . . . , sn}. Consider the covering DFA MB =(
Σ,B, δ, B0,Bfin

)
. We may assume, sinceMB is a finite automaton, that all blocks

in B are reachable from B0, i.e., if B ∈ B, then there exists w ∈ Σ∗ such that
B0

w
−→MB B. We now defineMqd. Let T = {t0, tfin} ∪ (B × (Σ ∪ {⊣})) .

19

Therefore, apart from t0 and tfin, the states ofMqd are pairs in B × (Σ ∪ {⊣}).
For every 〈B, a〉, B ∈ B, a ∈ Σ, let

⌊〈B, a〉⌋ = {s′ ∈ S | ∃s ∈ B,
−→
Y ∈ Jm, (s, a,

−→
Y , s′) ∈ γ}.

By quasi-determinism, there exists one, and only one, block B′ ∈ B such that
⌊〈B, a〉⌋ ⊆ B′: the block B′ such that 〈B, a, B′〉 ∈ δ.

State 〈B, a〉 represents all states ofM which can (potentially) be reached from
a state in B by reading a (i.e., the set ⌊〈B, a〉⌋).

To make the definition of η more perspicuous, we classify the states of T as
checking and normal. A state of the form 〈B′, a〉, a ∈ Σ ∪ {⊣}, is checking if there

exist
−→
Y ,

−→
0 m, s′ ∈ B′, s′′ ∈ ⌊〈B′, a〉⌋ such that (s′, a,

−→
Y , s′′) ∈ γ, i.e., if reading a

in state s′ the machineMmay modify a counter with an increment vector
−→
Y , upon

entering a state s′′, which is represented inMqd by 〈B′, a〉. In other words, a state
is checking if it is representative of one or more states ofM which can be entered
by a transition that modifies a counter; every other state is classified as normal.

The transition relation η ⊆ T × (Σ ∪ {⊣}) × Jn+m × T to be next defined, makes

use of vectors in Jn+m of the form
−→
i ,
−→
h etc. Recall that, by Def. 2.5, a move from

the initial state s1 cannot modify counters.

Here and in what follows the dot “·” denotes vector concatenation, e.g.,
−→
0 n ·
−→
X ,

for
−→
X ∈ Nm, is the vector in N

n+m with n 0’s followed by the content of vector
−→
X .

With an abuse of notation,
−→
i ·
−→
X , for 1 ≤ i ≤ n, denotes the vector

−→
i + (
−→
0 n ·
−→
X) in

N
n+m, i.e., the vector equal to

−→
i in the leftmost n positions and equal to

−→
X in the

rightmost m positions.
The transition relation is defined by the following cases.

Initialization. For all a ∈ Σ, for all si ∈ S , 1 ≤ i ≤ n, if (s1, a,
−→
0 m, si) ∈ γ, then

(t0, a,
−→
i , 〈B0, a〉) ∈ η.

State Transition. For all a ∈ Σ, for all b ∈ Σ ∪ {⊣}, for all B′, B′′, B′′′ ∈ B such that
〈B′, a, B′′〉, 〈B′′, b, B′′′〉 ∈ δ, for all i, j such that si ∈ B′′, s j ∈ B′′′:

1. if (si, b,
−→
0 m, s j) ∈ γ, then (〈B′, a〉, b,

−→
j −
−→
i , 〈B′′, b, 〉) ∈ η.

2. for all
−→
Y ∈ Jm,

−→
Y ,
−→
0 m:

(a) if (si, b,
−→
Y , s j) ∈ γ, then (〈B′, a〉, b,

−→
0 n ·
−→
Y , 〈B′′, b〉) ∈ η;

(b) for all sh ∈ B′ such that (sh, a,
−→
Y , si) ∈ γ, if (si, b,

−→
0 m, s j) ∈ γ, then

(〈B′, a〉, b,
−→
j −
−→
h , 〈B′′, b〉) ∈ η;

20

Acceptance. For all a ∈ Σ∪ {⊣}, for all B′, B′′ ∈ B, such that 〈B′, a, B′′〉 ∈ δ, for all
sh ∈ B′′ ∩ Sfin, 1 ≤ h ≤ n,

1. (〈B′, a〉, ⊣,−
−→
h , tfin) ∈ η and

2. for all si ∈ B′,
−→
Y ∈ Jm,

−→
Y , 0, such that (si, a,

−→
Y , sh) ∈ γ, also:

(〈B′, a〉, ⊣,−
−→
i ,tfin) ∈ η.

Nothing else is in η.
Notice that all cases in the definition of η are distinct, i.e., each transition in η

can only be produced by one case. In particular, the Initialization and the Accep-
tance definitions are the only ones to introduce transitions with third component

of the form
−→
i and, respectively, −

−→
i and −

−→
h . Part (1) and (2) of the Acceptance

are distinct since the former requires that state sh ∈ S f in, while the latter requires
that there is a transition from state si to a state in S f in: by Corollary 2.10, Part
(1), si < S f in, hence i , h. Part (2.a) in the definition of State Transition is the

only one to introduce a transition with third component of the form
−→
0 n ·
−→
Y for

−→
Y ,

−→
0 m. Part (1) and Part (2.b) both introduce transitions with third component

of the form
−→
j −
−→
h , but Part (1) requires that (sh, b,

−→
0 m, s j) ∈ γ while Part (2.b) re-

quires that (sh, a,
−→
Y , si) ∈ γ and (si, b,

−→
0 m, s j) ∈ γ: both conditions are impossible

to be simultaneously verified by γ, by Corollary 2.10, Part (1).

Proof of L(Mqd) ⊆ L(M) ⊣. We list a few obvious facts on Mqd based on the
above definition of η.

I) If (t0,
−→
0 n+m)

a
−→Mqd

(t,
−→
Ξ), then state t is normal and

−→
Ξ =
−→
j for 1 ≤ j ≤ n, be-

cause of the Initialization definition and of the rarefaction ofM (no move from
t0 may modify a counter). State t0 itself is not the endpoint of any transition,
hence an Initialization transition is used only at the first move in a run.

II) Every transition (t, a,
−→
W, t′) ∈ η, for t, t′ ∈ T, t , t0, t

′
, tfin, a ∈ Σ, is such that

either
−→
W =

−→
i −
−→
j , for some 1 ≤ i, j ≤ n, or

−→
W =

−→
0 n ·
−→
Y for some

−→
Y ∈ Jm,

−→
Y ,
−→
0 m).

III) Every configuration (t,
−→
Ξ) ofMqd which can be reached from the initial config-

uration is such that if t , t0, t , tfin, then
−→
Ξ =
−→
j ·
−→
X for 1 ≤ j ≤ n,

−→
X ∈ Nm. In

fact, by (I), (t0,
−→
0 n+m) may only move to a configuration of the form (t,

−→
j), and,

by Part (II) above, the other transitions available in η may only either change
the value of j, i.e., the position of the value 1 in the first n components, or the

content of
−→
X .

IV) If (t,
−→
Ξ)

a
−→Mqd

(t′,
−→
Ξ

′

), then at least one of t and t′ is normal, since η does not
contain transitions among checking states (M is rarefied).

21

V) If (t,
−→
Ξ)

⊣
−→Mqd

(t′,
−→
Ξ

′

), then t′ = tfin, and
−→
Ξ

′

=
−→
0 n ·
−→
X , for

−→
X ∈ Nm, because

of the transitions in the Acceptance definition.

We now show by induction on k > 0 that if w ∈ Σk, t1, . . . , tk ∈ T ,
−→
Ξ1, . . . ,

−→
Ξk ∈

N
n+m, and

(t0,
−→
0 n+m)

w(1)
−→Mqd

(t1,
−→
Ξ1)

w(2)
−→Mqd

· · ·
w(k)
−→Mqd

(tk,
−→
Ξk) (11)

then there exist si0 ∈ ⌊t0⌋, si1 ∈ ⌊t1⌋, . . . , sik ∈ ⌊tk⌋, and
−→
X 1, . . . ,

−→
X k ∈ N

m, such that:

(si0 ,
−→
0 m)

w(1)
−→M (si1 ,

−→
X 1)

w(2)
−→M · · ·

w(k)
−→M (sik ,

−→
X k) (12)

with si0 = s1, and such that, by setting
−→
W =

−→
Ξk −

−→
Ξk−1, the following conditions

are verified:
1. if

−→
W =

−→
0 n ·

−→
Y , for some

−→
Y ∈ Jm,

−→
Y ,

−→
0 m, then

−→
Ξk =

−−→
ik−1 ·

−→
X k and

(sik−1 ,w(k),
−→
Y , sik) ∈ γ.

2. else
−→
Ξk =

−→
ik ·
−→
X k and (sik−1 ,w(k),

−→
0 m, sik) ∈ γ.

The base case k = 1 is obvious: if (t0,
−→
0 n+m)

w
−→Mqd

(t1,
−→
Ξ1), then, for some

si1 ∈ ⌊t1⌋. We have (t0,w(1),
−→
i1 , t1〉) ∈ η. Hence,

−→
Ξ1 =

−→
i1 ·
−→
0 m, and by definition

of η it must be (si0 ,w(1),
−→
0 m, si1) ∈ γ: Cond. (2) of the induction hypothesis is

verified and (si0 ,
−→
0 m)

w(1)
−→M (si1 ,

−→
X 1).

Let now k > 1, and assume that (11) holds for w ∈ Σk−1, hence (si0 ,
−→
0 m)

w
−→M

(sik−1 ,
−→
X k−1). We show that the induction hypothesis holds also for wa, for all a ∈ Σ.

Consider first the case where
−→
W =

−→
0 n ·
−→
Y , for some

−→
Y ,
−→
0 m,
−→
Y ∈ Jm. The tran-

sition applied in the move (tk−1,
−→
Ξk−1)

a
−→Mqd

(tk,
−→
Ξk) must be (tk−1, a,

−→
0 n ·
−→
Y , tk).

This transition can only be defined by Part 2.a of the State Transition definition,

hence (sik−1 , a,
−→
Y , sik) ∈ γ, for some sik ∈ ⌊tk⌋. Therefore, (sik−1 ,

−→
X k−1)

a
−→M

(sik ,
−→
X k) and

−→
Ξk =

−−→
ik−1 ·

−→
X k, since:

−→
Ξk =

−→
0 n ·
−→
Y +
−→
Ξk−1 = (

−→
0 n ·
−→
Y)+ (

−−→
ik−1 ·

−→
X k−1) =

−−→
ik−1 · (

−→
Y +
−→
X k−1) =

−−→
ik−1 ·
−→
X k. Therefore, the induction hypothesis (12) and Cond. (1)

are verified.
If
−→
W does not have the form

−→
0 n ·
−→
Y for some

−→
Y ,
−→
0 m,
−→
Y ∈ Jm, then there are

two sub-cases to be considered, depending on
−→
W
′

=
−→
Ξk−1 −

−→
Ξk−2.

•

−→
W
′

=
−→
0 n ·
−→
Y ′, for some

−→
Y ′ ,

−→
0 m,
−→
Y ′ ∈ Jm. By Cond. (1) of the induction

hypothesis,
−→
Ξk−1 =

−−→
ik−2 ·

−→
X k−1 and (sik−2 ,w(k − 1),

−→
Y ′, sik−1) ∈ γ.

Therefore, the transition applied in (tk−1,
−→
Ξk−1)

a
−→Mqd

(tk,
−→
Ξk) is necessarily

(tk−1, a,
−→
ik −
−−→
ik−2, tk) for some sik ∈ ⌊tk⌋ (hence,

−→
W =

−→
ik −
−−→
ik−2). This transition

22

can only be defined by Part (2.b) of the State Transition definition (as no other

part of that definition can define a transition of the form (tk−1, a,
−→
i j −
−→
ih , tk) with

si j
∈ ⌊tk⌋, sih ∈ ⌊tk−2⌋). Hence, it is necessary that also (sik−1 , a,

−→
0 m, sik) ∈ γ.

Therefore, (sik−1 ,
−→
X k−1)

a
−→M (sik ,

−→
X k), with

−→
X k =

−→
X k−1. Also,

−→
Ξk =

−→
ik ·
−→
X k

since:
−→
X k =

−→
X k−1 and

−→
Ξk =

−→
ik −
−−→
ik−2 +

−→
Ξk−1 =

−→
ik −
−−→
ik−2 + (

−−→
ik−2 ·

−→
X k−1) =

−→
ik ·
−→
X k−1 =

−→
ik ·
−→
X k. Thus, Cond. (2) of the induction hypothesis is verified.

• W ′ has not the form
−→
0 n ·
−→
Y ′. By Cond. (2) of the induction hypothesis,

−→
Ξk−1 =

−−→
ik−1 ·

−→
X k−1, with sik−1 ∈ ⌊tk−1⌋. Therefore, the rightmost transition applied in

the above run of Mqd is (tk−1, a,
−→
ik −

−−→
ik−1, tk), for some sik ∈ ⌊tk⌋, i.e.,

−→
W =

−→
ik −
−−→
ik−1. This transition cannot be defined by Part (2) of the State Transition

definition: in fact, Part (2.a) may only define transitions with increment vector
−→
Y ,

−→
0 m, while Part (2.b) may only define transitions of the form (tk−1, a,

−→
j −

−→
h , tk), with s j ∈ ⌊tk⌋, sh ∈ ⌊tk−2⌋: but sik−1 ∈ ⌊tk−1⌋, i.e., sh, sik−1 are in different

blocks, so the transition (tk−1, a,
−→
ik −
−−→
ik−1, tk) cannot be defined by this part either.

Therefore, it must be defined in Part (1) of the State Transition definition, hence
(sik−1 , a,

−→
0 m, sik) ∈ γ. Therefore, (sik−1 ,

−→
X k−1)

a
−→M (sik ,

−→
X k), with

−→
X k =

−→
X k−1.

Also,
−→
Ξk =

−→
ik ·
−→
X k since:

−→
Ξk =

−→
W +

−→
Ξk−1 =

−→
ik −
−−→
ik−1 +

−→
Ξk−1 =

−→
ik −
−−→
ik−1 +

(
−−→
ik−1 ·

−→
X k−1) =

−→
ik ·
−→
X k−1 =

−→
ik ·
−→
X k (because

−→
X k =

−→
X k−1). Thus, Cond. (2) of the

induction hypothesis is verified.
We now show that if a word w ⊣, with w ∈ Σ∗, is accepted by Mqd, then w

is accepted by M, thus ending the proof. Let (t0,
−→
0 n+m)

w
−→Mqd

(tk,
−→
Ξk)

⊣
−→Mqd

(tfin,
−→
0 n+m). Hence, (si0 ,

−→
0 m)

w
−→M (sik ,

−→
X k). Also, if

−→
Ξk −

−→
Ξk−1 is not of the form

−→
0 m ·
−→
Y , for

−→
Y ,
−→
0 m,
−→
Y ∈ Jm, then

−→
Ξk =

−→
ik ·
−→
X k, else

−→
Ξk =

−−→
ik−1 ·

−→
X k. In the former

case, the transition applied in the last move of the run of Mqd is (tk, ⊣,−
−→
ik , tfin).

Since sik ∈ ⌊tk⌋, we are in case (1) of the Acceptance definition. Hence, sk ∈ Sfin

and
−→
Ξk −

−→
ik =
−→
0 n+m, therefore

−→
X k =

−→
0 m: w is recognized byM. In the latter case,

the transition applied in the last move of the run ofMqd is (tk, ⊣,−
−−→
ik−1, tfin). Since

sik−1 ∈ ⌊tk−1⌋, we are in case (2) of the Acceptance definition. Hence, it must be

sk ∈ Sfin. Also,
−→
Ξk −

−−→
ik−1 =

−→
0 n+m, therefore

−→
X k =

−→
0 m, and w is recognized byM.

Proof of L(M) ⊣⊆ L(Mqd). We first prove by induction on k ≥ 1 that for all

w ∈ Σk, k ≥ 1, for all s1, . . . , sik ∈ S ,
−→
X 1, . . . ,

−→
X k ∈ N

m, if

(si0 ,
−→
0 m)

w(1)
−→M (si1 ,

−→
X 1) · · ·

w(k)
−→M (sik ,

−→
X k) (13)

23

with si0 = s1, then there exist tk ∈ T ,
−→
Ξk ∈ N

n+m such that:

(t0,
−→
0 n+m)

w
−→Mqd

(tk,
−→
Ξk), (14)

if
−→
X k =

−→
X k−1, then

−→
Ξk =

−→
ik ·
−→
X k (15)

if
−→
X k ,

−→
X k−1, then

−→
Ξk =

−−→
ik−1 ·

−→
X k. (16)

The base case k = 1, i.e., w = a ∈ Σ, follows from the Initialization case
in the definition of η. If (s1,

−→
0 m)

a
−→M (si1 ,

−→
X 1), then (s1, a,

−→
0 m, si1) ∈ γ, hence

(t0, a,
−→
i1 , 〈B0, a〉) ∈ η. Let t1 = 〈B0, a〉. Hence, (t0,

−→
0 n+m)

a
−→Mqd

(t1,
−→
i1 ·
−→
X 1), thus

Conditions (14) and (15) in the induction hypothesis are verified.
Let now k > 1, and assume that (13) holds for w ∈ Σk−1, i.e., there exist

tk−1 ∈ T ,
−→
Ξk−1 ∈ N

n+m such that (t0,
−→
0 n+m)

w
−→Mqd

(tk−1,
−→
Ξk−1).

We need to show that for all a ∈ Σ there exist tk ∈ T,
−→
Ξk ∈ N

n+m, verifying

the correct case among Conditions (15) and (16), and such that (tk−1,
−→
Ξk−1)

a
−→Mqd

(tk,
−→
Ξk). Since (sik−1 ,

−→
X k−1)

a
−→M (sik ,

−→
X k), then (sik−1 , a,

−→
Y , sik) ∈ γ, with

−→
Y =

−→
X k −

−→
X k−1. Let

−→
Y ′ =

−→
X k−1 −

−→
X k−2.

Consider first the case
−→
Y =

−→
0 m. Hence, (sik−1 , a,

−→
0 m, sik) ∈ γ and by Part (1)

of State Transition, (tk−1, a,
−→
ik −
−−→
ik−1, tk) ∈ η (just let j = ik, i = ik−1). Therefore,

(tk−1,
−→
Ξk−1)

a
−→Mqd

(tk,
−→
Ξk−1+

−→
ik −
−−→
ik−1). Let

−→
Ξk =

−→
Ξk−1+

−→
ik −
−−→
ik−1. If

−→
Y ′ =

−→
0 m, by

Cond. (15) of the induction hypothesis,
−→
Ξk−1 =

−−→
ik−1 ·

−→
X k−1. Therefore,

−→
Ξk = (

−−→
ik−1 ·

−→
X k−1)+

−→
ik −
−−→
ik−1 = (

−→
0 n ·
−→
X k−1)+

−→
ik =
−→
ik ·
−→
X k−1 =

−→
ik ·
−→
X k, which is exactly Cond. (15)

of the induction hypothesis. If
−→
Y ′ ,

−→
0 m, by Cond. (16) of the induction hypothesis,

−→
Ξk−1 =

−−→
ik−2 ·

−→
X k−1. We are in case of Part (2.a) of the State Transition definition,

therefore (tk−1, a,
−→
ik −
−−→
ik−2, tk) ∈ η. Hence, (tk−1,

−→
Ξk−1)

a
−→Mqd

(tk,
−→
Ξk−1+

−→
ik −
−−→
ik−2).

Let
−→
Ξk =

−→
Ξk−1 +

−→
ik −
−−→
ik−2. Therefore,

−→
Ξk = (

−−→
ik−2 ·

−→
X k−1) +

−→
ik −
−−→
ik−2 =

−→
ik ·
−→
X k−1 =

−→
ik ·
−→
X k, which is again exactly Cond. (15) (which is the correct one, since if tk−1 is

checking, then tk is normal).

Consider now the case
−→
Y ,

−→
0 m. SinceM is 3-rarefied,

−→
Y ′ = 0. By induction

hypothesis,
−→
Ξk−1 = (

−−→
ik−1 ·

−→
X k−1). Therefore, by Part (2.a) of the State Transition

case (tk must be checking), (tk−1, a,
−→
0 n ·
−→
Y , tk) ∈ η. Therefore, (tk−1,

−→
Ξk−1)

a
−→Mqd

(tk,
−→
Ξk−1 + (

−→
0 n ·
−→
Y)). Let

−→
Ξk =

−→
Ξk−1 + (

−→
0 n ·
−→
Y) = (

−−→
ik−1 ·

−→
X k−1) + (

−→
0 n ·
−→
Y) =

−−→
ik−1 · (

−→
X k−1 +

−→
Y) =

−−→
ik−1 ·

−→
X k. But this is exactly Cond. (16).

We now show that if w ∈ Σ is accepted byM, then w ⊣ is also accepted byMqd,

thus ending the proof. Let (si0 ,
−→
0 m)

w
−→M (sik ,

−→
X k), with sik being final and

−→
X k =

24

s6 s7 s8 s9

s1 s2 s3 s4 s5 s18

s10 s11 s12 s13

s14 s15 s16 s17

→ →
a a

a
−→
X (1)+ a

a

b
−→
X (1)−

b b b

b
−→
X (1)−

b
−→
X (1)−

b b b

b

b b b

b
−→
X (1)−

⊣

⊣

Figure 3: RT-PBLIND rarefied nondeterministic machine with the counter scheduled by module
v = 4, for language Lfour = {a

4nb4n | n ≥ 1} ∪ {a4nb8n | n ≥ 1}.

−→
0 m. Hence, (t0,

−→
0 n+m)

w
−→Mqd

(tk,
−→
Ξk), with tk,

−→
Ξk verifying the conditions of the

induction hypothesis above. If Cond. (15) is verified, then
−→
Ξk =

−→
ik ·
−→
X k =

−→
ik ·
−→
0 m:

the Acceptance definition, Part (1), makes sure that in this case (tk,
−→
Ξk) −→Mqd

(tfin,
−→
0 n+m) (by letting h = ik). If Cond. (16) holds, then tk is checking and

−→
Ξk =

−−→
ik−1 ·

−→
0 m: Part (2) of the Acceptance definition ensures again that (tk,

−→
Ξk) −→Mqd

(tfin,
−→
0 n+m), by letting tk = 〈B

′,w(k)〉, i = ik−1, h = ik.

Example 2.13. Quasi-deterministic machine.
To illustrate, we show the QD-RT-PBLIND simple-operation machine obtained
from a rarefied nondeterministic machine. We observe that drawing the machine
equivalent to the one in Fig. 1 would be unwieldy, because the minimum scheduling
module that permits to apply the construction in the proof of Th. 2.8 is v = 4; the
value v = 2 used in Fig. 2 does not leave any slots (residues) for scheduling the
actions on the extra counters (flags) used for simulating the original states of the
nondeterministic machine. To reduce size, but not significance, we illustrate in
Fig. 3 and Fig. 4 the case for the subset of language L2.7 that contains the strings
having a number of a’s multiple of 4, i.e., for language Lfour = {a

4nb4n ⊣ | n ≥

1} ∪ {a4nb8n ⊣ | n ≥ 1}.
Choose the state partition {s1}, R0 = {s2, s6, s10, s14}, R1 = {s3, s7, s11, s15},

25

t0 R0, a R1, a R2, a R3, a

R0, b R1, b R2, b R3, b tfin

↑

↑

{s1} {s2} {s3} {s4} {s5}

{s6, s10, s14} {s7, s11, s15} {s8, s12, s16} {s9, s13, s17}

a
s2+

a
s2−, s3+

a
−→
X(1)+

a
s3−, s5+

a
s2+, s5−

b
−→
X(1)−

b
s5−,s7+

b
s5−,s11+

b
s9−,s7+

b
s11+,s17−

b
s14−,s15+

b
s7−,s8+

b
s11−,s12+

b
s15−,s16+

b
s8−,s9+

b
s12−,s13+

b
s16−,s17+

b
−→
X(1)−

b
s13−,s14+

⊣
s9−
⊣

s17−

Figure 4: Quasi-deterministic RT-PBLIND machine for language Lfour = {a
4nb4n | n ≥ 1} ∪ {a4nb8n |

n ≥ 1}. Checking states are framed.

R2 = {s4, s8, s12, s16}, R3 = {s5, s9, s13, s17}, {s18}. Fig. 4 depicts the QD machine; a
state named by a pair, say (R3, b), simulates a set of si states of the nondeterministic
machine, namely the states s9, s13, s17 that are entered upon reading b from each s j

state contained in a predecessor state – here the only predecessor (R2, b), namely
the states s8, s12, s16. For explanatory reasons, the simulated si states are written
next to the states and the checking states are rectangular. There are, according to

the general construction, 17 + 1 counters denoted by s1, . . . , s17,
−→
X (1); the first 17

counter values are limited to 0 or 1, and are called flags. To illustrate how the
QD machine simulates the rarefied one, the runs recognizing a4b4 and a4b8 are
tabulated in Fig. 6 of the Appendix.

From the preceding lemmas we have:

Theorem 2.14 (Quasi-deterministic normal form). For every RT-PBLIND machine

M there exists a QD-RT-PBLIND machineMQD recognizing L(M) ⊣.

We recall that machineMQD has the simple operation property and, at every move,
modifies a counter.

2.5. Application of normal forms to Petri Nets

It is natural and interesting to see how the previous normal forms of multi-
counter machines, when applied to Petri Nets, induce a particular network struc-
ture. The following informal discussion has three parts corresponding to the cases

26

of simple operation property, rarefied and scheduled form, and quasi-deterministic
form.

Given an RT-PBLIND machineM, with states S = {s1, . . . , sn} and m counters,
the corresponding PN P outlined in Th. 2.4 has n + m places that we denote by
s1, . . . , sn, x1, . . . , xm. The first n places are limited to hold one or zero tokens,
and are named state places; the other places, called counter-places, may contain
unbounded values.

Simple operation form. IfM has the simple operation property, all transitions take
the form below:

s x

a

s′ x′

where s, s′ ∈ S are the state-places and x, x′, the counter-places (dashed nodes).
This PN is in the so called semi-bounded normal form of [4], there proved in the
much simpler case of a PN model permitting also unlabelled transitions, which is
equivalent to PBLIND non-RT machines.

Rarefied normal form with counter operations scheduled. Rarefaction imposes
further restrictions on the transitions of the simple operation form. All transitions
take one of the forms below:

s xi

a

s′

s

a

s′ xi

The left (respectively right) transition is scheduled at positions having as ordinal
residue the constant ⊟i (respectively ⊞i).

Quasi-deterministic normal form. The constraints caused by the QD form, assum-
ing the MCM to be also rarefied, are better explained by listing below the subnets
that are forbidden:

xi s

a a

s′ s′′

s

a a

s′ xi s′′

27

Notice that, according to Eq. (10) in Def. 2.9, one or both counter operations
(dashed arcs) may be absent from each subnet.

We are not aware of any existing similar normal forms for Petri Nets, but some
analogy can be found with certain program control-flow graph transformations
familiar to compiler designers (e.g., [1]), such as “loop unrolling” and “modulo
scheduling” of the instructions contained in a loop.

3. Consensual finite-state computation

The consensual language model was first proposed in [5, 6] and further de-
veloped until present. We introduce it by means of an intuitive operational model
based on NFA computations, highlighting its difference from the classical nonde-
terministic FA. Imagine an NFA that performs one of several possible accepting
runs to recognize an input word w. In contrast, to recognize “consensually” in-
put w, the NFA performs up to |w| concurrent accepting computations, such that,
for each letter w(1), . . . ,w(|w|), exactly one computation - the “leader”, asserts the
validity of the letter. The remaining computations - the “followers”, give their
consent to the letter chosen by the leader. Out of metaphor, such dual behavior fol-
lower/leader can be represented in the NFA transition graph by two different edge
types, say, thin for follower and thick for leader. But we prefer to use instead two
distinct copies of each letter a ∈ Σ: a dotted letter å denotes a follower type move,
and a plain (undotted) letter a a leader type move.

3.1. State vectors of NFA computations

Let Σ̊ be the alphabet obtained by marking each letter a ∈ Σ as å. The union
Σ∪Σ̊ is named the double alphabet and denoted by Σ̃. A language R ⊆

(
Σ̃

)∗
over the

double alphabet is called a base language, because it provides the support needed
to define a consensual language.

Consider an NFA recognizing a base language: A = (Σ̃,Q, δ, q0, F). In the
following, assume, without loss of generality, that the transition relation δ is total,
i.e, for every state q and every terminal a, |δ(q, a)| ≥ 1. For all k > 0, a k-tuple
~V ∈ Qk is called a state vector of A of cardinality k. We define a transition relation
on state vectors.

Definition 3.1. The state vector transition relation of an NFA A, denoted by

−→SVA
⊂fin QN × Σ × QN

is defined, for a ∈ Σ, for all k > 0, and for all state vectors ~V, ~V ′ ∈ Qk, as:

~V
a
−→SVA

~V ′ if ∃ j, 1 ≤ j ≤ k : ~V ′(j) ∈ δ
(
~V(j), a

)
and (17)

∀i , j, 1 ≤ i ≤ k : ~V ′(i) ∈ δ
(
~V(i), å

)

28

q1 q2 q3→ →
b

a

b̊

å | b̊ å å

Figure 5: NFA A3.4 accepting the base language L(A3.4) =
(
å ∪ b̊

)∗
bå∗aå∗

(
b̊å∗aå∗

)∗
, and consensu-

ally recognizing C(A3.4) = {ba ba2 . . . bak | k ≥ 1}. Leader (follower) transitions are evidenced as
thick (thin) edges.

Notice that the definition asserts that exactly one of the k computations reads
a (i.e., its next state is in δ

(
~V(j), a

)
thus acting as leader, while all others read å

(i.e., their next state is in δ
(
~V(i), å

)
acting as followers. We also say that the leader

places letter a and the followers consent to it.
Relation

a
−→SVA

can be extended, as usual, from a letter a to a word w ∈ Σ∗. A
state vector of A of cardinality k is said to be initial if ~V(i) = q0 for all 1 ≤ i ≤ k,
final if ~V(i) ∈ F for all 1 ≤ i ≤ k.

Definition 3.2 (Consensual recognition). A word w ∈ Σ∗ is consensually recog-
nized by NFA A if there exist an initial state vector ~V0 and a final state vector ~V f

such that ~V0
w
−→SVA

~V f . The language consensually recognized by A, denoted by

Crec(A) is {x ∈ Σ∗ | x is consensually recognized by A}.

Since at each step there is one and only one leader that places a terminal letter,
the following proposition immediately follows:

Proposition 3.3. The state vectors that are needed to consensually recognize a

word x have cardinality upper bounded by |x|.

Example 3.4. The language L3.4 = {ba1ba2 . . . bak | k ≥ 1} is consensually recog-
nized by the NFA in Fig. 5.

A state-vector transition relation recognizing babaa is:
[

q1

q1

]
b
−→SVA

[
q2

q1

]
a
−→SVA

[
q3

q1

]
b
−→SVA

[
q2

q2

]
a
−→SVA

[
q3

q2

]
a
−→SVA

[
q3

q3

]

Notice that the above state-vector transitions result from the following finite-state
computations (equivalent ones exist):

q1
b
→q2

a
−→q3

b̊
−→q2

a
−→q3

å
−→q3

q1
b̊
−→q1

å
−→q1

b
−→q2

å
−→q2

a
−→q3

29

For instance, at step three, the bottom computation is the leader placing letter b,
whereas at step four the top computation leads and places letter a. We observe that
language Crec(A3.4) has a nonsemilinear Parikh image.

Although the configurations reached by an NFA in consensual mode have been
represented by a state vector, the order of vector components is irrelevant. It is
immediate to see that, if ~V

a
−→SVA

~V ′, then, for every permutation ~Vp of ~V , there

exists a permutation ~V ′p of ~V ′ such that ~Vp

a
−→SVA

~V ′p. This suggests to formal-
ize the concurrent and matching NFA computations of A by means of multisets of
states. In [6] a nondeterministic machine was defined, called a multiset machine,
having as auxiliary memory a multiset of states of a DFA that recognizes the base
language. To avoid confusion, we do not call such device a “counter machine”
although it really is one; also, such machine should not be confused with the “mul-
tiset” automata studied in [3]. We will define and use the multiset machine in
Sect. 4 to prove our main result.

It is straightforward, but important, to observe that the language consensually
recognized by an NFA A does not depend on A itself, but only on the base language
L(A) over the double alphabet. Therefore any formal device apt to define regular
languages, say, regular expressions, can be used to specify a consensual language.
Next we give a more abstract and general definition of consensual languages.

3.2. Match relation

To express an “agreement” or consensus between words over the double alpha-
bet, we introduce a binary relation, called match, over Σ̃, then extended to words.

Definition 3.5 (Match). The partial symmetric associative binary operator match
@ : Σ̃ × Σ̃→ Σ̃, is defined for all a ∈ Σ„ then for all words w,w′ ∈ (Σ̃)n, n ≥ 0 as:



a@å = å@a = a

å@å = å

undefined, otherwise

{
ε@ ε = ε
w@w′ = (w(1)@w′(1)) · . . . · (w(n)@w′(n))

In words, the match is undefined if |w| , |w′|, or whenever in some position i

the match w(i)@w′(i) is undefined, which happens when both letters are in Σ, when
both are in Σ̊ and differ, and when either one is dotted but is not the dotted copy of
the other. For instance, åabb̊ @ ååb̊b = åabb while åabb̊ @ ååbb is undefined.
The match of a finite nonempty set of words w1, . . . ,wm ∈ (Σ̃)∗ is denoted by
w = w1@w2@ . . .@wm and is a partially defined function. The number m is called
the degree of the match. The match result is further qualified as strong if w ∈ Σ∗, or
as weak otherwise. By Def. 3.5, if w is a strong match, in each position 1 ≤ i ≤ |w|,
exactly one word, say wh, is undotted, i.e., wh(i) ∈ Σ, and w j(i) ∈ Σ̊ for all j , h;

30

we say that word wh places the letter at position i and the other words consent to it;
i.e., wh is the leader at position i and the others are followers. The match operator
is extended to two (or more) languages L′, L′′ ⊆ (Σ̃∗) by means of

L′@ L′′ = {w′@ w′′ | w′ ∈ L′,w′′ ∈ L′′}

and its repeated application to a language is defined by

L1@
= L , Li@

= L @ L(i−1)@, i ≥ 2.

Definition 3.6 (Consensual language.). The closure under match, or @-closure, of

a language L ⊆ (Σ̃)∗ is L@
=
⋃

i≥1 Li@. Let B ⊆ (Σ̃)∗. The consensual language
with base B is C(B) = B@ ∩ Σ∗. The family of consensually regular languages,

denoted by CREG, is the collection of all languages C(B) such that B is regular.

It is straightforward that this definition is equivalent to the previous Def. 3.2 of
consensual recognition by means of an NFA:

Proposition 3.7. If language B ⊆ (Σ̃)∗ is recognized by NFA A, then Crec(A) =
C(B).

On the other hand, Def. 3.6 is more general than Def. 3.2 because it permits
the base language to be nonregular ([6, 7] consider also context-free and context-
sensitive bases); but here we only need regular bases.

To illustrate, we specify by means of “consensual regular expressions” some
typical languages recognized by counter machines of different types. This suggests
that counting operations performed by a multi-counter machine can be simulated
by consensual computations, and sets the directions for the formal development in
Sect. 4.

Example 3.8 (CREG specification of some counter languages). The deterministic
RT-PBLIND 2-counter language {anbncn | n > 0} is defined by the base

å∗ a å∗ b̊∗ b b̊∗ c̊∗ c c̊∗

The language L3 = ({anbn | n ≥ 1})∗ is accepted by a RT 1-counter machine
that is allowed to test for zero, but not by any RT-PBLIND multi-counter machine,
as stated in Prop. 2.2. It is consensually defined by the base:

(
å ∪ b̊

)∗
a å∗ b̊∗b b̊∗

(
å ∪ b̊

)∗

Each word in L3 is the concatenation of an unbounded number of substrings of the
form an1 bn1 , an2 bn2 , . . . : every word in the base places exactly one a and one b into

31

one of these substrings and consent to any other word. It is then easy to see that all,
and only words, in L3 can be defined by a strong match. For example, a3b3ab is
the strong match of, for instance, the four words: åååb̊b̊b̊ab, åaåb̊b̊båb̊, aååb̊bb̊åb̊

and ååabb̊b̊åb̊.
For language L2.7 = {a

nbn | n > 0} ∪
{
anb2n | n > 0

}
of the running example

(Fig. 1) a consensual regular expression is in [8].

Remarks on closure properties of CREG. First, we list some properties of CREG,
then we discuss some implications of its closure properties.

Proposition 3.9. Known properties of CREG [6, 7]:

1. CREG includes REG, is incomparable with both the context-free and determin-

istic context-free families, it is included within the context-sensitive family, and

it contains non-semilinear (in the sense of Parikh) languages.

2. CREG is closed under reversal, union and intersection with regular languages,

and under inverse (erasing) alphabetic homomorphism.

3. CREG is closed under marked union, marked concatenation and marked Kleene

closure (as defined, e.g., in [24]).

4. The family of regular languages coincides with the family of consensual lan-

guages having a strictly locally testable base.

5. Membership in CREG can be decided in NLOGSPACE.

6. Non-emptiness checking of CREG is undecidable.

Notice that the homomorphism considered in Item (2) can be erasing (the orig-
inal proof in [6] did not explicitly consider this case but it is straightforward).
Although it is not known whether CREG has other closure properties, the classi-
cal theory of abstract families of languages (AFL) (some familiarity of the reader
is assumed) offers some information on the topics. An immediate consequence of
Prop. 3.9 is that the CREG family, although possibly not an AFL, is a pre-AFL, i.e.,
a family of languages closed under inverse homomorphism, intersection with regu-
lar languages, union with language {ε}, marked concatenation, and marked Kleene
closure (see Chapter IV.2 of [24]). Since the closure under (non-erasing) homo-
morphism of a pre-AFL is an AFL (Prop. 2.1 in Chapter IV.2 of [24]), it follows
that closure under non-erasing homomorphism of CREG would entail also closure
under union, concatenation and Kleene closure.

A stronger result may be derived from Th. 1 of [15]: any recursively enumer-
able language may be defined as the (erasing alphabetic) homomorphic image of
the intersection of two languages in the family Ld, where Ld is the smallest fam-
ily of languages including language {anbn | n ≥ 1} and all regular languages, and
closed under marked Kleene + and inverse deterministic Generalized Sequential

32

Machine mappings (inv. det. GSM). Therefore, any family of languages larger
than Ld and closed under both homomorphic image and intersection includes also
all recursively enumerable languages. Since every AFL is closed under inv. det.
GSM, it follows that the closure of CREG under non-erasing homomorphism in-
cludes the family Ld, since {anbn | n ≥ 1} and all regular languages are in CREG.
This leads to the conclusion that CREG cannot be closed under both erasing ho-
momorphism and intersection, else it would include all recursively enumerable
languages.

4. Multi-counter and Petri Nets Languages are Consensually Regular

In this section we prove that every RT-PBLIND language is consensually regu-
lar. From Th. 2.14 we can assume that the PBLIND machine is quasi-deterministic,
a fact that makes it easier to construct the equivalent consensual multiset machine.
Then strict inclusion follows from a witness consensual language.

4.1. A multiset notation for consensual languages

First, we define a transition relation based on multisets of states and show its
equivalence to the transition relation based on state-vectors. We use the following
notation for multisets.

Definition 4.1 (Multiset). A finite multiset over a given set Q is a total mapping

Z : Q → N. The cardinality of multiset Z is |Z| =
∑

q∈Q Z(q). If Z(q) > 0, then

we say that q ∈ Z with multiplicity Z(q). For all multisets Z, Z′ over Q, let the

underlying set be JZK = {q ∈ Q | Z(q) > 0} , let the inclusion Z ⊆ Z′ hold if, for

every q ∈ Q, Z(q) ≤ Z′(q), and let the sum Z ⊎ Z′ and the difference Z − Z′ be the

multisets specified by the following characteristic functions, for all q ∈ Q:

(
Z ⊎ Z′

)
(q) = Z(q) + Z′(q),

(
Z − Z′

)
(q) = max

(
0, Z (q) − Z′ (q)

)

Consider a state vector ~V of cardinality k > 0. The multiset Z associated with ~V is

defined, for all q ∈ Q, as Z(q) =
∣∣∣∣
{
1 ≤ i ≤ k | ~V(i) = q

}∣∣∣∣ .

We now define a condition imposing that all transitions acting as followers are
deterministic, with nondeterminism limited to transitions labeled by symbols in Σ.

Definition 4.2. An NFA A = (Σ̃,Q, δ, q0, F) is called follower-deterministic if for

every state q and every input symbol a ∈ Σ, |δ(q, å)| ≤ 1.

In order to define a transition relation on multisets of states, we extend the state
transition relation δ to multisets over Q and to symbols in Σ̊, by setting for every

33

multiset Z, for every å ∈ Σ̊, that δ(Z, å) is the multiset whose characteristic function
is defined for every q ∈ Q by:

δ(Z, å) =
∑

p∈Q:
δ(p,å)=q

Z(p).

We disregard the action of δ on Σ since it is not required in the following.

Definition 4.3 (multiset transition relation). The multiset transition relation of a

follower-deterministic automaton A = (Σ̃,Q, δ, q0, F), denoted by

−→MSA
⊂fin {Z | Z multiset over Q} × Σ × {Z | Z multiset over Q}

is defined, for a ∈ Σ, for all k > 0, and for all multisets Z, Z′ over Q, as:

Z
a
−→MSA

Z′ if, and only if

∃q ∈ Z, q′ ∈ δ(q, a) | Z′ = {q′} ⊎ δ(Z − {q}, å). (18)

The relation can be naturally extended from letters to words over Σ.

We apply the multiset transition relation to define languages. A multiset Z0

such that Z0(q0) > 0 and Z0(q) = 0 for every q , q0 is said to be initial. A multiset
Z f such that, for all q ∈ Q if Z f (q) > 0, then Q ∈ F, is called final. A word w ∈ Σ∗

is accepted by the multiset transition relation if there exist an initial multiset Z0 and
a final multiset Z f such that Z0

w
−→MSA

Z f . The language of the multiset transition
relation is the set of its accepted words.

Since multisets can be represented by counters, the multiset transition rela-
tion is easily implemented by a kind of counter machine, called the multiset ma-
chine [6]. The original definition assumed, for simplicity, that the finite-state rec-
ognizer of the base language is deterministic, a restriction partly lifted here by
considering follower-deterministic machines; in fact, for our present purposes, it
would be unecessary – though possible – to define the multiset transition relation
also for nondeterministic transitions labelled with dotted letters. The state vector
and multiset transition relations are equivalent:

Lemma 4.4 (State vector and multiset transition relations). For all state vectors ~V

and ~V ′, for all words w ∈ Σ∗,

~V
w
−→SVA

~V ′ if, and only if
[
~V
]

MS

w
−→MSA

[
~V ′
]

MS

where
[
~V
]

MS
denotes the multiset associated with ~V.

34

Sketch of the proof. For w = a ∈ Σ, the two relations are equivalent. This follows
immediately by observing that ~V contains a component ~V(j) and ~V ′ a component
~V ′(j) such that ~V ′(j) ∈ δ(~V(j), a), and for all other components, with r , j, of
~V and of ~V ′, it is ~V ′(r) = δ(~V ′(r), å). It suffices to set, in Eq. (18), Z =

[
~V
]

MS
,

q = ~V(j) and q′ = ~V ′(j), to obtain the identity Z′ =
[
~V ′
]

MS
.

Then, also the iterated applications of −→SVA
and of −→MSA

are equivalent.

By definition, a vector ~V0 is initial if, and only if, the multiset
[
~V0

]
MS

is initial

and a vector ~VF is final if, and only if, the multiset
[
~VF

]
MS

is final. Therefore,
given an automaton A, the state vector and the multiset relation define the same
language, i.e.,

Crec(A) =
{
w |
[
~V0

]
MS

w
−→MSA

[
~VF

]
MS
, ~V0 initial and ~VF final

}
.

4.2. From RT-PBLIND to CREG: main result

Theorem 4.5. Let M be a real-time partially blind multi-counter machine with

input alphabet Σ. Then language L(M) ⊣ is consensually regular.

Since any RT-PBLIND language can be recognized by a QD-RT-PBLIND ma-
chine (Th. 2.14) M (by adding the end marker ⊣), we are going to construct in
Lm. 4.8 an NFA A over the double alphabet, such that Crec(A) = L(M).
To simplify the proof, we reduce the distance between RT-PBLIND machines and
consensual devices by means of a technical arrangement, following similar ideas
of Greibach [14] for Petri Nets. We wish that every move must increment or decre-
ment a counter i, 1 ≤ i ≤ m and at the same time, respectively, decrement or
increment another counter j. This can be formalized by saying that the increment
vector is in the set:

Jm
m =

{
−→
j −
−→
i | 1 ≤ i , j ≤ m

}

Notice that vector
−→
0 m and all vectors of the forms

−→
i or
−→
− j are not in Jm

m .
However, since the sum of all counters is now invariant, if all counters started

at zero, this machine model would not be able to make any increment! To remedy,

we assume that counter
−→
X (m), called the initialized counter, starts with a nonzero

value. The definitions of configuration and transition relation −→ in Def. 4.3 do not
change, but we redefine the initial and final configurations, and thus the recognized

language: in the initial and final configuration, counter
−→
X (m) must have an identical

value k ≥ 0 (i.e., it starts and ends with a nondeterministically chosen value).
Clearly, in every configuration the sum of all counters is equal to k.

35

Definition 4.6 (Initialized Language). Let M = 〈Σ, S , γ,m, s0, Sfin〉 be an RT-

PBLIND machine such that γ ⊆ S × Σ × Jm
m × S . A word w ∈ Σ∗ is an initialized

word ofM if there exist k ≥ 0 and s f ∈ Sfin such that (s0, 0m−1k)
w
−→M (s f , 0m−1k).

The initialized language ofM is the set Lin(M) of initialized words ofM.

Given a QD-RT-PBLIND machine M with m − 1 counters, in simple opera-
tion form, it is straightforward to define a QD-RT-PBLIND machine, M′, with m

counters and increment vectors in Jm
m , whose initialized language is the same lan-

guage ofM. In fact, by Lm. 2.12, we may assume that each increment vector in
the transition relation ofM is not null. Also, the new (initialized) counter m ofM′

is incremented (resp. decremented) for every decrement (resp. increment) move of
M. On the other hand, the new counter is not modified when the move ofM has
the form

−→
i −
−→
j for some i , j, 1 ≤ i, j ≤ m− 1. i.e., a simultaneous increment and

decrement. The identity (to be next stated) between Lin(M′) and L(M), is trivial,
since both machines have essentially the same accepting runs, provided that M′

starts in a configuration such that counter m holds a value k that is at least as large
as the maximum sum of all counters during the run, so that counter m cannot try to
go below zero. All counters 1, . . . ,m − 1 go back to zero at the end of the run if,
and only if, counter m goes back to its initial value k.

Proposition 4.7. If M is a QD-RT-PBLIND machine with m − 1 counters, then

there exists a QD-RT-PBLINDM′ machine with m counters and increment vectors

in Jm
m such that L(M) = Lin(M′).

Next, we prove that QD-RT-PBLIND machines accepts only CREG languages.

Lemma 4.8. For every QD-RT-PBLIND machineM, there exists an NFA A such

that Crec(A) = L(M).

Proof. Given a QD-RT-PBLIND machine with m−1 counters (m > 0) recognizing
a language L, we can assume by Prop. 4.7 that there exists a QD-RT-PBLIND
machineM = 〈Σ, S , γ,m, s0, Sfin〉 (with m counters) with γ ⊆ S × Σ × Jm

m × S and
such that Lin(M) = L. It remains to prove that there exists an NFA A such that
Crec(L(A)) = Lin(M).

Intuition about the proof. The idea is that A is composed of m copies, numbered
1, . . . ,m of the transition graph γ ofM. The states of the i-th copy are identified
by superscript i. The i-th copy of γ is intended to simulate counter i ofM during

a computation on a multiset machine with base language L(A). Let (s, a,
−→
Y , r) ∈ γ,

i.e.,M may go from state s to state r while reading a letter a and with increment

vector
−→
Y . Then, for every copy i there is a (follower) transition from si to ri while

36

reading å, thus in the multiset machine the multiplicity of si is transferred to the

multiplicity of ri. If
−→
Y increments counter i and decrements counter j (necessarily

i , j), then there is a (leader) transition from si to r j while reading a (i.e., 1
is transferred from si to r j). The initial state of A is sm

0 , which is the copy that
corresponds to the initialized counter ofM. The formal construction follows.

For all k > 0 denote with Z0,k the initial multiset with k occurrences of the
initial state sm

0 , i.e., such that Z0,k(sm
0) = k, Z0,k(q) = 0 for all q ∈ Q, q , sm

0 . In
this way the multiset machine associated with A is able to simulate the original

QD-RT-PBLIND machine: if M is such that (s0,
−→
0 mk)

w
−→M (s,

−→
X), for some

configuration (s,
−→
X), then there exists a multiset Z such that Z0,k

w
−→MSA

Z with:

Z(si) =
−→
X (i), for every i, 1 ≤ i ≤ m, and for all j, 1 ≤ j ≤ m, Z(r j) = 0 for every

r ∈ S , r , s.

Formal proof. For all 1 ≤ i ≤ m, let S i be a marked copy of S . If s ∈ S , then its
marked copy in S i is denoted by si. Define an NFA A = (Σ̃,Q, δ, sm

0 , F), where:

• Q =
⋃

1≤i≤m

S i;

• F = {sm | s ∈ Sfin};
• The transition function δ is defined for all a ∈ Σ, s ∈ S , for all 1 ≤ i ≤ m:

1. δ(si, a) =
⋃

(s,a,
−→
Y ,r)∈γ such that

−→
Y (i)=−1

{
r j | 1 ≤ j ≤ m,

−→
Y (j) = 1

}
.

2. if there exist r ∈ S and
−→
Y ∈ Jm

m (Def. 4.6) such that (s, a,
−→
Y , r) ∈ γ then

δ(si, å) = ri, else δ(si, å) = ∅.
We first prove:

(1) Lin(M) ⊆ C (L(A)) .
To show (1), we claim that for all w ∈ Σ∗, s ∈ S ,

−→
X ∈ Nm, if there exists k > 0

such that (s0,
−→
0 m−1k)

w
−→M (s,

−→
X), then there exists a multiset Z ∈ N|Q| such that:

(1.1) Z0,k
w
−→MSA

Z; moreover,

(1.2) for every i, 1 ≤ i ≤ m, Z(si) =
−→
X (i) and JZK ⊆ {s1, . . . , sm} (i.e, for every

other state q ∈ Q, it is Z(q) = 0).
We first show that (1) follows from this claim. Let w be in Lin(M). Hence,

there exists k > 0 such that (s0,
−→
0 m−1k)

w
−→M (s,

−→
0 m−1k) for some s ∈ Sfin By

(1.1), Z0,k
w
−→MSA

Z , for some Z ∈ N
|Q|. By (1.2), for every i, 1 ≤ i ≤ m − 1,

Z(si) = 0, Z(sm) = k while Z(s′ j) = 0 for 0 ≤ j ≤ m, s′ , s. Hence, JZK = {sm},
i.e., Z is a final multiset, since sm ∈ Qfin, therefore w ∈ C (L(A)).

The proof of Claim (1) is by induction on |w| > 0. The base case considers

w = a ∈ Σ. Let (s0,
−→
0 m−1k)

a
−→M (s,

−→
X), with

−→
X (j) = 1,

−→
X (m) = k − 1 for some

37

1 ≤ j < m (the case j = m is simpler). Let
−→
Y =
−→
X −
−→
0 m−1k, i.e.,

−→
Y (j) = 1,

−→
Y (m) =

−1. Hence, (s0, a,
−→
Y , s) ∈ γ and by definition of δ, si ∈ δ(sm

0 , a) and δ(sm
0 , å) = sm.

Let Z be the multiset such that JZK = {sm, s j}, with Z(sm) = k−1, Z(s j) = 1. Hence,

(1.2) holds. By definition of −→MSA
, Z0,k

a
−→MSA

Z, hence also (1.1) holds.
Assume the induction hypothesis holds for w, |w| > 0. For all a ∈ Σ, consider

a run (s0,
−→
0 m−1k)

wa
−→M (s′,

−→
X′), for some k > 0, s′ ∈ S ,

−→
X′ ∈ N

m, which can

be written as (s0,
−→
0 m−1k)

w
−→M (s,

−→
X)

a
−→M (s′,

−→
X′) for some s ∈ S ,

−→
X ∈ N

m

verifying the induction hypothesis: there exists Z ∈ N
|Q| such that Z0,k

w
−→MSA

Z

and for every i, 1 ≤ i ≤ m, Z(si) =
−→
X (i). By definition of

a
−→M, there exists

−→
Y ∈ Jm

m such that (s, a,
−→
Y , s′) ∈ γ and

−→
X′ =

−→
X +

−→
Y . By definition of δ, for

all i, 0 ≤ i ≤ m, δ(si, å) = s′i. For all 1 ≤ i, j ≤ m such that
−→
Y (j) = 1 and

−→
Y (i) = −1, then s′ j ∈ δ(si, a). Let Z′

j
be such that Z′

j
(s′) = j and JZ′

j
K = {s′}. Let

Z′ = Z′
j
⊎ δ(Z − {si}, å).

By Def. 4.3, it follows that Z
a
−→MSA

Z′, hence (1.1) holds for Z′. To show
(1.2), consider that for every n, if n , j, n , i, then Z′(s′n) = Z(sn) (since δ(sn, å) =
s′n), while Z′(s′ j) = Z(s j)+1, Z′(s′i) = Z(si)−1. By induction hypothesis, for every

l, 1 ≤ l ≤ m, Z(sl) =
−→
X (l) and no other non-zero element is in Z. Hence, for all

l, l , j, l , i, Z′(s′l) = Z(sl) =
−→
X (l) =

−→
X′(l), since

−→
X′(l) =

−→
X (l)+

−→
Y (l) with

−→
Y (l) = 0;

Z′(s′i) = Z(si) − 1 =
−→
X (i) − 1 =

−→
X′(i); Z′(s′ j) = Z(s j) + 1 =

−→
X (j) + 1 =

−→
X′(j), and

no other element is in Z′ (i.e., JZ′K ⊆ {s′1, . . . , s′m}).
To prove the converse relation:
(2) C (L(A)) ⊆ Lin(M),

we claim that for all w ∈ Σ+, if there exist k > 0 and a multiset Z ∈ N|Q| such that
Z0,k

w
−→MSA

Z, then there exist s ∈ S ,
−→
X ∈ Nm such that

(2.1) (s0,
−→
0 m−1k)

w
−→M (s,

−→
X),

(2.2) for every i, 1 ≤ i ≤ m, Z(si) =
−→
X (i) and JZK ⊆ {s1, . . . , sm} (i.e, no other

element is in Z).
Thesis (2) follows from this claim: if w ∈ C (L(A)), then by Prop. 3.7 and

Lemma 4.4 there exist k < |w| and a final multiset Z ∈ N|Q| such that Z0,k
w
−→MSA

Z.

Hence, (2.1) holds, and since Z is final, only Z(sm) =
−→
X (m) may be greater than 0.

Therefore,
−→
X (1) =

−→
X (2) · · · =

−→
X (m − 1) = 0,

−→
X (m) = k and s is a final state: (s,

−→
X)

is a final configuration, hence w ∈ Lin(M).
The proof of claim (2) is by induction on n = |w| > 0. The base case considers
w = a. Let k > 0 be any integer number. Then, Z0,k

a
−→MSA

Z for some Z ∈ N|Q|.
Hence, by definition of −→MSA

, δ(sm
0 , a) must be defined: by definition of A, there

exist s ∈ S and 1 ≤ j ≤ m such s j ∈ δ(sm
0 , a), δ(sm

0 , å) = sm. Consider the case

38

j , m (the case j = m is simpler). Therefore, (s0, a,
−→
Y , s) ∈ γ, with

−→
Y ∈ Jm

m ,
−→
Y (j) = 1,

−→
Y (m) = −1. Hence, (s0,

−→
0 m−1k)

a
−→M (s,

−→
X), for

−→
X (j) = 1,

−→
X (m) =

k − 1, and
−→
X equal to zero in every other position. This is (2.1); moreover, clearly

by definition of −→MSA
Z(s j) = 1, Z(sm) = k − 1 and JZK = {s j, sm}, i.e., no other

element is in Z, satisfying also (2.2). Assume now that the induction hypothesis
holds for all words of length up to n ≥ 0. Consider a word w′ of length n + 1 such
that there exist k ≤ |w′| and a multiset Z′ ∈ N|Q| such that Z0,k

wa
−→MSA

Z′. Hence,
there exist a word w, of length n, and a symbol a ∈ Σ such that w′ = wa, and there
exists Z ∈ N|Q| such that Z0,k

w
−→MSA

Z
a
−→MSA

Z′.

By induction hypothesis, (2.1) holds: there exist s ∈ S ,
−→
X ∈ Nm such that

(sm
0 ,
−→
0 m−1k)

w
−→M (s,

−→
X),

with Z, s,
−→
X satisfying (2.2): for all 1 ≤ h ≤ m, Z(sh) =

−→
X (h) and, for every

state r , s, Z(rh) = 0 by induction hypothesis. Hence, there exists i such that
δ(si, a) is defined, i.e., there exist j and s′ ∈ S such that s′ j ∈ δ(si, a), with Z′ =

{s′ j} ⊎ δ(Z − {si}, å). By definition of δ, since s′ j ∈ δ(si, a), for all 1 ≤ h ≤ m

also s′h ∈ δ(sh, å); moreover, there exists
−→
Y ∈ Jm

m such that (s, a,
−→
Y , s′) ∈ γ with

−→
Y (j) = 1,

−→
Y (i) = −1. Therefore, (s,

−→
X)

a
−→M (s′,

−→
X +
−→
Y) and s′ j ∈ δ(si, a).

Then, (2.1) holds: (s0,
−→
0 m−1k)

wa
−→M (s′,

−→
X +
−→
Y).

We prove that (2.2) holds for Z′, s′,
−→
X +
−→
Y . Since Z′ = {s′ j} ⊎ δ(Z − {si}, å), then:

for all h, 1 ≤ h ≤ m, if r , s′, Z′(rh) = 0, and for h , i, h , j :

Z′(s′h) = Z(sh) =
−→
X (h). (19)

For all h , i, h , j, 1 ≤ h ≤ m, we have
−→
Y (h) = 0; hence by (19), being i , j,

Z′(s′h) =
−→
X (h) =

−→
X (h)+

−→
Y (h). Consider Z′(s′i), Z′(s′ j), with

−→
Y (j) = 1,

−→
Y (i) = −1:

again, being Z′ =
{
s′ j
}
⊎ δ
(
Z −
{
si
}
, å
)

and s′h ∈ δ(sh, å) for all 1 ≤ h ≤ m, then

Z′(s′i) = Z(si) − 1 =
−→
X (i) − 1 =

−→
X (i) +

−→
Y (i) and Z′(s′ j) = Z(s j) + 1 =

−→
X (j) +

−→
Y (j)

and JZ′K ⊆
{
s′1, . . . , s′m

}
.

Example A.2 in Appendix shows the NFA recognizing the base language that
consensually defines Lfour of Fig. 4.

Th. 4.5 follows then immediately. It is also immediate to see that the inclusion
in Th. 4.5 is strict, by recalling that language L4.9 = ({anbn | n ≥ 1})∗ is in CREG
(Ex. 3.8) but is not RT-PBLIND (Prop. 2.2):

Theorem 4.9. There exist languages in the CREG family that are not in the RT-

PBLIND family.

39

We observe that language L4.9 is recognized by a deterministic RT 1-counter
machine that tests for zero. On the other hand, CREG also includes the sim-
ilar language ({anbm | n ≥ m ≥ 1})∗, defined by the base:

(
å+b̊+

)∗
å∗a å∗b̊∗(b ∪

b̊) b̊∗
(
å+b̊+

)∗
. Moreover, this language cannot be recognized in RT by any MCM

performing zero tests if the machine is deterministic (Th. 5.3 of [11]), yet it can
be recognized in the nondeterministic case. The relation of such (deterministic or
nondeterministic) RT non-PBLIND machines with CREG is not known.

Finally, we compare CREG with PBLIND machines also not operating in RT.

Theorem 4.10. CREG is incomparable with the family PBLIND of (also non-

realtime) partially blind multi-counter languages.

Proof. First, the non-PBLIND language L4.9 = ({anbn | n ≥ 1})∗ is consensually
regular. Second, let Lbinary =

{
wch | w ∈ {0, 1}+, h ≤ bin(1w)

}
, where bin(1w) is the

natural number whose binary representation is 1w (i.e., the binary string w with an
extra most significant 1 bit). In [14] it is proven that L ∈ PBLIND − RT-PBLIND.
We claim that Lbinary is not in CREG. Suppose by contradiction that there exists a
DFA A = (Σ̃,Q, δ, q0, F), with k = |Q| > 0 states such that Crec(A) = Lbinary. Let
n > 0 be a number such that 2n > (n + 1)k. In what follows, {(q)h}, for q ∈ Q and
h > 0, denotes the multiset Z over Q such that Z(q) = h, Z(q′) = 0 for q′ , q. Also,
let dot : Σ→ Σ̊ be the homomorphism such that for all a ∈ Σ, dot(a) = å.
We claim that for all w ∈ {0, 1}n there exist an integer h ∈ N, with n ≤ h ≤ 2n

+ n,
a state q ∈ Q, a multiset Z̃ : Q→ N

k, and a final multiset ZF : F → N
k such that:

{(q0)h}
w
−→MSA

(
Z̃ ⊎
{
qh−n
}) cbin(1w)

−→ MSA
Z̃F (20)

with q = δ(q0, dot(w)) and |Z̃| = n. Notice that h is assumed to be greater than n,
without loss of generality (else just replace h − n with 0). In fact, since h > n and
n = |w|, at most n computations of A can make a strong match. Hence, there are
h − n computations that, after reading w, are in state δ(q0, dot(w)).

Consider the subset Wn of Lbinary defined as Wn =

{
wcbin(1w) | w ∈ {0, 1}n

}
. The

cardinality of Wn is 2n, while the number of possible values for Z̃ and q, as defined
in (20), is less than nk+1. Hence, there are at least two words wcbin(1w),w′cbin(1w′) ∈

Wn such that there exist two integers h, h′, with n ≤ h, h′ ≤ 2n
+ n, two final

multisets Z f , Z
′
f
, one state q ∈ Q and one multiset Z̃, with |Z̃| = n, such that

relation (20) holds for wcbin(1w), while for w′cbin(1w′) we have:

{(q0)h′}
w′

−→MSA

(
Z̃ ⊎
{
(q)h′−n

}) cbin(1w′)

−→ MSA
Z̃′f . (21)

40

Suppose that bin(1w′) > bin(1w) (the other case being symmetrical). By combin-
ing relations (20) and (21) we obtain

{(q0)h′}
w
−→MSA

(
Z̃ ⊎
{
(q)h′−n

}) cbin(1w′)

−→ MSA
Z̃′f

which means that wcbin(1w′) ∈ Lbinary, hence bin(1w′) ≤ bin(1w), a contradiction
with the assumption bin(1w′) > bin(1w).

5. Conclusion

The interest for abstract machines using integer counters and for their lan-
guages is almost as old as for the Chomsky’s families of languages, dating back
at least to Minsky work [20]. Yet, unlike the latter, multi-counter languages are
not associated with grammars or with other types of declarative specification, and
their structural properties are less understood, except in the basic reversal-bounded
model. Our research contributes two new normal forms for nondeterministic real-
time partially blind machines, therefore also for the languages of a wide class of
Petri Nets: the modulo-scheduled rarefied form and the quasi-deterministic form.
Both forms should be interesting in their own for proving properties on such ma-
chines and Petri Nets.

Exploiting the normal forms, we have been able to simulate such multi-counter
machines on the very different device of consensually regular languages. What is
interesting, is that the simulation essentially involves a transformation from a se-
quential device to a parallel one: a single sequential computation is converted to
multiple threads specified by a finite automaton, which are step-by-step synchro-
nized by means of the consensual match function. As a consequence, it becomes
possible to specify RT-PBLIND (and a fortiori reversal bounded multi-counter ma-
chines [17, 16]) or Petri Net languages by means of regular expressions, a notation
we (subjectively) find quite readable and amenable to language transformation and
composition, as already exemplified in past work on consensual languages.

We mention some open questions concerning the relationship of CREG to
multi-counter languages. CREG languages strictly include the RT-PBLIND ones,
but we still lack a precise characterization of what types of RT multi-counter lan-
guages are consensually regular. For instance, the deterministic machines of [11],
endowed with zero-testing capability, can in some cases be simulated by a mul-
tiset consensual machine, but their precise relation with CREG is unknown (and
in Sect. 4 we have shown that there are consensual languages which are not in
this deterministic class). Multiset consensual machines bear some similarity to Vi-
tanyi’s augmented counter machines [27, 28], which have their counters initialized
to some value and offer the additional one-step assignment operation: “set counter

41

i to the value of counter j”. In real-time, these augmented machines are more pow-
erful than the classical multi-counter machines, but their relationship to CREG is
unknown. In fact, the consensual approach to language definition cuts across tra-
ditional classifications of counter-based abstract machines and its overall relation
with established models is only partially understood.

Aknowledgment. We thank the anonymous reviewers for their accurate and useful
suggestions.

References

[1] A. W. Appel and J. Palsberg. Modern Compiler Implementation in Java.
Cambridge University Press, New York, USA, 2nd edition, 2003.

[2] M. Berglund, H. Björklund, and J. Björklund. Shuffled languages - represen-
tation and recognition. Theor. Comput. Sci., 489-490:1–20, 2013.

[3] C. Calude, G. Paun, G. Rozenberg, and A. Salomaa, editors. Multiset Pro-

cessing, Mathematical, Computer Science, and Molecular Computing Points

of View, volume 2235 of LNCS. Springer, 2001.
[4] S. Crespi Reghizzi and D. Mandrioli. Petri nets and Szilard languages. Infor-

mation and Control, 33(2):177–192, 1977.
[5] S. Crespi Reghizzi and P. San Pietro. Consensual definition of languages by

regular sets. In C. Martín-Vide, F. Otto, and H. Fernau, editors, LATA 2008,
volume 5196 of LNCS, pages 196–208. Springer, 2008.

[6] S. Crespi Reghizzi and P. San Pietro. Consensual languages and matching
finite-state computations. RAIRO - Theor. Inf. and Applic, 45(1):77–97, 2011.

[7] S. Crespi Reghizzi and P. San Pietro. Strict local testability with consensus
equals regularity. In N. Moreira and R. Reis, editors, CIAA 2012, volume
7381 of LNCS, pages 113–124. Springer, 2012.

[8] S. Crespi Reghizzi and P. San Pietro. Deterministic counter machines and
parallel matching computations. In S. Konstantinidis, editor, CIAA 2013,
volume 7982 of LNCS, pages 280–291. Springer, 2013.

[9] S. Crespi Reghizzi and P. San Pietro. Strict local testability with consensus
equals regularity, and other properties. Int. J. Found. Comput. Sci., 24(6):747–
764, 2013.

[10] S. Crespi Reghizzi and P. San Pietro. Commutative languages and their com-
position by consensual methods. In Z. Ésik and Z. Fülöp, editors, AFL 2014,
pages 216–230, 2014.

[11] P. C. Fischer, A. R. Meyer, and A. L. Rosenberg. Counter machines and
counter languages. Math. Syst. Theory, 2(3):265–283, 1968.

42

[12] V. K. Garg and M. T. Ragunath. Concurrent regular expressions and their
relationship to Petri Nets. Theor. Comput. Sci., 96(2):285–304, Apr. 1992.

[13] S. A. Greibach. Remarks on the complexity of nondeterministic counter lan-
guages. Theor. Comput. Sci., 1(4):269–288, Apr. 1976.

[14] S. A. Greibach. Remarks on blind and partially blind one-way multicounter
machines. Theor. Comput. Sci., 7:311–324, 1978.

[15] J. Hartmanis and J. Hopcroft. What makes some language theory problems
undecidable. J. Comput. and Syst. Sci., 4(4):368 – 376, 1970.

[16] J. Hromkovic. Hierarchy of reversal and zerotesting bounded multicounter
machines. In M. Chytil and V. Koubek, editors, MFCS 1984, volume 176 of
LNCS, pages 312–321. Springer, 1984.

[17] O. H. Ibarra. Reversal-bounded multicounter machines and their decision
problems. J. ACM, 25(1):116–133, 1978.

[18] M. Jantzen. On the hierarchy of Petri net languages. ITA, 13(1), 1979.
[19] J. Jędrzejowicz and A. Szepietowski. Shuffle languages are in P. Theor.

Comput. Sci., 250(1-2):31–53, Jan. 2001.
[20] M. Minsky. Recursive unsolvability of Post’s problem of ‘tag’ and other

topics in the theory of Turing machines. Annals of Math., 74:3:437–455,
1961.

[21] M. Minsky. Computation: Finite and Infinite Machines. Prentice-Hall, En-
glewood Cliffs, USA, 1976.

[22] B. Nagy. Languages generated by context-free grammars extended by type
AB -> BA rules. Journal of Automata, Languages and Combinatorics,
14(2):175–186, 2009.

[23] B. Nagy and F. Otto. On CD-systems of stateless deterministic R-automata
with window size one. J. Comput. Syst. Sci, 78(3):780–806, 2012.

[24] A. Salomaa. Formal languages. Academic Press, New York, NY, 1973.
[25] L. Sha, T. F. Abdelzaher, K. Årzén, A. Cervin, T. P. Baker, A. Burns, G. C.

Buttazzo, M. Caccamo, J. P. Lehoczky, and A. K. Mok. Real time scheduling
theory: A historical perspective. Real-Time Systems, 28(2-3):101–155, 2004.

[26] M. H. ter Beek and J. Kleijn. Shuffles and synchronized shuffles: A survey. In
G. Paun, G. Rozenberg, and A. Salomaa, editors, Discrete Mathematics and

Computer Science. In Memoriam Alexandru Mateescu (1952-2005)., pages
37–50. The Publishing House of the Romanian Academy, 2014.

[27] P. Vitányi. An optimal simulation of counter machines. SIAM J. Comput.,
14(1):1–33, 1985.

[28] P. Vitányi. An optimal simulation of counter machines: the ACM case. SIAM

J. Comput., 14(1):34–40, 1985.

43

Appendix

Example A.1. To illustrate how the QD-RT-PBLIND machine simulates the rar-
efied one, the runs recognizing a4b4 and a4b8 are tabulated in Fig. 6.

s6 s7 s8 s9 s6

s1 s2 s3 s4 s5 s18

s10 s11 s12 s13 s18

s14 s15 s16 s17 s10

−→
X(1)=0

−→
X (1)=1

−→
X(1)=0

−→
X(1)=0

a a a a

b

b b b b

stop on
−→
X(1)=0

b
b b b

b

b b b b

stop on
−→
X(1)=0

accept

⊣

⊣
accept

t0 (R0, a) (R1, a) (R2, a) (R3, a) tfin

(R0, b) (R1, b) (R2, b) (R3, b) (R0, b)

(R1, b) (R2, b) (R3, b) (R0, b) tfin

(R0, b) (R1, b) (R2, b) (R3, b) (R0, b)

−→
X (1)=0 s2 = 1 s2 = 0

s3 = 1

−→
X (1)=1 s3 = 0

s5 = 1

−→
X (1)=0 s5 = 0

s7 = 1
s7 = 0
s8 = 1

s8 = 0
s9 = 1

s9 = 0

s5 = 0
s11 = 1

s11 = 0
s12 = 1

s12 = 0
s13 = 1

s13 = 0
s14 = 1

s14 = 0
s15 = 1

s15 = 0
s16 = 1

s16 = 0
s17 = 1

s17 = 0

a a a a

b

b b b b

stop on

s13=0 or
−→
X (1)=0

⊣

b

b b b

stop on
−→
X (1)=0

b

b b b b

stop on

s13=0 or
−→
X (1)=0

⊣

Figure 6: Runs on input a4b4, a4b8: (top) on the rarefied machine in Fig. 3 and (bottom) on the QD
machine in Fig. 4. Counter values are displayed when modified. Dashed transitions stop in error.

44

Example A.2. From QD-RT-PBLIND machine to CREG Language

We start from the QD machine in Fig. 4, and we add the extra initialized counter,
as in Def. 4.6, obtaining a machine with 10 states and 16 counters:

{t0, (R0, a), (R1, a), (R2, a), (R3, a), (R0, b), (R1, b), (R2, b), (R3, b)tfin} (22)

{s2, s3, s4, s5, s7, s8, s9, s11, s12, s13, s14, s15, s16, s17,
−→
X (1), init}

where init is the initialized counter. Notice that some states (namely s1, s6 and s10)
of the nondeterministic machine in Fig. 3 do not occur as counters because they do
not have associated flags. The states Q of NFA A serving as base for the consensual
language, are the Cartesian product of the two sets in Eq. (22). The transition
relation δ of A is deterministic on the sub-domain Q × Σ̊ and nondeterministic on
the sub-domain Q × Σ. It is represented in Fig. 7. To avoid clogging, states are
represented as unnamed points in the Cartesian grid. Leader type and follower
type transitions are respectively represented by thick and by thin edges. Notice
that we have omitted the thin edges that result from the construction in the proof
of Lm. 4.8, but are never traversed by a consensual computation.

To illustrate, strings a4b4 and a4b8 are the match of the following computations:

a a å a b̊ b b b ⊣

å å a å b b̊ b̊ b̊ ⊣̊

a a å a b̊ b b b b b b b ⊣

å å a å b b̊ b̊ b̊ b̊ b̊ b̊ b̊ ⊣̊

At last, notice that the edge (s13,R3,b)
b̊
→ (s13,R0,b), though obtained by the con-

struction, is never productive.

45

co
un

te
rs
/s

ta
te

s

t0 R0, a R1, a R2, a R3, a R0, b R1, b R2, b R3, b tfin

s1
b b b b b b b b b b

s2
b b b b b b b b b b

s3
b b b b b b b b b b

s4
b b b b b b b b b b

s5
b b b b b b b b b b

s7
b b b b b b b b b b

s8
b b b b b b b b b b

s9
b b b b b b b b b b

s11
b b b b b b b b b b

s12
b b b b b b b b b b

s13
b b b b b b b b b b

s14
b b b b b b b b b b

s15
b b b b b b b b b b

s16
b b b b b b b b b b

s17
b b b b b b b b b b

−→
X (1) b b b b b b b b b b

initialized b b b b b b b b b b

a

a

a

a

a

b

b
b

b

b

b

b

b

b

b

b

b

b

b

⊣

⊣

å

b̊

b̊

b̊

b̊

å å å

å

b̊ b̊ b̊ b̊

b̊

å å å å

å

b̊ b̊ b̊ b̊

b̊

⊣̊

Figure 7: NFA A, constructed according to Lm. 4.8, for the base language B such that C(B) =
Lfour. Follower and leader transitions are respectively represented by thin and thick arrows. Follower
transitions that are never executed are not drawn, to avoid clogging.

46

