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ABSTRACT This paper investigates the antecedents of patent importance by looking at the prior

knowledge set of academic inventors. Using independent methodologies, we distinguish between the scientific

knowledge set and the technical knowledge set, and separate these from other kinds of prior expertise. We find

that the patents of the inventors who have a prior scholarly knowledge of the topic are on average more

important (more cited after 6 years). Conversely, we find an inverted U-shape relationship between prior

technical relatedness and patent importance. These results are potentially useful to support the work of

practitioners such as university technology managers, which often face difficulties in identifying the importance

and perspective value of the disclosed inventions, amid high market and legal uncertainty and budget

shortages.

1. Introduction

Scholarly works on Intellectual Property Rights (IPRs) have for long highlighted that market 
transactions concerning patents and other technological assets are constrained by 
problems of asymmetric information and moral hazard (Shane, 2002; Scotchmer, 2004). 
One critical problem is anticipating the prospective relevance of a new technology, which 
depends on a combination of technological opportunity, market demand and legal perils 
(Gittelman and Kogut, 2003). Concerning technological and market opportunity, the 
effective capacity of a technology to translate into functional products and generate
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(ii) the technical understanding of technologies that originates from his/her prior inventions.

Our approach is novel in that it applies techniques of content analytics in order to

investigate scientific and technical relatedness. We rely on a technique that allows

computing the similarity of two or more documents (patents abstracts vs. prior publications

abstracts, patents abstracts vs. prior patent abstracts), based on the co-occurrence of the

same semantics (co-word) and on the same pairs (co word-pairs), if pairs exist. We use this

technique to partition the inventor’s publications and patents into items whose content is

related to that of a focal patent and items whose content is unrelated. This methodological

choice is novel and can potentially be replicated with ready-to-use and inexpensive

commercial software.

revenues depends on events that may or may not take place in the future, such as the 
possibility that a substitute or competing technology will prevail on the market. In addition to 
market uncertainty, transactions are complicated by problems of asymmetric information 
among the parties that are involved in the negotiation (Gallini and Wright, 1990). For 
example, the potential acquirer tends to have less information on the quality of a technology 
than the vendor, particularly if the technology embeds frontier knowledge for which it is even 
difficult to find an expert of the field to assist the transaction (Franzoni, 2007). Both issues—
uncertain outcomes and asymmetric information—are even more severe for technologies 
that are developed and patented in universities (Shane, 2002), whose relevance is, 
therefore, even more difficult to anticipate.

In this paper, we focus on the antecedents of patent importance in academic inventions, 
and investigate whether and to what extent highly relevant patents are correlated to certain 
characteristics of the prior knowledge set of the inventor. In general, the literature on academic 
patents has documented that the most productive scientists are more likely to become 
inventors than their less-productive colleagues (Breschi et al., 2007; Stephan et al., 2007; 
Fabrizio and Di Minin, 2008). It has also documented that inventions are preceded by a flurry of 
scholarly publications (Azoulay et al., 2007; Calderini et al., 2007). This evidence seems to 
indicate that inventions are developed as a byproduct of a prolific research activity that the 
scientist has conducted for scientific purposes. In practice, to the best of the authors’ 
knowledge, no prior study has established a clear link between the flurry of publications that 
precede an invention and the invention itself. In other words, we presume that there is an ideal 
continuity between what a scientist does in a certain year in his/her academic lab and what 
does he/she invent in the same year or shortly after. However, this presumption is based solely 
on time-contiguity and not on content relatedness. In order to observe content relatedness, 
standard techniques that rely exclusively on counts of occurrences (number of patents and 
number of publications in a given time span) are not sufficient. In this paper, we take a step 
further in this direction by using techniques of content analytics. We do so by starting from a 
sample of US patents that have been invented by faculty members in the field of physics. We 
measure patent importance by looking at the number of citations received 6 years after the year 
of patent priority. We characterize the inventors in terms of the related knowledge sets that they 
possess. We retrieve information on the inventor’s scientific knowledge set by analyzing the 
content of the articles that he/she published in scientific outlets prior to the priority year of the 
focal patent. We retrieve information on the inventor’s technical knowledge set by analyzing the 
content of the inventions that he/she filed prior to the priority year of the focal patent. This allows 
us to characterize the content of an invention in terms of its relatedness to two distinct 
knowledge sets of the academic inventor: (i) the scientific understanding of the subject, which 
originates from his/her scholarly research and



Based on the current scholarly understanding, we formulate the hypotheses that highly 
cited patents would be those grounded on the scientific knowledge set and that further 
exploitation of an existing technical knowledge set would be associated with less-important 
patents.

We test our hypotheses on a sample of 295 academic patents1 in all subfields of 
physics. Our results suggest that patents whose content is related to prior scholarly papers 
are disproportionately distributed among the more cited. On average, during the first 6 years 
of life, a patent invented in a prior area of scholarly investigation receives 50 per cent more 
citations than a patent invented in areas unrelated to the research scope of a scientist. Prior 
technical knowledge, as captured by prior patents whose content is related to that of a focal 
patent, has an inverted U-shape relationship with patent citations.

Although citations give but a blunt appreciation of patent quality, these results clearly 
point at a correlation between the inventor’s knowledge set and the degree to which 
inventions are likely to have impact and be valuable. We discuss how these results may 
bring potentially relevant implications for the practice of technology management at 
universities, as well as for our understanding of the process that leads from scholarly 
investigation to the development of practical applications.

The paper is structured as follows. Section 2 reviews the findings of the literature on 
academic patenting with regard to patent importance and patent citations and defines two 
theoretical hypotheses for the empirical investigation. Section 3 describes the sample and 
the data collection procedure and defines the variables and the methodology used in the 
analysis. Section 4 presents the results of the econometric estimates and Section 5 
discusses the implications.

2. Academic Patents

2.1 Assessing the Market Value of Disclosed Inventions at Universities

In a context of technology and market uncertainty, evaluating the prospective importance of 
a university patent is an especially difficult task. The scholars who have investigated 
technology transfer have extensively documented a number of common and widespread 
problems that make it difficult to assess the importance of academic inventions. First, a 
large share of the inventions disclosed by academic professors is still at the proof of concept 
stage, or anyway has a long way before they could become eventually marketable (Jensen 
and Thursby, 2001). Second, academic professors often lack business competences, have 
little understanding of the market conditions, few links to companies potentially interested in 
their inventions (Swamidass and Vulasa, 2008) and often overestimate the real market 
importance of their ideas (Owen-Smith and Powell, 2001).

Third, faculty members naturally are moved by sets of priorities and goals typical of 
academia, which are not always or not necessarily aligned to those of the potential investors 
(Jensen et al., 2003). For example, some scientists are interested in the personal reputation 
that they think they can gain from patenting (Go¨ktepe-Hulten and Mahagaonkar, 2010). Other 
scientists may be more concerned that patenting may require delaying their scientific 
publications (Blumenthal et al., 1997;Campbellet al., 2002; Franzoni and Scellato, 2010) and

1 Academic patents are defined here as patents invented by a university faculty member.



bring about other conflict of interests (Walsh et al., 2005;Murray andStern, 2007; Ambos  et 
al., 2008; Haeussler  et al., 2009).

These circumstances partly explain the difficulties encountered by universities in 
getting sizable revenues from the commercialization of technologies. The available figures 
point at a situation in which few of the many universities active in technology 
commercialization generate a substantial stream of income. Those that have income 
generate their revenues from a handful of highly successful patents (AUTM, 2011). For 
example, the University of California—known to be top for profit generation—makes about 
half of its revenue with just five patents, all in the medical or biotech sector (Farrell, 2008). In 
more common situations, technology managers strive to find interested potential buyers. A 
large survey conducted in eight European countries highlighted that the share of unlicensed 
patents at academic institutions is almost double than that of unlicensed patents at large 
and medium firms (EC, 2006). Amid budget shortages, many offices report having just 
enough resources to accomplish the legal and procedural aspects of patent filing, leaving 
too few for marketing and commercialization (Swamidass and Vulasa, 2008).

2.2 Importance of Academic Patents

Some early works on patent citations have been conducted between 1998 and 2003. The 
focus of these analyses was to determine if the institutionalization of the patenting activities 
from universities in the aftermath of the Bayh–Dole act led to a decline of patent quality 
(Sampat et al., 2003). The purpose of this body of works is different from the scope of our 
analysis. Nonetheless, a summary of the basic findings provides a helpful background for 
our research. First, university patents (defined as those assigned to universities or having at 
least one scientist among the inventors) on average tend to be more highly cited and 
broader in scope than non-university patents (Henderson et al., 1998; Mowery et al., 2001; 
Czarnitzki et al., 2011). Second, in terms of trends, there is a clear increase in the number of 
patents issued to universities, but it appears less clear if the above-average citation rate has 
remained unchanged. The most recent findings seem to suggest that there has been no 
sensible decline in citations received, although citations come at a slower pace, due to 
slowdowns in the patent application procedure (Sampat et al., 2003).

Concerning non-US universities, the issue is more controversial, partly because many 
patents of university faculty members are assigned to companies and are more difficult to 
keep track of (Lissoni et al., 2010). Recent works show similar citation patterns experienced 
by university and non-university patents in Europe (Crespi et al., 2011) and Japan 
(Bacchiocchi and Montobbio, 2010). In terms of trends, Czarnitzki et al. (2011) find a decline 
in citations since the mid-1980 in a sample of German patents.

A parallel debate centered on whether or not pushing for commercial research in 
academe could backfire on the willingness or capability of scientists to continue to advance 
fundamental science, which traditionally cannot be commercialized in the short to medium 
term (Nelson, 2004). Several empirical tests have consistently shown that, in general, the 
association between inventive and scientific activity tends to be positive (Azoulay et al., 
2009), although with two caveats. First, a trade-off can exist at the tail of the distribution, i.e. 
for scientists who are highly productive in very fundamental areas of science (Calderini et 
al., 2009). Second, scientists may be discouraged from pursuing those lines of research in



which the important research tools are agressively commercialized and protected by patents 
(Murray and Stern, 2007).

2.3 Scientific Knowledge Set as an Input to the Invention Process

A body of empirical investigations has convincingly established a link between scientific and 
inventive productivity, both at the level of firms and the level of single individuals. At the level 
of individuals, cross-sectional investigations have shown that the most productive scientists 
are more likely to become inventors than their less productive colleagues (Breschi et al., 
2007; Stephan et al., 2007; Fabrizio and Di Minin, 2008). The correlation has also been 
documented in longitudinal studies, showing that inventions are preceded by a flurry of 
scholarly publications (Azoulay et al., 2007; Calderini et al., 2007). When looking at 
licenses of academic patents, Elfenbein (2007) showed the signalling nature of 
publications that correlates to increasing probability of licencing a new technology.

When looking at the level of firms, rather than at the level of the individuals, the positive 
relationship is confirmed. Gittelman and Kogut (2003) studied the effect of firms’ scientific 
publishing on patent importance and provided evidence that patents based on scientific 
research are more likely to be cited, although highly cited publications are negatively 
correlated with good patents. Fleming and Sorensen (2004) find that patents citing 
publications are more likely to be broader in scope. Zucker et al. (2002) studied the role of 
collaboration with star scientists and its effect on patent importance. Their empirical results 
show that joint publications of firms’ employees and star scientists are correlated with a high 
citation rate.

This evidence is consistent to a scenario in which scientific research is a valuable input 
for the production of innovation. Fleming and Sorenson (2004) interpret these findings in 
light of the theory of the invention as a process of knowledge recombination (Nelson and 
Winter, 1982; Kogut and Zander, 1992; Fleming, 2001), which argues that all inventions at a 
closer look are the result of a combination of pre-existing discrete elements and 
components. They maintain that the search for new components is conducted locally, in the 
sense that it usually occurs in areas that are proximal in cognitive and semantic terms to the 
prior experience of the inventor. Their view is that experience of scientific research helps 
inventors in orientating their local search toward more fruitful and less-exhausted 
combinations.

It is important to note that all these studies investigate numerical relationships between 
counts (or dummies) of publications, and counts of citations, but are incapable to account for 
the degree to which two documents (e.g. a patent and a paper) have similar or dissimilar 
content. As such, quantitative relationships have limitations. For example, if we observe that 
those inventors who publish more papers are more likely to patent and/or receive citations 
later on, we cannot tell if this happens because scientific research was an input to the 
inventive process, or simply because those inventors were going through an exceptionally 
fruitful period of their life, and/or had more resources, hence more output of any kind. In 
statistical terms, we cannot tell if scientific understanding is the antecedent of valuable 
patents or if both the scientific understanding and the valuable patents are jointly determined 
by some common external factor. If the scientific research conducted by an inventor and 
disclosed in articles is a valuable input, for example because it directs the search of new 
technical solutions toward unexplored pathways, then we should observe not only the co-
occurrence of events



Our first research hypothesis is formulated as follows:

H1: Inventions that rely on a prior scientific knowledge set (are built on the results of the

prior scientific research of the academic inventor) are more likely to be important

than inventions that do not rely on a prior scientific knowledge set.

2.4 Technical Knowledge Set as an Input to the Invention Process

Many academic scholars produce inventions quite continuously during their career (Azoulay 
et al., 2007). In line with the theory of invention as the product of knowledge recombination 
(Fleming, 2001), several scholars have investigated the impact that the background of 
experience accumulated by serial inventors has on the characteristics of the new patents 
invented. This literature has generally used patent classes to characterize the degree to 
which patents are similar/dissimilar, a technique that has encountered increasing criticism 
(Strumsky et al., 2012). Two patents are considered similar if they are assigned to the same 
patent class, or to the same combination of patent classes. Fleming (2001) shows that 
patents that are based on non-familiar components or on a novel recombination of familiar 
components are more likely to be a breakthrough. Conversely, patents exploiting the same 
combination used in the past are less likely to be a breakthrough. Audia and Goncalo (2007) 
broaden these findings by showing that inventors who were more successful in the past are 
more likely to move along incremental lines, rather than experimenting on new trajectories. 
They speculate that people who experienced success are more productive of new ideas, but 
these ideas are less likely to be divergent, since people enjoy the payoffs from exploiting 
known areas instead of engaging in new exploration. Conti et al. (forthcoming) supported 
this argument by studying a rich database of European patents. They conclude that 
continuing to use known technological components increases the productivity in numerical 
terms, but reduces the probability of producing high quality inventions. In conclusion, there 
is growing evidence that serial inventors are likely to produce more patents, but the new 
patents would be of lower impact (Gambardella et al., 2012).

In line with these findings, we formulate our second research hypothesis as follows:

H2: Inventions that rely on the prior technical knowledge set (are based on other

inventions within the same technological domain) are less likely to be important

than inventions that do not rely on a prior technical knowledge set.

(publications and patent citations), but we should also see that the invention refers to the 
specific knowledge set that the inventor has developed in scientific articles prior to inventing. 
In statistical terms, our correlation would be driven by only those subset of co-occurrences 
that happen in the same semantic domain. This would not entirely rule-off the possibility that 
the variables are jointly determined by a separate set of unobservable variables. However, it 
clears off potential biases due to co-occurrences that are not happening in the same semantic 
domain. In order to do so, we code separately for documents of similar content. Our measure 
of relatedness is based on observing a high degree of semantic overlap between the patent 
and the published research by the same inventor/author. We distinguish this variable from the 
numerical count of prior publications that we use as a control, thus clearing off the impact of 
scientific research used as an input, from the effect of mere variance in the productivity of the 
inventor in a given period of time.



3. Data and Methodology

3.1 Sample

We draw our analysis based on a data-set of 373 unique patent–academic inventor 
combinations. Academic inventors were identified as the scientists in all areas of physics 
who were appointed as “Fellows of the American Physical Society” (APS) prior to 2005, had 
a US academic affiliation at that date and had been inventors of at least one patent 
deposited at the US Patent and Trademark Office (USPTO) between 1992 and 2005.2 Full 
patent records were retrieved from the archives of Thompson Innovation at the beginning of 
2012, along with patent citation records. Information on the scholarly activity of the 
academic inventors was retrieved from the archives of ISI-Web of Knowledge and 
complemented with individual information on the inventor (gender, PhD year, affiliation, 
etc.). These were compiled from faculty web pages and CVs available on the web.

In order to avoid using patent documents that may constitute substantial duplicates, we 
worked carefully to clean away records from the same patent family as defined by those 
having at least one common priority code. In case of patent families, we choose to keep only 
the one record that had the largest number of citations and, with equal citations, the one 
issued at the earliest date. This resulted in 98 drops, leaving us with 295 unique patent–
inventor combinations from 95 different inventors.

3.2 Dependent Variable

During spring 2012, we retrieved the citations received by the 295 patents and restrict the 
citation window to 6 years since the year of priority. Recall that our aim is to investigate 
correlations between the inventor knowledge set and the prospective importance of a 
patent. Prior contributions have indicated that citations are positively correlated to patent 
importance (Jaffe et al., 1993) and patents that are cited more frequently are related to 
innovations with higher social (Trajtenberg, 1990) and private (Griliches, 1981; Hall et al., 
2005) value. It has also been shown that the citations received in the first years are a strong 
predictor of later citations (Fleming, 2001; Gittelman and Kogut, 2003). It seems therefore 
safe to adopt 6-years citation counts as a proxy for the importance of an invention.

Since our patents are deposited in different years, the window of observation of patent 
citations is dynamic. For example, for the patents deposited in 1992, we computed 
the citations received until the end of 1998. For those deposited in 1993, we computed the 
citations received until the end of 1999 and so on. For the most recent patents in our data-
set, i.e. those issued in 2005, citations were computed until the end of 2011.

A description of the variables used in the analysis is provided in Table 1.

3.3 Independent Variables

We have two independent variables of prior scientific and technical knowledge set.
(1) Prior scientific knowledge set: Because a standard methodology does not exist when it 

comes to accounting for the prior scientific knowledge set, one contribution of this

2Full information on the sampling procedure is given in Franzoni (2009).



paper is to fill this methodological gap. We explain the information collection and the

methodology for treatment in this sub-section.

We begin by retrieving information on the scholarly activity of inventors. One advantage

of using patents of faculty members is that the prior scientific knowledge set of the inventor is

well documented. We searched the articles published on scientific outlets by the individuals

between 1990 and 2005 in ISI Web of Knowledge. For each article, title and full abstract

were coded in chronological order. Our aim is to study if the inventions that have emerged in

domains of expertise that a scientist masters because of his/her scholarly knowledge are

more cited on average than those that have emerged in other areas. Therefore, we want to

know the degree to which the inventor is an expert (in scientific terms) of the domain

employed in a certain invention. To gain this information, we compare the content of the

patent to the content of the scholarly articles that the person has published until the time of

patent priority. Comparison is based on semantic similarity. Rather than doing this screening

manually, we use an algorithm of semantic analysis contained in a commercial software for

scientific research, called Crawdad Text Analysis System 1.2. The software compares a

single document against a group of documents (the set of all publications authored by

the inventor) and outputs a score of resonance for each pair of documents based on the

Table 1. Variables construction

Variable Description

Forward citation Number of forward citation after 6 years

Prior scientific knowledge Binary variable being 1 if the patent content is resonant with at least one

prior publication of the scientists; 0 otherwise

Prior technical knowledge Number of prior patent, which their content is in resonant with focal patent

Inventor technical productivity (log þ 1) The logarithm of prior patents plus one

Inventor scientific productivity (log þ 1) The logarithm of papers in the year of priority and two previous years

plus one

Number of claims (log) The logarithm of number of claims

Number of inventors (log) The logarithm of number of inventors in the same patent

Count of cited patents (log þ 1) The logarithm of patents that have been cited by a patent

(backward citations) plus one

Count of scientific articles cited (log þ 1) The logarithm of publications that have been cited in the patent document

(backward citations) plus one

First patent Binary variable being 1 if the inventor is at his/her first patent; 0 otherwise

Gender (male) Binary variable being 1 if the inventor is a man; 0 if a woman

Career-age and career-age squared Years since PhD was awarded at the patent priority year

Assignee type Set of three binary variables based on different types of assignees: firm,

university or others; 0 otherwise

Assignee’s patenting experience Categorical variable based on six intervals of prior patents count

(0; 1–10; 11–100; 101–1,000; 1,001–10,000 and over 10,000).

Patent scope Number of IPC classes assigned to the patent

Patenting trend Number of patent granted by USPTO after 5 years

Spatial distribution Number of patents granted by USPTO in the US state of assignee

IPC classes dummies Set of 22 dummy variables based on two-digit main IPC class

Year dummies Set of 14 dummy variables based on the priority year of the patent



co-occurrence of the same semantics and the co-occurrence of word pairs in the title and 
abstract of the patent and the title and abstract of each article. Based on Franzoni and 
Scellato (2010) who used the same algorithm for a similar purpose and validated the scores 
by means of a panel of experts, we choose a quite restrictive threshold of similarity (0.1). We 
code patents as related to the scholarly work of the inventor if the patent was similar 
(“resonant” in the wording of the software) to one or more scientific articles, or unrelated in 
case we find no scholarly publication with a similar content. Our threshold and consequent 
measure of relatedness are quite conservative. We find a total of 71 (24.07 per cent) patents 
that are related to at least one article and 224 (75.93 per cent) patents that resulted to be 
unrelated to prior scientific research.

(2) Prior technical knowledge: We use the same methodology in order to measure 
related prior technical knowledge set. The technical knowledge set has been compiled by 
retrieving information on the prior patenting activity of the inventors. For each inventor, we 
collected all patents issued prior to the years of observation. We characterize inventors in 
terms of the number of patents that are resonant with any prior patent, including patents 
issued before the window of observation 1990–2005. Like before, the abstracts are 
compared using Crawdad Text Analysis System 1.2. For robustness check, we also use the 
discounted stock of normalized number of prior related patents. Under the assumptions that 
more recent patents are more relevant than older ones, we use an annual discount rate of 
10 per cent. This implies that patents filed 11 years ago have virtually no effect.

3.4 Control Variables

We controlled for a number of potentially confounding factors that may concur to determine 
the importance of a patent and/or to affect our measure of patent importance. Potentially 
confounding factors relate to characteristics of the inventors, characteristics of the assignee, 
patent characteristics and annual trends. In terms of individual characteristics, we control for 
gender and age, which were found to correlate—among other things—with patent 
performances (Azoulay et al., 2007; Stephan et al., 2007). We also control for the individual 
productivity in terms of patents (Gambardella et al., 2012) and scholarly works (Fleming and 
Sorenson, 2004), whether or not the inventor is at his/her first patent, and how productive 
he/she has been in the last years in terms of both patents and scholarly articles. Concerning 
the characteristics of the assignees and in line with the findings of prior literature (Lissoni et 
al., 2010), we control for the assignee type (whether it is a university; a firm; or a different 
residual type), and for the assignee’s prior patenting experience. Concerning patent 
features, we control for a number of patent characteristics that may be correlated to 
unobserved heterogeneity. These are the number of claims, the number of backward 
citation (from patents and scientific articles separately),3 the number of inventors and the 
broadness of scope of the patents [number of International Patent Classification (IPC) 
classes assigned to the patent] (Trajtenberg et al., 1997). In order to account for trends in 
the number of patents issued after the current year, which affects the amount of potentially 
citing documents and hence of total citations, we control for the number of patents granted 
by the USPTO in the 5

3 It has been shown patents which cite published material—peer review or commercial—receive more citations

(Fleming and Sorenson, 2004).



Variables Obs. Mean St. dev. Min. Max.

Forward citations 295 18.59 35.78 0 421

Prior scientific knowledge (¼ 1 if the patent content

is resonant)

295 0.24 0.43 0 1

Prior technical knowledge 295 0.46 1.18 0 8

Inventor technical productivity 295 9.94 17.95 0 76

Inventor technical productivity (log) 295 1.52 1.23 0 4.34

Inventor scientific productivity 295 22.53 19.09 0 90

Inventor scientific productivity (log) 295 2.77 1.02 0 4.51

Number of claims 295 25.31 19.87 1 176

Number of claims (log) 295 2.97 0.76 0 5.12

Number of inventors 295 3.53 1.94 1 13

Number of inventors (log) 295 1.11 0.55 0 2.56

Count of cited patents 295 15.99 24.65 0 190

Count of cited patents (log) 295 2.27 1.01 0 5.25

Count of scientific articles cited 295 10.39 15.02 0 128

Count of scientific articles cited (log) 295 1.70 1.26 0 4.56

First Patent (¼ 1 if it is first patent of inventor) 295 0.30 0.46 0 1

Gender (¼ 1 if inventor is a man) 295 0.95 0.21 0 1

Assignee patenting experience 292 3.08 1.30 1 6

Patent scope 295 1.90 1.76 1 15

Patenting trend 295 760,008.7 101,443.8 523,070 875,789

Patenting trend (log) 295 13.53 0.15 13.17 13.68

Career age 295 21.98 11.35 4 55

Career age squared 295 611.60 642.57 16 3,025

University (¼ 1 if assignee is a university) 295 0.61 0.49 0 1

Firm (¼ 1 if assignee is a firm) 295 0.29 0.45 0 1

Others (¼ 1 if assignee is individual/government/both

university and firm)

295 0.10 0.30 0 1

Spatial distribution 263 6,949.82 6,298.96 55 19,692

Spatial distribution (log) 263 8.34 1.15 4.01 9.89

Priority year 295 1,998.45 3.63 1992 2005

years after the priority year. For robustness check, we account for heterogeneity caused by 
the geographic distribution of patents by controlling for the number of patents granted in the 
same year and in the same US state where the assignee is located. As a further check, we 
control for trends that may occur at a single patent class by considering the number of patents 
granted in the 5 years after a focal patent in the same one-digit patent class. We additionally 
control for the year in which the patent was filed (priority year dummies), and the technological 
domain to which the patent belongs (two-digit patent class dummies).

3.5 Descriptive Statistics

Summary statistics of all variables used in the analysis is reported in Table 2. Several 
variables are transformed in natural logarithm to correct for skewed distributions. A

Table 2. Descriptive statistics



preliminary inspection of the data shows the expected high variance and skewness of 
forward citations. Thirty-two patents (10.58 per cent) have not received any citation in the 6 
years after priority. Twenty-six had received one citation (8.8 per cent). Fifty-nine received 
between two and five citations (20.0 per cent). The median number of citation is 7 and the 
mean is 18.6. There are 9 patents that have more than 100 citations and some outliers with 
a maximum of 421 citations received by one patent.

The inventor experience is also highly variable, ranging from inventors with no prior 
patents and a maximum of 76 prior patents. Table 3 reports the distribution of patents 
among inventors. The scientists received their PhD between 1950 and 1991 and, 
accordingly, their career age at the priority year ranges from a minimum of 4 years to a 
maximum of 55. The scientists also vary considerably for their scientific production. On 
average, each scientist published 22.6 papers during the 3 years preceding the patent, with 
considerable variability. Regarding the assignee type, 61.1 per cent of patents are owned by 
universities (or intermediary institutions owned by universities). This result is aligned with 
prior studies of American universities (e.g. Thursby et al. (2009) showed that around 70 per 
cent of academic patents in the USA are owned by universities). About 29 per cent of 
patents in the sample are assigned to firms, and the rest is assigned to individuals (6.44 per 
cent), US governmental bodies (1.36 per cent) or both universities and a firm (2.03 per cent).

Concerning the number of patents that the assignees had prior to the current patent, we 
go from a low of zero, to a high of more than 10,000. Patents are coming from 21 different 
technological domains measured by the IPC class at the first two digits. Patents on average 
cited 15.99 prior patents and 10.39 scientific articles. Moreover, 95 per cent of inventors in 
the sample are men while only about 5 per cent are women.

Concerning the prior knowledge sets of the inventor, the majority of patents (67 per cent) are 
not directly related to technical and scientific knowledge of the inventor. About one in four

Table 3. Distribution of patents for each inventor (n ¼ 95)

Prior patents Freq. Per cent Cum.

0 27 28.42 28.42

1 21 22.11 50.53

2 15 15.79 66.32

3 6 6.32 72.63

4 5 5.26 77.89

5 2 2.11 80

6 2 2.11 82.11

7 2 2.11 84.21

8 1 1.05 85.26

9 4 4.21 89.47

10 3 3.16 92.63

12 2 2.11 94.74

13 1 1.05 95.79

21 1 1.05 96.84

22 2 2.11 98.95

76 1 1.05 100

Total 95 100



patents (24.07 per cent) is resonant with prior scientific knowledge, as visible in publications, 
and about one in five (22 per cent) is resonant to the prior technical knowledge, as visible in 
inventions.4 The mean of technical relatedness is 0.46. Only 4 per cent of the inventions rely 
at the same time on the specific technical and scientific knowledge of the inventor. Table 4 
shows the distribution of the technical and scientific knowledge sets of the inventors.

In the domains examined, we observe the expected general surge in the number of 
(utility) patents granted, with approximately three steps increases of 50,000 patents each: 
the first increase happened in 1993, the second in 1998 and the third in 2010 (Figure 1).

3.6 Methodology and Estimation

We model the importance of patents (proxied by forward citation) as a function of the 
scientific knowledge set (measured by the existence of publications whose content is related 
to the patent), and of the technical knowledge set (measured as number of prior patent 
whose content is related to the patent), plus a number of controls and an error component.

Since the independent variable is a positive integer, we model the data using count 
models. Given the high dispersion of our variable, the general assumptions underlying 
Poisson models that the conditional mean be equal to the variance is violated, suggesting to 
adopt either Negative Binomial or Quasi-Maximum-Likelihood (QML) Poisson. Both 
techniques lead to unbiased estimates in case of overdispersion and QML Poisson is 
deemed to imply fewer restrictions than Negative Binomial (Wooldridge, 2002). However, in 
our case, the Hausmann test indicates that QML Poisson is inconsistent ( p ¼ 0.000). 
Therefore, we chose to comment the result of Negative Binomial estimation and repeat the 
analysis with QML for comparison. The results are almost invariably consistent.5 To cope 
with problems caused by having repetitive inventors, we use robust standard errors adjusted 
for clustering at the inventor level in order to allow for non-independence of the observations 
for the same inventor. This implies that the conditional mean is:

E ðFCjX Þ ¼ exp bi ·X i þ
X

ai ·Year–Dummyi þ
X

gi ·IPC2 Dummyi þ
X

di ·Z i

h i
;

where Xi is a vector of independent variables (technical knowledge set and scientific

knowledge set ) and Zi is a vector of controls variables that is meant to clear off the effect of

Table 4. Patents by prior knowledge set of the inventor

Prior scientific knowledge

Prior technical knowledge 0 1 Total

0 200 (74.63 per cent) 68 (25.37 per cent) 231 (78.31 per cent)

1 53 (82.81 per cent) 11 (17.19 per cent) 64 (21.69 per cent)

Total 224 (75.93 per cent) 71 (24.07 per cent) 295

4We find a maximum of eight prior patents related to current patent.
5 For brevity, the QML estimates are not reported and are available upon request.



Table 5 reports the correlation matrix.
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Figure 1. Yearly distribution of patents (utility) granted by USPTO (data extracted from USPTO: http://www.uspto. 
gov/web/offices/ac/ido/oeip/taf/reports_stco.htm)

potentially confounding factors. To control for the personal characteristics of the inventor, 
we include the career age (plain and squared, to account for known curvilinear effects), 
gender, prior experience of patents (log), count of scientific articles published during the last 
3 years (log) and a dummy variable capturing inventors at their first patent. We control for 
patent characteristics that may capture unobserved heterogeneity such as the number of 
claims (log), the number of inventors (log), the number of backward citations (patents and 
scientific articles separately (log)) and the broadness of patent scope (number of IPC 
classes to which the patent has been assigned). We also control for the prior experience of 
the assignee with patents at the time of the deposit. The rationale for including these 
controls is that these characteristics may affect the degree to which patents get cited in 
ways that do not reflect the importance of the invention, but rather reflect the expertise of the 
assignee with patents, the accuracy with which the patent document has been prepared, 
etc.

Moreover, we control for changes in patenting trends, as captured by the number of 
patents granted by the USPTO (log) in the 5 years after the priority.6 To account for potential 
effects of time and market trends, we include a set of single-year dummy variables, based 
on the year of priority (Year_Dummy). We finally include a set of 21 dummy variables 
capturing the propensity of patents in different technological classes to receive citations.

6 For robustness check, alternatively we control for number of patents filed 5 years after priority year in the USPTO in

the same patent class (one digit).

http://www.uspto.gov/web/offices/ac/ido/oeip/taf/reports_stco.htm
http://www.uspto.gov/web/offices/ac/ido/oeip/taf/reports_stco.htm


T
a
b
le

5
.
C
o
rr
e
la
ti
o
n
m
a
tr
ix

Forwardcitations

Priorscientific
knowledge

Priortechnical
knowledge

Inventortechnical
productivityðlogÞ

Inventorscientific
productivityðlogÞ

Numberof
claimsðlogÞ

Numberof
inventorsðlogÞ

Countofcited
patentsðlogÞ

Countofscientific
articlescitedðlogÞ

Firstpatent

Gender

Assigneepatenting
experience

Patentscope

Patenting
trendðlogÞ

Careerage

Careerage
squared

University

Firm

F
o
rw

a
rd

c
it
a
ti
o
n
s

1
.0
0

P
ri
o
r
s
c
ie
n
ti
fi
c
k
n
o
w
le
d
g
e

0
.1
8

1
.0
0

P
ri
o
r
te
c
h
n
ic
a
l
k
n
o
w
le
d
g
e

0
.0
1

2
0
.1
2

1
.0
0

In
v
e
n
to
r
te
c
h
n
ic
a
l
p
ro
d
u
c
ti
v
it
y
(l
o
g
)

0
.0
9

2
0
.1
6

0
.5
3

1
.0
0

In
v
e
n
to
r
s
c
ie
n
ti
fi
c
p
ro
d
u
c
ti
v
it
y
(l
o
g
)

0
.0
3

0
.1
5

0
.0
2

2
0
.0
1

1
.0
0

N
u
m
b
e
r
o
f
c
la
im

s
(l
o
g
)

0
.0
9

2
0
.1
2

0
.0
2

0
.0
2

0
.0
0

1
.0
0

N
u
m
b
e
r
o
f
in
v
e
n
to
rs

(l
o
g
)

0
.0
8

0
.0
1

2
0
.1
4

2
0
.1
1

0
.1
0

0
.1
8

1
.0
0

C
o
u
n
t
o
f
c
it
e
d
p
a
te
n
ts

(l
o
g
)

0
.0
7

2
0
.0
8

0
.0
6

0
.1
0

2
0
.0
5

0
.0
3

2
0
.0
4

1
.0
0

C
o
u
n
t
o
f
s
c
ie
n
ti
fi
c
a
rt
ic
le
s
c
it
e
d
(l
o
g
)

0
.1
7

0
.0
6

0
.0
1

0
.0
0

0
.0
7

0
.0
5

0
.1
1

0
.3
3

1
.0
0

F
ir
s
t
p
a
te
n
t

2
0
.1
1

0
.0
1

2
0
.1
9

2
0
.5
9

2
0
.0
9

0
.0
0

0
.0
6

2
0
.0
7

2
0
.0
3

1
.0
0

G
e
n
d
e
r

0
.0
4

0
.0
1

0
.0
7

0
.1
1

0
.0
6

0
.0
2

2
0
.0
4

2
0
.0
4

2
0
.0
8

2
0
.0
9

1
.0
0

A
s
s
ig
n
e
e
p
a
te
n
ti
n
g
e
x
p
e
ri
e
n
c
e

0
.0
5

2
0
.0
4

0
.0
5

0
.0
8

0
.1
5

2
0
.0
5

0
.0
5

2
0
.2
0

0
.0
2

2
0
.0
2

2
0
.0
1

1
.0
0

P
a
te
n
t
s
c
o
p
e

2
0
.0
4

2
0
.1
0

2
0
.0
2

0
.0
1

0
.0
6

2
0
.0
3

2
0
.0
1

0
.0
0

2
0
.0
2

2
0
.0
9

0
.1
0

2
0
.1
4

1
.0
0

P
a
te
n
ti
n
g
T
re
n
d
(l
o
g
)

0
.0
2

0
.0
1

0
.0
4

0
.0
8

0
.1
8

0
.1
5

0
.1
7

0
.0
0

0
.0
3

2
0
.1
1

0
.0
9

2
0
.1
0

0
.0
6

1
.0
0

C
a
re
e
r
a
g
e

2
0
.0
4

2
0
.2
6

0
.3
9

0
.6
1

2
0
.1
8

0
.0
1

2
0
.0
6

0
.0
1

2
0
.1
0

2
0
.1
4

0
.1
5

2
0
.0
4

0
.0
4

0
.1
5

1
.0
0

C
a
re
e
r
a
g
e
s
q
u
a
re
d

2
0
.0
2

2
0
.2
5

0
.4
4

0
.6
6

2
0
.1
6

2
0
.0
2

2
0
.0
9

0
.0
0

2
0
.0
9

2
0
.1
4

0
.1
4

0
.0
1

0
.0
1

0
.0
7

0
.9
7

1
.0
0

U
n
iv
e
rs
it
y

0
.1
2

0
.1
6

2
0
.0
3

2
0
.0
5

0
.0
8

0
.1
3

0
.0
4

2
0
.1
1

0
.2
0

2
0
.0
7

2
0
.0
8

0
.1
9

0
.0
5

0
.2
3

0
.0
1

0
.0
0

1
.0
0

F
ir
m

2
0
.0
8

2
0
.2
2

0
.0
4

0
.1
0

2
0
.0
5

2
0
.1
3

2
0
.0
6

0
.1
8

2
0
.1
6

2
0
.0
1

0
.0
7

2
0
.0
6

2
0
.0
9

2
0
.2
2

0
.0
3

0
.0
5

2
0
.8
0

1
.0
0



4. Results

Table 6 shows the result of the estimates using Negative Binomial.

Model 1 reports the results for the full sample of 295 patents by including the prior 
scientific and technical knowledge set. In Model 2, we include the square of prior technical 
knowledge set in order to control for possible nonlinear relationship between technical 
knowledge set and patent importance. In Model 3, we use normalized discounted stock of 
patent as an alternative for prior technical knowledge set and considering the time difference 
of patents and Model 4 reports the results for a sub-sample of 237 patents in which we have 
omitted the patents of the inventors that had no prior patent experience. All econometric 
models strongly support our hypothesis 1 that patents which are related to the prior scientific 
knowledge set have on average more citations. By looking at the coefficient of the Negative 
Binomial model, we can see that patents which are related to prior publications receive on 
average 50 per cent more citations than the ones which are not related to prior publications.7

Concerning our hypothesis 2 that the prior technical experience of patents is associated 
to a reduced importance of the focal patent, the results of the unrestricted sample provide a 
more nuanced result than the one expected. We see in fact that there is evidence of an 
inverted U-shape relationship between prior technical knowledge and patent importance. 
The coefficient of the square of technical knowledge set is negative and significantly 
different from zero. The results are qualitatively similar in Model 3 when we use an 
alternative measure of technical knowledge set which take into account time difference 
between patenting activities. When (Model 4) we restrict the sample to include only the 
patents that had a prior track of technical knowledge (in other words we drop first patents), 
the results stay invariant.

Results of the control variables are aligned to those commonly established in the 
literature, although not always significant when different estimation methods are used. We 
can observe that (undifferentiated) experience with patents is associated to more citations. 
More claims are associated to higher importance. Men produce on average better cited 
patents than women. In addition, we can see that the number of patents and scientific 
articles cited in the focal patent are positively related to forward citations. Interestingly, 
patents assigned to universities on average receive more citations than the baseline. The 
baseline here is constituted of “other assignees types”, and includes individual assignees, 
as well as governmental bodies. Similarly, patents assigned to firms exhibit a citation 
premium, compared to the baseline.

4.1 Robustness Check

In order to check the robustness of the estimates to the choice of the model, we have 
tried several alternative functional forms. Table A1 reports the results of these robustness 
checks.

First, we include an additional variable of geographic distribution in order to control for 
variation in patenting activities across US states. Since there are missing values in assignee 
address, the sample is reduced to 263 observations.

7 ¼ exp(0.408) 2 1.



Table 6. Negative Binomial models. Dependent variable: forward citation

Model 1 Model 2 Model 3 Model 4

Prior scientific knowledge 0.408 0.400 0.399 0.437

(0.197)** (0.196)** (0.198)** (0.208)**

Prior technical knowledge 0.123 0.351 0.328

(0.130) (0.171)** (0.175)**

Prior technical knowledge square 20.046 20.041

(0.020)** (0.020)**

Prior technical knowledge (normalized stock of

patent)

4.263

(2.374)*

Prior technical knowledge

(normalized stock of patent) square

29.018

(4.157)**

Inventor’s technical productivity (log) 0.180 0.141 0.158 0.224

(0.124) (0.116) (0.113) (0.133)*

Inventor’s scientific productivity (log) 0.155 0.150 0.143 0.060

(0.072)** (0.073)** (0.073)** (0.099)

Number of claims (log) 0.328 0.325 0.315 0.351

(0.087)*** (0.083)*** (0.087)*** (0.099)***

Inventor count (log) 0.258 0.274 0.258 0.335

(0.157) (0.157)* (0.160) (0.193)*

Count of cited patents (log) 0.115 0.120 0.124 0.078

(0.077) (0.072)* (0.071)* (0.083)

Count of scientific articles cited (log) 0.183 0.185 0.190 0.228

(0.065)*** (0.066)*** (0.065)*** (0.071)***

First patent 0.039 0.012 0.018 NO

(0.277) (0.270) (0.272) NO

Gender (male) 0.585 0.578 0.604 1.118

(0.485) (0.472) (0.469) (0.422)***

Assignee experience 0.009 0.007 0.012 20.037

(0.061) (0.060) (0.060) (0.069)

Patent scope 0.000 0.004 0.001 0.005

(0.036) (0.036) (0.037) (0.044)

Trend 212.568 211.047 211.870 21.581

(5.380)** (5.518)** (4.913)** (5.127)

Career_age Yes Yes Yes Yes

Career_sq Yes Yes Yes Yes

Assignee type Yes Yes Yes Yes

IPCdummy1 Yes Yes Yes Yes

Years dummy 1–14 Yes Yes Yes Yes

_cons 167.414 146.870 158.151 20.160

(72.983)** (74.795)** (66.613)** (69.290)

lnalpha 0.133 0.127 0.126 0.100

(0.084) (0.086) (0.088) (0.097)

N 295 295 295 237

Note: Clustered robust std. error in parentheses. *p , 0.1; **p , 0.05; ***p , 0.01.



Second (Model 2), following the methodology of Fleming (2001), we add a control for 
relevant activities in technological domain (prior technological domain) by comparing the 
main IPC of the patent to those of prior patents by the same person. Third, we use the share 
of patent citations and scientific articles citations over the total, rather than the sheer counts 
(Model 3). Fourth, we exclude claims as a control variable since a recent article (Strumsky et 
al., 2012) has criticized the use of the number of patent claims as antecedent of patent 
importance (Model 4). Fifth, we account for the potential effect of the changes in the 
disclosure policy of the USPTO occurred since November 2000, which mandates to publish 
the applications of pending patents after 18 months since the priority day. The policy change 
can impact citation trends in ways that are not captured by year dummies; therefore, in 
Model 5, we included a dummy which takes the value of one if the patent was filed after 
November 2000. Last, we control for variations in patenting activities in each patent class, 
which can affect forward citations. For this purpose in Model 6, we control for the number of 
patents filed at the USPTO in the 5-year period after the priority year of the focal patent. 
Results are robust to all these alternative specifications.

In Table A2, we test the robustness of our estimates to the choice of treatment for 
patent families. Recall that in the paper we choose to use a single focal patent in a family, as 
the one that had more citations or had an earlier priority date, in case the number of citations 
was the same. In order to check the robustness of the result to this strategy, we re-estimate 
the Models 1 and 2 of Table 6 including all patents in the family (373 in Model 1 and 348 in 
Model 2). Both models confirm the hypotheses 1, but in this case the result observed for the 
technical knowledge set is not robust.

5. Conclusion, Limitations and Discussion

The first aim of this paper was to understand the degree to which inventors rely on their prior 
scientific knowledge set, as opposed to relying on their prior technical knowledge set. Our 
results suggested that about one in four inventions issued to academics are in areas in 
which inventors have prior publications in scientific journals and about one in five are in 
areas of prior technical experience, as witnessed by prior patents. Around 17 per cent of 
patents are related with both prior scientific knowledge and prior technical knowledge. If the 
result were to be confirmed in further analysis, this would mean that a sizable, but largely 
minoritarian share of patents relates substantially to the scientific production of academics.

Our second aim was to study the correlation between prior knowledge sets and the 
relative importance of patents. We showed that patents based on prior scientific knowledge 
sets receive on average 50 per cent more citations than patents non-related to prior 
scientific knowledge. This is a robust and remarkable increase. Conversely, inventions 
based on areas in which the inventor had prior technical expertise have an inverted U-shape 
relationship with forward citations. This implies that technical expertise correlates to more 
important patents, but the relationship may become negative (patents receive fewer 
citations) as the inventor continues to exploiting the same area. This result is consistent to 
what emerged in prior studies (Gambardella et al., 2012; Conti et al., forthcoming), which 
highlighted the decreasing marginal returns of incremental inventive strategies. Overall, the 
results seem to suggest that there are high returns from re-using scientific knowledge, 
positive returns from re-using recent technical expertise, but decreasing returns from re-
using many times the same technical expertise.



Our third aim was to propose and apply a novel methodology that looks at document 
relatedness by means of content analysis, rather than on temporal contiguity of events. We 
employed a content analysis software to identify semantic similarity and assess whether or 
not the content of a certain invention (as described in the patent abstract) is related to the 
prior scientific knowledge set of the academic inventor (as described in abstracts of 
scientific publications) and/or to the prior technical knowledge set (as described in the patent 
abstracts). This methodology can be replicated and applied to potentially broader areas of 
investigations. However, it is important to stress that our measure of relatedness is all but 
perfect, and the estimate may be affected by measurement biases in important ways. To 
mention just one potential source of biases, it is known that patent documents are edited by 
the attorneys. Therefore, the wording used in patents may not necessarily reflect the 
wording used in the scientific literature, and this would cause our software to underestimate 
the degree of relatedness in document content. Further analysis would be advisable in the 
area, possibly with the use of surveys. Furthermore, improvements in the methodology may 
certainly be advisable in terms of calibration (threshold of similarity) and in terms of the 
breadth of text analyzed. In this paper, we screened only the title and abstract of the 
documents, which simplifies the computational burden and offers the advantage of using 
documents of comparable length. A more refined text analysis could be obtained if length-
normalized comparisons are drawn on the full texts.

The paper has several limitations that could be addressed in future research. We 
already mentioned two limitations that relate to the methodology of content analytics. In 
addition, our results are based on a limited sample of academic inventors working in the field 
of physics. It has been shown that the relationship between scientific productivity and 
patenting varies across fields (Stephan et al., 2007) and even across sub-fields of the same 
area (Calderini et al., 2009). Second, the inventors in our sample are all “Fellows” of the 
American Physical Society which implies that they are exceptionally brilliant scientist within 
their field. It is possible that further analyses conducted on different areas or more 
representative samples will lead to different results. Finally, in this paper we used a sample 
of academic inventions. It is important to acknowledge that the results should not be 
generalized outside of the realm of academe. On a more representative sample, the PatVal 
survey has shown that inventors consider prior “patent literature” and prior “scientific 
literature” among the top three sources of knowledge used in the invention process for 
relative importance, although no external source is rated as very relevant in absolute terms 
(Giuri et al., 2007). Future analysis could be directed to investigate the extent to which 
scientific and technical knowledge sets are relevant in firms’ innovation processes.

Our results have several potentially relevant implications for scholars and practitioners. 
First, over the last 20 years, there has been an increasing interest toward academic 
patenting among researchers in different fields of science. A large body of literature has 
investigated the impact of a steady growth in patenting by university researchers on their 
scientific output. In general, the literature on academic patents has documented that 
academic patents tend to be more valuable and general than non-academic ones. 
Furthermore, productive scientists are more likely to become inventors than their less-
productive colleagues (Breschi et al., 2007; Stephan et al., 2007; Fabrizio and Di Minin, 
2008,) and to produce a flurry of scholarly publications before patenting (Azoulay et al., 
2007; Calderini et al., 2007). This evidence seems to indicate that inventions are developed 
as a byproduct of a prolific research activity that the scientist has conducted for scientific



purposes. In practice, however, the correlation observed in prior works was strictly

numerical, meaning that no prior study has established a clear link between the content of

the flurry of publications that precede an invention and the invention itself. Our findings

advance this literature as they show that patents based on prior scientific research are on

average more important (more cited) than those not based on prior scientific research,

where the link is drawn not only on time-contiguity but also on content. The findings support

the hypotheses that scientific knowledge is a valuable input to the patent process, at least for

academic patents.

Second, our results are potentially of interest for agents involved in the technology

transfer process at several levels. At the level of university administrators, our findings

confirm that scientific research is a needed input to achieve success in technology transfer.

Our results are also potentially valuable to technology managers called to assess and triage

disclosures on new inventions, amid limited resources and strong market uncertainty. Our

findings indicate that inventions backed by scientific research, all other things being equal,

are among the most promising and should be marketed with special care. Conversely,

patents that arise from incremental technical expertise are less likely to be valuable and

should be the target of analysis for triage.

Acknowledgements

The authors wish to thank the participants to the 7th Annual Conference of the EPIP

Association (Leuven, 2012) and those of the Conference “Science Dynamics and Research

Systems” (Madrid, 2013) for helpful comments and discussions. The authors feel especially

indebted to three anonymous referees for very valuable inputs. All errors are those of the

authors.

References

Ambos, T. C., Makela, K., Birkinshaw, J. and D’este, P. (2008)When does university research get commercialized? Creating ambidexterity

in research institutions source, Journal of Management Studies, 45(8), pp. 1424–1447.

Audia, P. G. and Goncalo, J. A. (2007) Past success and creativity over time: a study of inventors in the hard disk drive industry,

Management Science, 53(1), pp. 1–15.

AUTM (2011) U.S. Licensing Activity Survey: FY2010 (Deerfield, IL: s.l. Association of University Technology Managers).

Azoulay, P., Ding, W. and Stuart, T. (2007) The determinants of faculty patenting behavior: demographics or opportunities? Journal of

Economic Behavior and Organization, 63(4), pp. 599–623.

Azoulay, P., Ding, W. and Stuart, T., (2009). The impact of academic patenting on the rate, quality and direction of (public) research output.

Journal of Industrial Economics, 57(4), pp. 637–676.

Bacchiocchi, E. and Montobbio, F. (2010) International knowledge diffusion and home-bias effect. Do USPTO & EPO patent citations tell

the same story? Scandinavian Journal of Economics, 112(3), pp. 441–470.

Blumenthal, D., Campbell, E. G., Anderson, M. S., Causino, N. and Louis, K. S. (1997) Withholding research results in academic life

science – Evidence from a national survey of faculty, Journal of the American Medical Association, 277(15), pp. 1224–1228.

Breschi, S., Lissoni, F. and Montobbio, F. (2007) The scientific productivity of academic inventors: new evidence from Italian data,

Economics of Innovation and New Technology, 16(2), pp. 101–118.

Calderini, M., Franzoni, C. and Vezzulli, A. (2007) If star scientists do not patent: the effect of productivity, basicness and impact on the

decision to patent in the academic world, Research Policy, 36(3), pp. 303–319.

Calderini, M., Franzoni, C. and Vezzulli, A. (2009) The unequal benefits of academic patenting for science and engineering research, IEEE

Transactions on Engineering Management, 56(1), pp. 16–30.



K., Le Bas, C., Luzzi, A., Magazzini, L., Nesta, L., Nomaleri, O., Palomeras, N., Patel, P., Romanelli, M. and Verspagen, B. (2007)

Inventors and invention processes in Europe: results from the PatVal-EU survey, Research Policy, 36(8), pp. 1107–1127.

Göktepe-hulten, D. and Mahagaonkar, P. (2010) Inventing and patenting activities of scientists: in the expectation of money or reputation?

Journal of Technology Transfer, 35(4), pp. 401–423.

Griliches, Z. (1981) Market value, R&D, and patents, Economics Letters, 7(2), pp. 183–187.

Haeussler, C., Jiang, L., Thursby, J. and Thursby, M. (2009) Specific and general information sharing among academic scientists. NBER

Working Paper, Issue 15315.

Hall, B. H., Jaffe, A. and Trajtenberg, M. (2005) Market value and patent citations, Rand Journal of Economics, 36(1), pp. 16–38.

Henderson, R., Jaffe, A. B. and Trajtenberg, M. (1998) Universities as a source of commercial technology: a detailed analysis of university

patenting, 1965–1988, Review of Economics and Statistics, 80(1), pp. 119–127.

Jaffe, A. B., Trajtenberg, M. and Henderson, R. (1993) Geographic localization of knowledge spillovers as evidenced by patent citations,

Quarterly Journal of Economics, 108(3), pp. 577–598.

Jensen, R. and Thursby, M. (2001) Proofs and prototypes for sale: the licensing of university inventions, American Economic Review,

91(1), pp. 240–259.

Jensen, R. A., Thursby, J. G. and Thursby, M. C. (2003) The disclosure and licensing of university inventions. National Bureau of

Economic Research, Inc. NBER Working Papers 9734.

Kogut, B. and Zander, U. (1992) Knowledge of the firm, combinative capabilities, and the replication of technology,Organization Science,

3(3), pp. 383–397.

Lissoni, F., Montobbio, F. and Eri, R. (2010) Ownership and impact of European university patents. Working Paper.

Campbell, E., Clarridge, B., Gokhale, N., Birenbaum, L., Hilgartner, S., Holtzman, N. and Blumenthal, D. (2002) Data withholding in

academic genetics – Evidence from a national survey, Journal of the American Medical Association, 287(4), pp. 473–480.

Conti, R., Gambardella, A. and Mariani, M. (forthcoming) Learning to be Edison: inventors, organizations and breakthrough inventions,

Organization Science.

Crespi, G., D’este, P., Fontana, R. and Geuna, A. (2011) The impact of academic patenting on university research and its transfer,

Research Policy, 40(1), pp. 55–68.

Czarnitzki, D., Hussinger, K. and Schneider, C. (2011) Commercializing academic research: the quality of faculty patenting, Industrial and

Corporate Change, 20(5), pp. 1403–1437.

EC (2006) Study on Evaluating the Knowledge Economy What are Patents Actually Worth? The Value of Patents for Today’s Economy

and Society (Brussels: European Commission).

Elfenbein, D. W. (2007) Publications, patents, and the market for university inventions, Journal of Economic Behavior & Organization,

63(4), pp. 688–715.

Fabrizio, K. R. and Di Minin, A. (2008) Commercializing the laboratory: faculty patenting and the open science environment, Research

Policy, 37(5), pp. 914–931.

Farrell, M. (2008) Universities that turn research into revenue. Available online at http://www.forbes.com/2008/09/12/google-general-

electric-ent techcx_mf_0912universitypatent.html (accessed 19 July 2012).

Fleming, L. (2001) Recombinant uncertainty in technological search, Management Science, 47(1), pp. 117–132.

Fleming, L. and Sorenson, O. (2004) Science as a map in technological search, Strategic Management Journal, 25(8–9), pp. 909–928. 

Franzoni, C. (2007) Opportunity recognition in technology transfer organizations five case studies from UK and Italy, International

Entrepreneurship and Management Journal, 3(1), pp. 51–67.

Franzoni, C. (2009) Do scientists get fundamental research ideas by solving practical problems? Industrial and Corporate Change, 18(4),

pp. 671–699.

Franzoni, C. and Scellato, G. (2010) The grace period in international patent law and its effect on the timing of disclosure, Research Policy,

39(2), pp. 200–213.

Gallini, N. T. and Wright, B. D. (1990) Technology-transfer under asymmetric information, Rand Journal of Economics, 21(1),

pp. 147–160.

Gambardella, A., Harhoff, D. and Verspagen, B. (2012) The economic value of patent portfolios. CEPR Discussion Paper 9264. 

Gittelman, M. and Kogut, B. (2003) Does good science lead to valuable knowledge? Biotechnology firms and the evolutionary logic of

citation patterns, Management Science, 49(4), pp. 366–382.

Giuri, P., Mariani, M., Brusoni, S., Crespi, G., Francoz, D., Gambardella, A., Garcia-fontes, W., Geuna, A., Gonzales, R., Harhoff, D., Hoisl,

http://www.forbes.com/2008/09/12/google-general-electric-ent techcx_mf_0912universitypatent.html
http://www.forbes.com/2008/09/12/google-general-electric-ent techcx_mf_0912universitypatent.html


Mowery, D. C., Nelson, R. R., Sampat, B. N. and Ziedonis, A. A. (2001) The growth of patenting and licensing by US universities: an

assessment of the effects of the Bayh–Dole act of 1980, Research Policy, 30(1), pp. 99–119.

Murray, F. and Stern, S. (2007) Do formal intellectual property rights hinder the free flow of scientific knowledge? An empirical test of the

anti-commons hypothesis, Journal of Economic Behavior & Organization, 63(4), pp. 648–687.

Nelson, R. R. (2004). The market economy, and the scientific commons. Research Policy, 33(3), pp. 455–471.

Nelson, R. and Winter, S. (1982) An Evolutionary Theory of Economic Change (Cambridge, MA: Belknap).

Owen-Smith, J. and Powell, W. W. (2001) To patent or not: faculty decisions and institutional success in academic patenting, Journal of

Technology Transfer, 26(1), pp. 99–114.

Sampat, B. N., Mowery, D. C. and Ziedonis, A. A. (2003) Changes in university patent quality after the Bayh–Dole act: a re-examination,

International Journal of Industrial Organization, 21(9), pp. 1371–1390.

Scotchmer, S. (2004) Innovation and Incentives (Cambridge, MA: MIT Press).

Shane, S. (2002) Selling university technology: patterns from MIT, Management Science, 48(1), pp. 122–137.

Stephan, P. E., Gurmu, S., Sumell, A. J. and Black, G. (2007) Who’s patenting in the university? Evidence from the survey of doctorate

recipients, Economics of Innovation and New Technology, 16(2), pp. 71–99.

Strumsky, D., Lobo, J. and Van Der Leeuw, S. (2012) Using patent technology codes to study technological change, Economics of

Innovation and New Technology, 21(3), pp. 267–286.

Swamidass, P. M. and Vulasa, V. (2008) Why university inventions rarely produce income? Bottlenecks in university technology transfer,

Journal of Technology Transfer, 34, pp. 343–363.

Thursby, J., Fuller, A. W. and Thursby, M. (2009) US faculty patenting: inside and outside the university, Research Policy, 38(1),

pp. 172–187.

Trajtenberg, M. (1990) A penny for your quotes – Patent citations and the value of innovations, Rand Journal of Economics, 21(1),

pp. 172–187.

Trajtenberg, M., Henderson, R. and Jaffe, A. (1997) University versus corporate patents: a window on the basicness of invention,

Economics of Innovation and New Technology, 5(1), pp. 19–50.

Walsh, J. P., Cho, C. and Cohen, W. M. (2005) View from the bench: patents and material transfers, Science, 309(5743), pp. 2002–2003.

Wooldridge, J. M. (2002) Econometric Analysis of Cross-Section and Panel Data (Cambridge: MIT Press).

Zucker, L. G., Darby, M. R. and Armstrong, J. S. (2002) Commercializing knowledge: university science, knowledge capture, and firm

performance in biotechnology, Management Science, 48(1), pp. 138–153.



Appendix

Table A1. Robustness checks, Negative Binomial estimates

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Prior scientific knowledge 0.550 0.347 0.343 0.366 0.478 0.376

(0.204)*** (0.192)* (0.208)* (0.205)* (0.174)*** (0.198)*

Prior technical knowledge 0.328 0.389 0.368 0.372 0.398 0.397

(0.192)* (0.181)** (0.162)** (0.194)* (0.148)*** (0.161)**

Prior technical knowledge square 20.059 20.053 20.040 20.048 20.087 20.055

Prior technological domain (0.021)*** (0.021)***

20.811

(0.333)**

(0.024)* (0.021)** (0.023)*** (0.020)***

Inventor’s technical productivity (log) 0.109 0.114 0.118 0.206 0.126 0.146

(0.118) (0.118) (0.117) (0.121)* (0.126) (0.114)

Inventor’s scientific productivity (log) 0.141 0.161 0.138 0.136 0.097 0.129

(0.084)* (0.072)** (0.078)* (0.080)* (0.082) (0.072)*

Number of claims (log) 0.277 0.308 0.294 0.332 0.357

(0.089)*** (0.085)*** (0.083)*** (0.084)*** (0.080)***

Inventor count (log) 0.353 0.270 0.314 0.324 0.265 0.282

(0.172)** (0.153)* (0.151)** (0.157)** (0.166) (0.160)*

Count of cited patents (log) 0.185 0.129 0.111 0.165 0.094

(0.083)** (0.072)* (0.075) (0.082)** (0.069)

Count of scientific articles cited (log) 0.225 0.192 0.189 0.218 0.171

(0.065)*** (0.068)*** (0.067)*** (0.072)*** (0.066)***

First patent 20.074 20.053 20.076 0.056 0.026 20.060

(0.296) (0.268) (0.269) (0.267) (0.284) (0.277)

Gender (male) 0.553 0.594 0.517 0.673 0.480 0.276

(0.514) (0.462) (0.486) (0.415) (0.507) (0.557)

Assignee experience 20.023 20.002 20.036 0.006 20.039 0.025

(0.074) (0.059) (0.062) (0.064) (0.066) (0.061)

Patent scope 0.035 0.011 0.012 20.024 20.025 20.001

(0.036) (0.037) (0.037) (0.034) (0.031) (0.031)

Trend 20.903 29.680 210.313 211.756 20.087

(5.245) (5.790)* (4.485)** (5.811)** (0.688)

Trend in patent class 0.017

(0.093)

Share patent cited/total citations 20.571

(0.264)**

Policy change 20.617

(0.216)***

Spatial distribution (log) 20.610

(0.254)**

Career_age Yes Yes Yes Yes Yes Yes

Career_sq Yes Yes Yes Yes Yes Yes

Assignee type Yes Yes Yes Yes Yes Yes

IPCdummy1 Yes Yes Yes Yes Yes Yes

Years dummy 1–14 Yes Yes Yes Yes No Yes

(71.189) (78.493) (60.582)** (78.874)** (9.299) (3.529)

lnalpha 0.100 0.110 0.157 0.158 0.208 0.102

(0.089) (0.086) (0.084)* (0.087)* (0.091)** (0.089)

N 263 295 288 295 295 295



Table A2. Robustness check (patents belonging to patent family), Negative Binomial estimates

Model 1 Model 2

Prior scientific knowledge 0.382 (0.193)** 0.392 (0.207)*

Prior technical knowledge 0.030 (0.158) 20.003 (0.159)

Prior technical knowledge square 0.002 (0.031) 0.006 (0.033)

Inventor’s technical productivity (log) 0.161 (0.113) 0.199 (0.135)

Inventor’s scientific productivity (log) 0.113 (0.080) 0.019 (0.113)

Number of claims (log) 0.345 (0.092)*** 0.369 (0.099)***

Inventor count (log) 0.280 (0.133)** 0.354 (0.156)**

Count of cited patents (log) 0.009 (0.077) 20.048 (0.076)

Count of scientific articles cited (log) 0.145 (0.057)** 0.173 (0.063)***

First patent 0.009 (0.227)

Gender (male) 0.561 (0.423) 0.990 (0.373)***

Assignee experience 20.038 (0.077) 20.066 (0.098)

Patent scope 20.023 (0.034) 20.020 (0.037)

Trend 25.983 (4.675) 1.693 (5.239)

Career_age Yes Yes

Career_sq Yes Yes

Assignee type Yes Yes

IPCdummy1 Yes Yes

Years dummy 1–14 Yes Yes

_cons 0.903 (0.640) 1.636

lnalpha 0.217 (0.085)** 0.238 (0.095)**

N 373 310

Note: Clustered robust std. error in parentheses. *p , 0.1; **p , 0.05; ***p , 0.01.
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