Physical Therapy Journal of the American Physical Therapy Association

OXFORD UNIVERSITY PRESS

Is the Brief-BESTest brief enough? Suggested modifications based on structural validity and internal consistency.

Journal:	Physical Therapy
Manuscript ID	PTJ-2018-0336.R2
Manuscript Category:	Original Research - Observational/Prognostic
Section:	Balance and Falls
Keywords:	Balance, Gait Disorders: Neurologic, Neurologic Manifestations, Statistics, ROC Curve, Posture, Accidental Falls, Rehabilitation, Rehabilitation Centers, Measurement: Applied

SCHOLARONE[™] Manuscripts

2 3		
4 5 6	1	Is the Brief-BESTest brief enough? Suggested modifications based on structural validity and
7 8	2	internal consistency
9 10 11	3	
12 13	4	
14 15	5	
16 17 18	6	
18 19 20	7	
21 22 23	8	
24 25 26		
27 28		
29 30 31		
31 32 33		
34 35		
36 37 38		
39 40		
41 42 43		
43 44 45		
46 47		
48 49		
50 51 52		
53 54		
55 56		
57 58 59		
60		

9 ABSTRACT

Background: The Brief Balance Evaluation Systems Test (Brief-BESTest) could be a useful tool for balance assessment. Although some psychometric characteristics have been examined, others still need to be clarified. **Objectives:** To assess the structural validity, convergent validity, discriminant validity and internal consistency of the Brief-BESTest in neurological patients. Design: Cross-sectional. **Methods:** Data were from 416 patients with neurological disease and related balance disorders. Patients were assessed with the 5-levels Activities-Specific Balance Confidence Scale (ABC 5-levels), Brief-BESTest, some simple balance tests, i.e. One-Leg Stance (OLS), Timed Up and Go (TUG) test, Functional Reach (FR), simple balance tests and a fall history questionnaire. Three models of Brief-BESTest models were examined through confirmatory factor analysis (CFA) and the following indices calculated: Comparative Fit Index (CFI), Tucker-Lewis Index (TLI), Root Mean Square Error of Approximation (RMSEA). Convergent validity was assessed by calculating the correlation between Brief-BESTest and ABC 5-levels total scores. Receiver operating characteristics (ROC) assessed the ability of each model to differentiate between people with vs. without falls. Internal consistency was measured by Cronbach's alpha and coefficient omega. Results: CFA showed Model 3 (CFI=0.97, TLI=0.95, RMSEA=0.05), with item 1 removed and error covariance between items 3-4 and between items 5-6, to have a significantly better structure than Models 1 and 2 (p<0.001). The correlation between Brief-BESTest and ABC 5-levels was 0.61 (Spearman's rho) for all three models. Area Under the Curve (AUC) of ROC was showed an acceptable accuracy (0.72) in distinguishing patients with vs. without history of falls (95% C.I.=0.66–0.78) for all models, and superior to AUCs of other simple balance tests (OLS, TUG test,

2 3 4	33	FR). Cronbach's alpha was good for Brief-BESTest Models 1 (0.92) and 3 (0.92), but omega was
5 6 7	34	>0.80 only for Model 3.
7 8 9	35	Limitations: Heterogeneous sample size was a heterogeneous population.
10 11 12	36	Conclusions: The Brief-BESTest, after some changes, shows good validity and internal
12 13 14	37	consistency in patients affected by different balance disorders, after applying some changes.
15 16	38	
17 18 19	39	Contribution of the Paper:
20 21	40	• Although some psychometric characteristics of the Brief-BESTest have been examined in
22 23 24	41	previous studies, other properties such as validity still need to be clarified.
25 26	42	• This study shows that the Brief-BESTest has good validity and internal consistency in
27 28 29	43	patients affected by different balance disorders, after applying some changes: removal of item 1
30 31	44	and using an appropriate weighting method for the calculation of the total score.
32 33 34	45	• This study confirms the ability of the Brief-BESTest to distinguish between people with vs.
35 36	46	without history of falls, in contrast to other simple balance tests. Moreover, it highlights once
37 38 39	47	again the superiority of a clinical scale composed of several items compared to single-item
40 41 42	48 49	measures such as the TUG test and OLS.
43 44 45	49 50	
46 47 48	51	Keywords: Brief-Balance Evaluation Systems Test, balance assessment, confirmatory factor
49 50 51	52	analysis, structural validity, internal consistency.
52 53 54	53	
55 56	54	
57 58 59		
60		

INTRODUCTION

Balance disorders are a common finding in a broad spectrum of neurological disorders and are
characterized by a heterogeneous set of signs and symptoms. Patients with balance disorders
experience a reduction in mobility, activities of daily living and muscle strength, leading to
increased risk of falls [1,2,3,4]. Thus, balance assessment is crucial and requires standardized
measurement tools that can monitor equilibrium regardless of the pathology. Unfortunately, no
gold standard exists for evaluating balance [5], and no consensus on which assessment tools to
use in clinical practice [6,7].

A variety of clinical measures has been developed to evaluate different aspects of balance. While simple balance tests such as the Timed Up and Go test, One Leg Stance, and Functional Reach provide accurate evaluation of a single task, they are not able to **do not give** information on multifactorial mechanisms related to postural stability [8]. On the contrary, balance scales which include multiple tasks can provide a more complete picture of balance control in all its complexity [9,10,11].

One of the most recent balance scales is the BESTest, a 36-item scale developed to identify impairments in six balance control subsections, which it has been shown to be a valid and reliable tool [8]. However, one of its drawbacks is that it is time-consuming to administer [12]. For this reason, shorter versions have been proposed such as the Mini-BESTest [12] and the Brief-BESTest [13]. In particular, the Brief-BESTest, an 8-item version of the original scale, has demonstrated good to excellent psychometric properties [8,13,14,15]. It is less time-consuming [16] and more feasible than its parent scale in clinical settings [15], while it encompasses and should adequately evaluate all subsections of balance endorsed by the BESTest [13,17,18].

Physical Therapy

2 3 4	78	
5 6	79	
7 8 9	80	
10 11	81	
12 13	82	
14 15 16	83	
17 18		
19 20	84	
21 22	85	
23 24	86	
25 26 27	87	
28 29	88	
30 31 32	89	
33 34	90	
35 36 37	91	
38 39	92	
40 41 42	93	
43 44 45	94	
46 47	95	
48 49 50	96	
51 52		
53 54	97	
55 56 57	98	
57 58 59	99	
60	100	

without a history of falls;

However, the latter hypothesis was rejected through exploratory factor analysis dismantled the latter hypothesis, demonstrating that the Brief-BESTest actually has at most two subsections, or dimensions [19]. Furthermore, Bravini et al. [14] showed by Rasch analysis that all items of the Brief-BESTest except for item 1 account for the same underlying theoretical construct and indicated that the Brief-BESTest should in fact be considered as unidimensional. Therefore, the authors suggested the adoption of a 7-item version of the test. Although some psychometric characteristics of the Brief-BESTest, such as the internal consistency [13,14], reliability [14,17,20] and sensitivity to change [14,20], have been investigated in previous studies, other properties still need to be clarified. In particular, the Brief-BESTest structure has not yet been investigated with **undergone** confirmatory factor analysis (CFA). This statistical tool provides information on possible independent factors and can be very useful for developing shortened forms of an evaluating instrument [21,22]. Finally, the Brief-BESTest seems to have good sensitivity and accuracy in identifying retrospectively people who have had at least one fall [13,17]. However, these findings are based only on small samples of patients with multiple sclerosis [13] or Parkinson's disease [17]. The We aimed in of the present study was to fill the existing knowledge gap by examining the structural validity, convergent validity and discriminant validity of the Brief-BESTest in a large group of patients with a variety of balance disorders. In particular, we hypothesized that: 1) among the three models of the Brief-BESTest presented in the literature [13,14,19], the 7-item version would be the one with the best structural validity; 2) in spite of its conciseness, the 7-item model [14] would have the same ability as the other two Brief-BESTest models to predict patients at risk of falls; discriminate between people with vs.

3) in discriminating between people with vs. without a history of falls, the Brief-BESTest would be superior to other simple balance tests such as One Leg Stance, Timed Up and Go test and Functional Reach. 15 105 **METHODS Participants** 21 107 This was an observational retrospective study conducted in a group of 416 patients affected by 27 109 different neurological diseases: 186 females and 230 males; mean age 66.5±16.0 years (mean ± ²⁹ 110 standard deviation) consecutively admitted for in-patient rehabilitation at the XXXXXXX between February 2014 and April 2017. Patients' clinical and treatment data were extracted from the 34 112 electronic medical record system and transferred to a specific database (Microsoft Excel). Patients were stratified into different groups according to their diagnosis: 118 with Parkinson's disease, 79 with acute stroke, 43 with sensorimotor polyneuropathy, 32 with cerebellar ataxia, 39 114 32 with diffuse encephalopathy, 31 with chronic stroke, 21 with multiple sclerosis, 19 with 44 116 traumatic brain injury, 16 with vestibular disorder, 13 with neuromuscular disorders, 12 with central nervous system neoplasm. Inclusion criteria were: a) ability to maintain an upright 49 118 position without support for at least 5 seconds; b) ability to understand the required motor 51 119 tasks; c) no hip or knee replacement surgery within the previous 6 months. Exclusion criteria ₅₄ 120 were: a) musculoskeletal injury limiting the ability to walk; b) any other serious cardio-respiratory 56 121 problem. The study was carried out in conformity with the Declaration of Helsinki of the World Medical Association and the guidelines for retrospective studies [23]. The local scientific and ethics committee approved the study.

1	
2 3 124 4 5	
6 7 125 8	Assessment tools
9 10 126 11	Patients' demographic and clinical characteristics were gathered by A a team of trained physical
12 13 127 14	therapists engaged in clinical practice collected patients' demographic and clinical
15 128 16	characteristics. During the routine clinical assessment following admission to the rehabilitation
17 18 19	department, patients underwent the following assessments:
20 21 130 22 23	- Fall history
²⁴ 131 25	A history of falls over the past 6 months was obtained from patients at admission through
26 27 132 28	patient interview. A fall was defined as an unintentional event in which any part of the body
²⁹ 133 30	came into contact with the ground [10]. Patients who reported two or more falls in the defined
31 32 134 33	period were classified as 'fallers' [24]. A fall history was not recorded taken in the case of for
34 135 35 36	patients with acute stroke at the time of admission.
37 38 39 40	- Brief-BESTest
41 137 42	The Brief-BESTest is an 8-item scale with each item scored on a 4-level rating scale from 0 (severe
⁴³ 44 45	balance impairment) to 3 (no balance impairment). Its items cover the six subsections of the
46 139 47	original BESTest (biomechanical constraints, stability limits/verticality, anticipatory postural
48 49	responses, postural responses, sensory orientation, stability in gait); the maximum total score is
50 51 141 52	24 [13]. The Brief-BESTest requires less time and equipment to administer than the BESTest
⁵³ 142 54 55	and the Mini-BESTest; thus, the Brief-BESTest seems to be more feasible for clinical use [17].
56 57 143 58 59 60	- Simple balance tests

During administration of the Brief-BESTest, we recorded the time required by patients to complete item 3 (left One Leg Stance), 4 (right One Leg Stance) and 8 (Timed Up and Go test) and the distance covered by patients during item 2 (Functional Reach). This allowed us to obtain the scores of three additional simple balance tests: One Leg Stance (OLS) [25,26], Timed Up and Go 13 148 (TUG) test [27,28] and Functional Reach (FR) [29,30]. - Activities-specific Balance Confidence Scale The short version of the Activities-specific Balance Confidence Scale (ABC) is a self-reported 16-19 150 item questionnaire that scores the perceived level of balance confidence when performing 24 152 common activities of daily living [31]. We used the 5-levels rating version of rating (ABC 5-levels) ²⁶ 153 [32] in which each item is scored from 0 (no confidence) to 4 (fully confident), giving a total score REVIE 29 ¹⁵⁴ range 0-64. 32 155 **Data analysis** Descriptive statistics were used to describe mean demographic and balance performance 39 157 characteristics of the entire sample and of the two smaller subgroups, classified as fallers and 44 159 non-fallers. The analysis of discriminant validity was conducted only in these two subgroups, i.e. those patients who had a history of falls available. These values were also determined separately both for fallers and non-fallers. For each item of the Brief-BESTest we calculated: 49 161 ⁵¹ 162 median value, spread (25th–75th percentiles), skewness and kurtosis. Floor and ceiling effects ₅₄ 163 were analyzed by calculating the percentage of individuals obtaining the lowest and the highest 56 164 score for each scale item. In order to detect differences in clinical characteristics between fallers and non-fallers, the Chi-square (χ^2) test was used for two parameters, sex and use of walking aids, while the Mann-Whitney U-test was used for age, OLS, TUG test, FR, total score of Brief-

1 2		
3 4	167	BESTest and total score of ABC 5-levels. Significance was set at p<0.05. All analyses were
5 6 7	168	performed using STATA 13.0 software (StataCorp LLC, College Station, Texas, USA).
8 9	169	
10 11		
12 13 14 15	170	Structural validity
16 17	171	Structural validity is usually assessed through CFA [33]. CFA assesses the degree to which
18 19 20	172	responses on a p x 1 vector of observable random variables (the Brief-BESTest items) can be used
21 22	173	to assign a value to one or more unobserved variable(s) (balance subsections). For this purpose,
24 25	174	a specific mathematical model is identified and fitted to the patients' data.
26 27 28	175	The original model (Model 1) of the Brief-BESTest [13] comprises one factor with 8 independent
29 30	176	items that contribute with the same weights to the total score. In the recent literature, two
31 32 33	177	additional models of Brief-BESTest have been presented. Model 2 was designed based on [19]. It
35	178	includes two factors: one named "static balance" that comprises items 1 and 2, and another
36 37 38	179	called "dynamic balance" that contains items 3 to 8. As demonstrated by the authors, items 5
39 40	180	and 6 showed local dependence, so Model 2 was designed allowing correlation between the
41 42 43	181	errors of these items. In Model 3, was drawn up without item 1 was dropped, as suggested by
44 45	182	[14]. In this 7-item model, the error of item 3 was allowed to correlate with that of item 4 and
46 47 48	183	the error of item 5 with that of item 6.
49 50 51	184	For all models, the score of each item ranges from 0 to 3. Th <mark>en th</mark> e total score was is obtained by
52 53	185	multiplying the rated score by the coefficient fitted for each model (see below formula and
54 55 56	186	supplementary data). In order to allow comparison of the score models, we adjusted the
57 58	187	coefficients so have been adjusted as to maintain a total score in the range 0 to 24. Appendix 1
59 60	188	summarizes the item structure of the three models and their total score.

Page 10 of 93

2			
3	1	8	9
4			
5 6	1	9	0
0 7		-	-
, 8	1	9	1
9	-	J	-
10			
11	1	9	ว
12	Ŧ	9	2
13		~	2
14 15	1	9	3
16			
17	1	9	4
18			
19	1	9	5
20			
21	1	9	6
22			
23 24	1	9	7
24 25	-	2	'
26	1	9	0
27	T	9	0
28		_	~
29	1	9	9
30			
31	2	0	0
32 33			
33 34			
35	2	0	1
36			
37	2	0	2
38			
39			
40	2	0	3
41 42			
43	2	0	4
44		-	
45	2	0	5
46	2	0	J
47	า	^	c
48	Z	0	0
49 50			
50	า	^	-
52	Z	0	/
53			
54	~	c	<u>ہ</u>
55	2	0	ð
56	~		~
57 58	2	0	9
58 59			
60	2	1	0

1

	Preliminary analysis conducted on Model 3 showed similar CFA results for patients who used a
)	walking aid and those who did not. For this reason, we decided to consider the entire sample
	independently of the walking condition in creating our models.
	We examined tThe structural validity of these three models (from here on Model 1, 2 and 3) was
	examined through CFA using Structural Equation Modeling (SEM). In view of the very low
	occurrence of missing data (maximum 0.4%), cases with missing data were removed from the
	analysis. χ^2 was used to identify whether the model fitted the data well. In addition, we assessed
	the models' goodness of fit using the following indices: Comparative Fit Index (CFI) [34], Tucker-
	Lewis Index (TLI), Root Mean Square Error of Approximation (RMSEA) [35] and the Standardized
	Root Mean Square Residual (SRMR) [34]. The criteria adopted to assess goodness of fit
	performance were: a) CFI and TLI values ≥0.95; b) RMSEA value <0.06; and c) SRMR value ≤0.08
)	[36].

The goodness of fit parameters of the three models were compared by computing the χ^2 difference tests of each model pair, calculated as a $\chi^2 = \chi^2_2 - \chi^2_1$ with df = df₂-df₁.

The standardized factor loadings of the models (i.e. the coefficients of the fitted model) were then transformed into weights that can be applied when scale scores for an individual are calculated. They were calculated with a non–refined method called "Weighted Sum Scores" [37]; these weights do not change the scale range [38].

207 Internal consistency

The internal consistency of the three Brief-BESTest models was measured by Cronbach's alpha and the coefficient omega for congeneric models [39]. Cronbach's alpha measures the extent to which the items consistently measure the same construct, with the value ≥ 0.80 indicating good Page 11 of 93

1		
2 3 4	211	internal consistency [40]. The coefficient omega is the ratio of the true score variance and the
5 6 7	212	total variance of the scale. Interpretation of coefficient omega is similar to that of Cronbach's
, 8 9	213	alpha [41].
10 11 12 13 14	214	
15 16	215	Convergent validity
17 18 19	216	We used the correlation between the three models of Brief-BESTest and the ABC 5-levels total
20 21 22	217	score to assess the convergent validity. The ABC scale led to rate rates the balance self-efficacy
23 24	218	of patients [31]. This is associated with measures of balance [32], walking capacity [42],
25 26 27	219	functional mobility [43], Activities of Daily Living performance [44], and perceived health status
29		[45]. The choice to use the ABC as a competitor an external criterion was also based on the need
30 31 32	221	to avoid the compari <mark>sons ofng the three models with a scale that had items similar to the Brief-</mark>
34		BESTest. The correlation was assessed by means of Spearman's rho: coefficients <0.30 were
35 36 37	223	interpreted as weak, those between 0.30 and 0.49 as moderate, and those ≥0.50 as strong
38 39	224	correlations [46].
40 41 42 43	225	
44	226	Discriminant validity
49	227	To assess the ability of the three Brief-BESTest models to distinguish between 'fallers' and 'non-
50 51 52	228	fallers', receiver operating characteristic (ROC) curves were computed, by plotting sensitivity on
	229	the x-axis against 1 – specificity on the y-axis. In our study, sensitivity was calculated as the
55 56 57	230	number of patients correctly identified as 'fallers' and specificity as the number of patients
	231	correctly identified as 'non-fallers'. The optimal cut-off value was chosen on the ROC curve at the
60	232	point that jointly maximized sensitivity and specificity [47]. For each ROC, the area under the

1

curve (AUC) and the positive and negative likelihood ratios (LR+ and LR-) were computed to maximize the cut off scores. Low, moderate and high accuracy of discrimination were defined respectively as AUC <0.70, 0.70< AUC <0.90, and AUC >0.90 [47]. In addition, the predictive performance of the three models was compared to that of the OLS, TUG test and FR tests by reporting the above described parameters and the percentage of correctly classified patients. RESULTS Fall history data, for the analysis of discriminant validity, was available could be collected only from in 295 subjects: 135 fallers (45%) and 160 non-fallers (55%). Table 1 reports mean scores and standard deviation for each balance measure as well as information on the use of walking aids in the overall sample and in fallers vs. non-fallers. We found a significant difference between fallers and non-fallers in the mean score of all clinical evaluations, while mean age and sex did not differ significantly. Table 2 reports descriptive statistics for each item score and total score of the original 8-item Brief-BESTest in the whole sample.

5 248 Structural validity

2 250 Analysis of the Brief-BESTest models

Figure 1A shows the standardized solution of the CFA for Model 1 that was fitted using all 8 Figure 1A shows the standardized solution of the CFA for Model 1 that was fitted using all 8 Figure 1A shows the standardized solution of the CFA for Model 1 that was fitted using all 8 Figure 1A shows the standardized solution of the CFA for Model 1 that was fitted using all 8 Figure 1A shows the standardized solution of the CFA for Model 1 that was fitted using all 8 Figure 1A shows the standardized solution of the CFA for Model 1 that was fitted using all 8 Figure 1A shows the standardized solution of the CFA for Model 1 that was fitted using all 8 Figure 1A shows the standardized solution of the CFA for Model 1 that was fitted using all 8 Figure 1A shows the standardized solution of the CFA for Model 1 that was fitted using all 8 Figure 1A shows the standardized solution of the CFA for Model 1 that was fitted using all 8 Figure 1A shows the standardized solution of the CFA for Model 1 that was fitted using all 8 Figure 1A shows the standardized solution of the CFA for Model 1 that was fitted using all 8 Figure 1A shows the standardized solution of the CFA for Model 1 that was fitted using all 8 Figure 1A shows the standardized solution of the CFA for Model 1 that was fitted using all 8 Figure 1A shows the standardized solution of the CFA for Model 1 that was fitted using all 8 Figure 1A shows the standardized solution of the CFA for Model 1 that was fitted using all 8 Figure 1A shows the standardized solution of the CFA for Model 1 that was fitted using all 8 Figure 1A shows the standardized solution of the CFA for Model 1 that was fitted using all 8 Figure 1A shows the standardized solution of the CFA for Model 1 that was fitted using all 8 Figure 1A shows the standardized solution of the CFA for Model 1 that was fitted using all 8 Figure 1A shows the standardized solution of the Figure 1A shows the figure 1A shows

Physical Therapy

0.95 defined for a well-fitting model. In addition, the RMSEA value suggested that this model exhibited a poor fit of the data.

Model 2 (figure 1B) showed better values of goodness of fit with respect to the original model. In 256 fact, Model 2 had χ^2 of 60.3 (df = 18, p<0.001), with CFI of 0.92, TLI 0.88, RMSEA 0.08 (90% C.I. = 0.06–0.10) and SRMR 0.05. However, only SRMR exhibited a value lower than the preselected 259 well-fitting index value.

Figure 1C shows the CFA solution for Model 3. The results show a significantly better goodness of ²² 261 fit for this model (χ^2 = 26.2, df = 12, CFI = 0.97, TLI = 0.95, RMSEA = 0.05 (90% C.I. = 0.03–0.08), SRMR = 0.03) than for Models 1 and 2. Comparison of Model 3 (χ^2 = 26.2) to Model 1 (χ^2 = 134.0) ²⁷ 263 and Model 2 (χ^2 = 60.3) yielded a difference in χ^2 value of 107.8 and 34.1 respectively and a difference of 6 degrees of freedom, suggesting that Model 3 performed better than the original Brief-BESTest (Model 1) and Model 2. Table 3 summarizes the goodness of fit indices of each 266 model and the significance level of the comparison between each model pair. The factor loadings of each item were significant (p<0.001) and higher than 0.6 for all three 268 models. Item 1 (Hip/Trunk Lateral Strength), when present, and item 2 (FR Forward) had the lowest factor loading. ⁴⁶ 270 Internal consistency

⁵³ 272 Cronbach's alpha was good for Brief-BESTest Models 1 (0.92) and 3 (0.92), but not for Model 2 54 55 56 273 (0.56 and 0.88, respectively for static and dynamic balance factor). Coefficient omega was higher 57 58 274 than 0.80 only for Model 3, while Model 1 (0.75) and Model 2 (0.71 and 0.61, respectively for 59

2		
3 4	275	static and dynamic balance factor) showed a lower coefficient, thus suggesting that only Model 3
5 6 7 8	276	had good internal consistency.
9 10	277	The total score of the Brief-BESTest needs to be weighted considering the loading coefficient of
11 12 13	278	each item. Therefore, scores were adjusted to yield a uniform score range 0-24 for all three
14 15	279	models, where 0 represents severe impairment and 24 no balance impairment. Below are the
16 17 18 19	280	weighted total score equations used to estimate Models 2 and 3:
20 21 22		Brief-BESTest (Model 2) = (0.860504*item1)+(0.914286*item2)+(1.089076*item3)+(1.048739*item4)+(1.021849*item5)+ (0.994958*item6)+(1.008438*item7)+(1.062185*item8)
24 25 26		
27 28 29 30 31	282	Brief-BESTest (Model 3) = (0.963107*item2)+(1.133981*item3)+(1.118447*item4)+(1.21165*item5)+(1.165049*item6)+ (1.165049*item7)+(1.242718*item8)
32 33 34 35	283	Convergent validity
36 37 38	284	The relationship of the total score estimated by the three different models of Brief-BESTest and
39 40	285	the ABC 5-levels scale was rho = 0.62 (95% C.I. = 0.55-0.70) for Model 1, rho = 0.61 (95% C.I. =
41 42 43	286	0.54-0.69) for Model 2 and rho = 0.61 (95% C.I. = 0.54-0.69) for Model 3. No significant (p = 0.85)
44 45 46	287	difference was found between the three Spearman correlation coefficients.
49	288	
50 51 52 53	289	Discriminant validity
54 55	290	Figure 2 shows the ROC curve plotted to assess the ability of the three models of Brief-BESTest to
56 57 58	291	discriminate between patients with vs. without a history of falls. Table 4 reports the
	292	discrimination parameters (cut-off scores) for Models 1, 2 and 3 and for the simple balance tests

1		
4	293	(OLS, TUG test and FR). The AUC was 0.72 (95% C.I. = 0.66–0.78) for all three models. Model 3
5 6 7	294	showed superior sensitivity, specificity and likelihood ratios compared to the other two
-	295	models. The other simple balance tests (OLS, TUG test and FR) did not reach the AUC value of
10 11 12	296	0.70, i.e. the cut-off value required to distinguish between fallers and non-fallers. In addition,
	297	their AUCs were lower than those of the Brief-BESTest models.
17 18 19	298 299	DISCUSSION
21 22 23 24	300	
25		
26 27 28	301	The main purpose of this study was to compare, in a large group of patients with balance
29 30	302	disorders, the structural, convergent and discriminant validity of three different models of the
31 32 33	303	Brief-BESTest. The Brief-BESTest, in particular Model 3, was found to be unidimensional and to
34 35	304	have a good convergent validity with other measures of balance confidence. In addition, the
36 37 38	305	Brief-BESTest confirmed its ability to distinguish subjects with a history of falling from those
39 40	306	without a history of falling, in contrast to other simple balance tests.
41 42 43 44 45	307	Structural validity
46 47	308	CFA showed that measurement properties of the original Brief-BESTest scale (Model 1) [13] little
49	309	fitted our data; none of CFA performance indices reached satisfactory values. As suggested in a
50 51 52	310	previous study [14], the original Brief-BESTest can be improved by making the following
54	311	modifications: a) removing item 1; b) covarying errors between items 3 and 4 and between items
55 56 57	312	5 and 6; c) using an appropriate weighting method for the calculation of the total score. The
58 59	313	internal structure of the scale can, in fact, be improved by removing item 1 rather than by
60	314	increasing the number of factors as proposed earlier [19]. The analysis of structural validity

2 3 315 prompted two main considerations. First, item 1 does not belong to the same construct as the 4 5 other items. This finding, in line with previous studies [14,19], is also supported by the fact that 316 6 7 8 "lift a leg to the side of the body" (item 1) could reflect a general reduction in strength rather 317 9 10 than a decreased ability to maintain static balance. Second, the Brief-BESTest is unidimensional 318 11 12 because no advantage in terms of fitting performance was found when more than one factor was 13 319 14 15 320 taken into consideration. In other words, our study confirmed that the Brief-BESTest is not able 16 17 18 321 to measure multiple dimensions of balance as claimed by [13]. The Brief-BESTest items include all 19 ²⁰ 322 subsections covered by the BESTest, but this does not mean that the two scales have the same 21 22 capability to measure the different aspects underlying postural control. In accordance with other 23 323 24 ²⁵ 324 authors, one could object that a unidimensional tool is a poor representation of the balance 26 27 ₂₈ 325 concept, which by definition is multidimensional. We agree with this objection and believe that 29 30 326 the Brief-BESTest can assess only certain aspects of dynamic balance. It neglects static 31 32 327 components of balance such as those measured by the "Romberg test". On the other hand, some 33 34 35 328 aspects of balance considered independent in animal models [48], such as walking and 36 ³⁷ 329 maintenance of upright position, could be actually considered aswell belonging to the same 38 39 40 330 construct in humans. In fact, balance control and locomotion are interdependent at many 41 ⁴² 331 different levels of the central nervous system and these functions share some common principles 43 44 45 332 of organization [49,50]. Furthermore, previous studies have reported that the ability to maintain 46 47 333 upright stance could be related to walking [51,52,53] in patients affected by balance disorders. 48 49 ₅₀ 334 Hence, in these patients it might be misleading for a clinical scale to investigate balance and 51 52 335 walking as two separate factors, as also suggested by recent recommendations [54]. 53 54 55 56 336 Internal consistency 57 58

59 60

1

Page 17 of 93

1

Physical Therapy

2	
3	337
4	
5 6	338
o 7	
, 8	339
9	223
10	
11	340
12	
13	341
14	
15 16	342
10	
18	343
19	0.0
20	344
21	344
22	
23	345
24	
25	346
26	
27 28	
20 29	347
30	
31	348
32	510
33	349
34	349
35	
36	350
37 38	
38 39	351
40	
41	352
42	
43	353
44	
45	
46	354
47 40	554
48 49	
50	255
50	355
52	
53	356
54	
55	357
56	
57	358
58 59	
59 60	
00	

Despite the large consensus in the psychometric literature that coefficient omega should be used when scales are not congeneric and the assumptions of Cronbach's alpha are not met [41], no previous study has reported omega values for the Brief-BESTest. This is the first study to report both the alpha and the omega coefficients. Based on the latter values, only Model 3 achieved good internal validity. On the contrary, Cronbach's alpha values were found to be good for both Model 1 and 3. Our values of alpha are similar to those reported by [13], and to other studies in both orthopaedic [55] and neurological patients [56]. It is well known that Cronbach's alpha is a function of the number of items. In this regard, it is interesting to note that Model 3, despite its lower number of items, reaches a higher value of internal consistency than the other models. This should denote a superior internal consistency of Model 3.

The discrepancy between the results for Cronbach's alpha and those for coefficient omega can be explained by the fact that the former has been frequently demonstrated to attain quite high values even when the items are measuring different latent variables [57]. On the contrary, the coefficient omega is able to highlight the presence of items that do not belong to the same latent variable. As for the Brief-BESTest, the low values of coefficient omega found for Model 1 could be due to the presence of item 1, which, as highlighted by CFA, seems not to belong to the same construct as the other items.

354 Convergent validity

The three models compared in this study exhibit an equivalent moderate convergent validity (Spearman's rho = 0.61) with the ABC 5-levels scale. This finding confirms previous studies in which the Brief-BESTest showed a moderate correlation with ABC in specific populations, such as chronic obstructive pulmonary disease [15], stroke [11] and cancer survivors patients [58]. This is not surprising since it is well known that balance confidence is a consequence of balance impairments [59].

Discriminant validity

The three Brief-BESTest models exhibited an equally ivalent and acceptable accuracy (AUC = 0.72) of the Brief-BESTest in distinguishing patients with vs. without history of falls. However, our AUCs 15 363 are lower than those of [17], who found in patients with Parkinson's disease AUC values of 0.82, 0.86 and 0.84 respectively for the Brief-BESTest, Mini-BESTest and BESTest, thus indicating a 20 365 moderate accuracy of the three scales in recognising a history of falls. Likely, the small difference 25 367 is due to the heterogeneity of our patients. It We cannot be excluded that studying separate ²⁷ 368 disease populations might improve the discriminant validity.

₃₁ 369 In accordance line with previous studies, we confirm that balance scales can discriminate 33 370 between fallers and non-fallers, in contrast to single balance tests which have a we found a low level of accuracy in identifying fallers using only a single balance test [11,60,61]. Due to the heterogeneity of patients in our study, it is unlikely that a single test could accurately identify 38 372 patients at risk of falls. This is in line with recommendations of [62] who suggested to use two or 43 374 more clinical tests for an accurate evaluation of the various components of risk of falls in patients ⁴⁵ 375 with Parkinson's disease. The limited association between single measures of balance and fall ₄₈ 376 history could be partly explained by **due to** the multifactorial nature of causes of fall.

55 378 **Study limitations**

58 379 Our study was based on a heterogeneous population sample of patients affected by different balance disorders that are representative of the spectrum of neurological diseases routinely

1 2		
3 381 4	observed in departments of rehabilitation, but may not be representative of other clinical	
5 6 382 7	settings. Although the Brief-BESTest assesses balance performance independently of the	
, 8 383 9	pathology that causes the problem, future studies should assess psychometric characteristics	
10 11 384 12	such as responsiveness, the minimal clinically important difference and sensitivity to change o	f
13 385 14 15	the Brief-BESTest in specific groups of disease.	
16 17 386 18	The history of falls should be considered useful only for discriminative purposes (i.e. to	
19 387 20	distinguish fallers from non-fallers) and not to predict patients who will fall in the future. In fact,	
21 388 22 23	falls change people's behavior and the cutoff scores for prospective prediction of falls may be	
24 389 25	very different from those reported in our study.	
26 27 390		
28 29	Implications for clinical practice and conclusions	
30 31 391 32	The comparison of the three structural models of Brief-BESTest proposed in the literature clearly	/
33 392 34	highlights that Model 3, i.e. the shortest version, has psychometric characteristics equal or	
35 36 393 37	superior to the other two. This makes Model 3 the best of the three versions to recommend for	
38 394 39	use in clinical practice, given that it is also the fastest to perform. For this reason, in the	
40 41 42	supplementary material we provide a simple calculator for the three models tested in this study.	•
42 43 396 44	Finally, this study highlights once again the superiority of a clinical scale composed of several	
45 397 46 47 48 49 398 50	items compared to single-item measures.	
51 52 399 53 54	Authors' contributions	
55 56 57	XX and XX contributed to the concept/idea/research design. XX, XX and XX contributed to the	
58 401 59	writing and data analysis. XX and XX provided data collection. XX and XX provided project	
⁶⁰ 402	management and study participants. XX and XX provided facilities/equipment and institutional	
	1	9

2	
³ 403	liaisons. XX and XX contributed consultation in different phases of the study (including review of
4	
5 6 404	manuscript before submission).
7	
8	
9 405	Ethical Approval
10	
11	
12 13 406	The Scientific Technical Committee of the XXXXXX approved this study with the following
13 100	
14 15 407	identification number: XXXX.
16	
17	
¹⁸ 408	Funding
19	
20	
21 22 409	This research did not receive any specific grant from funding agencies in the public, commercial,
22 409	This research did not receive any specific grant from funding agencies in the public, commercial,
24	
²⁴ 410 25	or not-for-profit sectors.
26	
27	
28 411	Conflict of Interest
29 30	
³¹ 412 32	None declared.
33	
34	
₃₅ 413	
36	
37	
38 414 39	
40	
⁴¹ 415	Bibliography
42	
⁴³ 416	[1] Geiger RA, Allen JB, O'Keefe J, Hicks RR. Balance and mobility following stroke: effects of
44 45	
45 46 417	physical therapy interventions with and without biofeedback/forceplate training. Phys Ther
47	
⁴⁸ 418	2001;81(4):995-1005. PubMed PMID: 11276182.
49	2001,01(4).555 1005.1 ubivieu 1 wild. 11270102.
50	
51 52 419	[2] Hyndman D, Ashburn A. People with stroke living in the community: Attention deficits,
52 125	
55 54 420	balance, ADL ability and falls. Disabil Rehabil 2003;25(15):817-22. PubMed PMID: 12851091.
54 420	Saturce, $\neg D'$ ability and fails. Disabiliterabili 2005,25(15).017-22. Fublyled FiMD. 12051091.
56	
57	
58	
59	
60	

1 2		
3 4	421	[3] Horlings CG, Van Engelen BG, Allum JH, Bloem BR. A weak balance: the contribution of muscle
5 6 7	422	weakness to postural instability and falls. Nat Rev Neurol. 2008;4(9):504. doi:
, 8 9 10	423	10.1038/ncpneuro0886.
11 12	424	[4] Sturnieks DL, St George R, Lord SR. Balance disorders in the elderly. Neurophysiol Clin
15		2008;38(6):467-478. doi: 10.1016/j.neucli.2008.09.001.
18	426	[5] Mancini M, Horak FB. The relevance of clinical balance assessment tools to differentiate
21	427	balance deficits. Eur J Phys Rehabil Med 2010;46:239. PubMed PMID: 20485226.
22 23 24	428	[6] McGinnis PQ, Hack LM, Nixon-Cave K, Michlovitz SL. Factors that influence the clinical
26	429	decision making of physical therapists in choosing a balance assessment approach. Phys Ther
29		2009;89:233. doi: 10.2522/ptj.20080131.
30 31 32	431	[7] Sibley KM, Straus SE, Inness EL, Salbach NM, Jaglal SB. Balance assessment practices and use
33 34	432	of standardized balance measures among Ontario physical therapists. Phys Ther
37		2011;91:1583. doi: 10.2522/ptj.20110063.
38 39 40	434	[8] Horak FB, Wrisley DM, Frank J. The Balance Evaluation Systems Test (BESTest) to differentiate
41 42 43	435	balance deficits. Phys Ther 2009;89:484-498. doi: 10.2522/ptj.20080071.
44 45 46	436	[9] Jacobs JV, Horak FB, Tran VK, Nutt JG. Multiple balance tests improve the assessment of
	437	postural stability in subjects with Parkinson's disease. J Neurol Neurosurg Psychiatry
51	438	2006;1;77(3):322-6. PubMed PMID: 16484639.
52 53 54	439	[10] Jacobs JV, Earhart GM, McNeely ME. Can postural instability tests improve the prediction of
55 56	440	future falls in people with Parkinson's disease beyond knowing existing fall history? J Neurol
57 58 59 60		2016;263(1):133-9. doi: 10.1007/s00415-015-7950-x.

1		
4	442	[11] Tsang CS, Liao LR, Chung RC, Pang MY. Psychometric properties of the Mini-Balance
5 6 7	443	Evaluation Systems Test (Mini-BESTest) in community-dwelling individuals with chronic
-	444	stroke. Phys Ther 2013;93:1102-15. doi: 10.2522/ptj.20120454.
11 12	445	[12] Franchignoni F, Horak F, Godi M, Nardone A, Giordano A. Using psychometric techniques to
13 14 15	446	improve the Balance Evaluation Systems Test: the Mini-BESTest. J Rehabil Med 2010;42:323-
	447	331. doi: 10.2340/16501977-0537.
19 20 21	448	[13] Padgett PK, Jacobs JV and Kasser SL. Is the BESTest at its best? A suggested brief version
	449	based on interrater reliability, validity, internal consistency, and theoretical construct. Phys
25 26	450	Ther 2012;92:1197-1207. doi: 10.2522/ptj.20120056.
27 28 29	451	[14] Bravini E, Nardone A, Godi M, Guglielmetti S, Franchignoni F, Giordano A. Does the Brief-
	452	BESTest meet classical test theory and Rasch analysis requirements for balance assessment in
55	453	people with neurological disorders? Phys Ther 2016;96:1610-1619. PubMed PMID:
34 35 36 37	454	27103223.
	455	[15] Jácome C, Cruz J, Oliveira A, Marques A. Validity, reliability, and ability to identify fall status
	456	of the Berg Balance Scale, BESTest, Mini-BESTest, and Brief-BESTest in patients with COPD.
42 43 44 45	457	Phys Ther 2016;96(11):1807-1815. doi: 10.2522/ptj.20150391.
46 47	458	[16] Leddy AL, Crowner BE, Earhart GM. Utility of the Mini-BESTest, BESTest, and BESTest
48 49 50	459	sections for balance assessments in individuals with Parkinson disease. J Neurol Phys Ther
Γ1	460	2011;35:90-97. doi: 10.1097/NPT.0b013e31821a620c.
	461	[17] Duncan RP, Leddy AL, Cavanaugh JT, Dibble LE, Ellis TD, Fors MP, Foreman KB, Earhart GM.
56 57 58 59 60	462	Comparative utility of the BESTest, Mini-BESTest, and Brief-BESTest for predicting falls in

Page 23 of 93

1

Physical Therapy

2 3 463 4	individuals with Parkinson disease: a cohort study. Phys Ther 2013;93:542-550. doi:
5 6 464 7	10.2522/ptj.20120302.
7 8 9 465 10	[18] O'Hoski S, Winship B, Herridge L, Agha T, Brooks D, Beauchamp MK, Sibley KM. Increasing
11 12 466	the clinical utility of the BESTest, Mini-BESTest, and Brief-BESTest: normative values in
13 14 467 15	Canadian adults who are healthy and aged 50 years or older. Phys Ther 2014;94:334-342. doi:
¹⁶ 468 17	10.2522/ptj.20130104.
18 19 20 469	[19] Franchignoni F, Giordano A. On "Is the BESTest at its best?" Padgett PK, Jacobs JV, Kasser
21 22 470 23	SL. Phys Ther 2012;92:1197-1207. Phys Ther 2012;92(9):1236-7. doi:
24 25 471	10.2522/ptj.2012.92.9.1236.
26 27 28 472	[20] Marques A, Almeida S, Carvalho J, Cruz J, Oliveira A, Jácome C. Reliability, Validity, and
29 30 473 31	Ability to Identify Fall Status of the Balance Evaluation Systems Test, Mini–Balance Evaluation
32 33 474	Systems Test, and Brief–Balance Evaluation Systems Test in Older People Living in the
34 35 475 36	Community. Arch Phys Med Rehabil 2016;97:2166-2173. doi: 10.1016/j.apmr.2016.07.011.
37 38 39 40	[21] McArdle JJ. Current directions in structural factor analysis. Curr Dir Psychol Sci 1996;5:11-18.
40 41 42 477 43	[22] Norman GR, Streiner DL. PMPH-USA. PDQ statistics; 1st edition, 2003.
44 45 478 46	[23] Jansen AC, van Aalst-Cohen ES, Hutten BA, Büller HR, Kastelein JJ, Prins MH. Guidelines were
47 48 479	developed for data collection from medical records for use in retrospective analyses. J Clin
49 50 480 51	Epidemiol 2005;58(3):269-274. doi: 10.1016/j.jclinepi.2004.07.006.
52 53 481 54	[24] Jernigan SD, Pohl PS, Mahnken JD, Kluding PM. Diagnostic accuracy of fall risk assessment
⁵⁵ 482 56	tools in people with diabetic peripheral neuropathy. Phys Ther 2012;92:1461-1470. doi:
57 58 483 59 60	10.2522/ptj.20120070.

4	484	[25] Lin MR, Hwang HF, Hu MH, Wu HDI, Wang YW, Huang FC. Psychometric comparisons of the
5 6 ⁴ 7	485	timed up and go, one-leg stand, functional reach, and Tinetti balance measures in
	486	community-dwelling older people. J Am Geriatr Soc 2004;52:1343-1348. doi: 10.1111/j.1532-
12	487	5415.2004.52366.x.
13 14 4 15	488	[26] Vellas BJ, Wayne SJ, Romero L, Baumgartner RN, Rubenstein LZ, Garry PJ. One-leg balance is
16 <u>/</u> 17	489	an important predictor of injurious falls in older persons. J Am Geriatr Soc 1997;45:735–738.
18 19 ² 20 21	490	PubMed PMID: 9180669.
22 4 23	491	[27] Sebastião E, Sandroff BM, Learmonth YC, Motl RW. Validity of the timed up and go test as a
25	492	measure of functional mobility in persons with multiple sclerosis. Arch Phys Med Rehabil
26 27 4 28 29	493	2016;97:1072-1077. doi: 10.1016/j.apmr.2015.12.031.
30 ⊿ 31	494	[28] Podsiadlo D, Richardson S. The timed 'Up & Go': A test of basic functional mobility for frail
32 33 34 35	495	elderly persons. J Am Geriatr Soc 1991;39:142–148. PubMed PMID: 1991946.
36 4 37	496	[29] Franchignoni F, Tesio L, Martino M, Ricupero C. Reliability of four simple, quantitative tests
38 ₂ 39	497	of balance and mobility in healthy elderly females. Aging Clin Exp Res 1998;10:26-31.
40 41 ⁴ 42 43	498	PubMed PMID: 9589748.
44 4 45	499	[30] Duncan PW, Weiner DK, Chandler J, Studenski S. Functional reach: a new clinical measure of
47 48	500	balance. J Gerontol 1990;45(6):M192-7. PubMed PMID: 2229941.
49 50 ⁵ 51	501	[31] Powell LE, Myers AM. The activities-specific balance confidence (ABC) scale. J Gerontol A Biol
52 g 53 54	502	Sci Med Sci 1995;50(1):M28-M34. PubMed PMID: 7814786.
50	503	[32] Franchignoni F, Giordano A, Ronconi G, Rabini A, Ferriero G. Rasch validation of the
57 58 5 59	504	Activities-specific Balance Confidence Scale and its short versions in patients with Parkinson's
60 <u>-</u>	505	disease. J Rehabil Med 2014;46:532-539. doi: 10.2340/16501977-1808.

Page 25 of 93

Physical Therapy

1	
2 3 506 4	[33] Atkinson TM, Rosenfeld BD, Sit L, Mendoza TR, Fruscione M, Lavene D, Shaw M, Li Y, Hay J,
5 6 507 7	Cleeland CS, Scher HI, Breitbart WS, Basch E. Using confirmatory factor analysis to evaluate
8 508 9	construct validity of the Brief Pain Inventory (BPI). J Pain Symptom Manage 2011;41(3):558-
10 11 509 12	565. doi: 10.1016/j.jpainsymman.2010.05.008.
13 14 510 15	[34] Bentler PM. Comparative fit indexes in structural models. Psychol Bull 1990;107(2):238-46.
¹⁶ 511 17 18	PubMed PMID: 2320703.
19 20 512 21	[35] Browne MW, Cudeck R. Alternative ways of assessing model fit. In: Bollen KA, Long JS,
22 513 23 24	editors. Testing Structural Equation Models. Newbury Park: Sage 1993;136–62.
²⁵ 514 26	[36] Hu LT, Bentler P. Cutoff criteria for fit indices in covariance structure analysis: conventional
27 28 515 29	criteria versus new alternatives. Struct Equ Model Multidiscip J 1999;6:1-55. doi:
30 516 31 32	10.1080/10705519909540118.
³³ 34 35	[37] DiStefano C, Zhu M, Mindrila D. Understanding and using factor scores: Considerations for
36 518 37 38	the applied researcher. PARE 2009;14(20):1-11.
39 519 40	[38] Schönberger M, Ponsford J, Olver J, Ponsford, M. A longitudinal study of family functioning
41 42 520 43	after TBI and relatives' emotional status. Neuropsychol Rehabil 2010;20:813-829. doi:
44 521 45 46	10.1080/09602011003620077.
47 48	[39] Hancock GR, Mueller RO. Rethinking construct reliability within latent variable systems.
49 50 523 51	Structural equation modeling: Present and future-A Festschrift in honor of Karl Jöreskog.
52 524 53 54	Lincolnwood, IL: Scientific Software International 2001;195-216.
55 56 57	[40] Cronbach LJ. Coefficient alpha and the internal structure of tests. Psychometrika
57 58 526 59 60	1951;16(3):297–334. PubMed PMID: 8449658.

³ 527 4	[41] Dunn TJ, Baguley T, Brunsden V. From alpha to omega: a practical solution to the pervasive
5 6 528 7	problem of internal consistency estimation. Br J Psychol 2014;105:399-412. doi:
, 8 529 9 10	10.1111/bjop.12046.
¹¹ 530 12 13	[42] Opheim A, Jahnsen R, Olsson E, Stanghelle JK. Balance in relation to walking deterioration in
14 531 15	adults with spastic bilateral cerebral palsy. Phys Ther 2012;92(2):279-88. doi:
¹⁶ 532 17 18	10.2522/ptj.20100432.
19 20 533 21	[43] Curtze C, Nutt JG, Carlson-Kuhta P, Mancini M, Horak FB. Objective gait and balance
22 534 23	impairments relate to balance confidence and perceived mobility in people with Parkinson
24 25 26 27	disease. Phys Ther 2016;96(11):1734-1743. PubMed PMID: 27149959.
27 28 536 29	[44] Rand D. Mobility, balance and balance confidence - correlations with daily living of
30 537 31	individuals with and without mild proprioception deficits post-stroke. NeuroRehabilitation
32 33 538 34 35	2018;43(2):219-226. doi: 10.3233/NRE-172398.
36 539 37	[45] Salbach NM, Mayo NE, Hanley JA, Richards CL, Wood-Dauphinee S. Psychometric evaluation
³⁸ 540 39	of the original and Canadian French version of the activities-specific balance confidence scale
40 41 541 42	among people with stroke. Arch Phys Med Rehabil 2006;87(12):1597-604. PubMed PMID:
43 542 44 45	17141639.
46 47 48 49	[46] Cohen, J. Statistical power analysis for the behavioral sciences. 2nd edition, 1988.
50 544 51	[47] Akobeng AK. Understanding diagnostic tests 3: receiver operating characteristic curves. Acta
52 545 53 54	Paediatr 2007;96:664-647. doi: 10.1111/j.1651-2227.2006.00178.x.
⁵⁵ 546 56 57	[48] Hodgson JA, Roy RR, de Leon R, Dobkin B, Edgerton VR. Can the mammalian lumbar spinal
58 547 59 60	cord learn a motor task? Med Sci Sports Exerc 1994;26:1491-1497. PubMed PMID: 7869884.

Page 27 of 93

Physical Therapy

1	
2	
3 548 4	[49] Grasso R, Zago M, Lacquaniti F. Interactions between posture and locomotion: motor
5 6 549 7	patterns in humans walking with bent posture versus erect posture. J Neurophysiol
, 8 55(9	2000;83:288-300. doi: 10.1152/jn.2000.83.1.288.
10	
11 12 13	[50] Massion J. Movement, posture and equilibrium: interaction and coordination. Prog
14 552 15	Neurobiol 1992;38(1):35-56. Review. PubMed PMID: 1736324.
16	
17 553 18	[51] Giardini M, Nardone A, Godi M, Guglielmetti S, Arcolin I, Pisano F, Schieppati M.
19 20 ⁵⁵⁴ 21	Instrumental or physical-exercise rehabilitation of balance improves both balance and gait in
21 22 555 23	Parkinson's disease. Neural Plast 2018;2018:5614242. doi: 10.1155/2018/5614242.
24	
²⁵ 556 26	[52] Nardone A, Godi M, Grasso M, Guglielmetti S, Schieppati M. Stabilometry is a predictor of
27 28 557 29	gait performance in chronic hemiparetic stroke patients. Gait Posture 2009;30(1):5-10. doi:
30 558 31 32	10.1016/j.gaitpost.2009.02.006.
³³ 559 34	[53] Morlino P, Balbi B, Guglielmetti S, Giardini M, Grasso M, Giordano C, Schieppati M, Nardone
35 36 560 37	A. Gait abnormalities of COPD are not directly related to respiratory function. Gait Posture
³⁸ 561 39 40	2017;58:352-357. doi: 10.1016/j.gaitpost.2017.08.020.
40 41	
42 562 43	[54] Bloem BR, Marinus J, Almeida Q, Dibble L, Nieuwboer A, Post B, Ruzicka E, Goetz C, Stebbins
44 563 45	G, Martinez-Martin P, Schrag A; Movement Disorders Society Rating Scales Committee.
46 47 564	Measurement instruments to assess posture, gait, and balance in Parkinson's disease:
48 49 565 50 51	Critique and recommendations. Mov Disord 2016;31(9):1342-55. doi: 10.1002/mds.26572.
52 566 53	[55] Chan AC, Pang MY. Assessing balance function in patients with total knee arthroplasty. Phys
54 55 567	Ther 2015;95(10):1397-407. doi: 10.2522/ptj.20140486.
56	
57 58	
59	
60	

1

Page 28 of 93

2	
3 568 4	[56] Huang M, Pang MY. Psychometric properties of Brief-Balance Evaluation Systems Test (Brief-
5 6 569 7	BESTest) in evaluating balance performance in individuals with chronic stroke. Brain Behav
8 570 9	2017;7(3):e00649. doi: 10.1002/brb3.649.
10 11 12 571	[57] Revelle W, Zinbarg RE. Coefficients alpha, beta, omega, and the glb: Comments on Sijtsma.
13 14 572 15	Psychometrika 2009;74(1):145. doi:10.1007/s11336-008-9102-z.
16 17 573 18	[58] Huang MH, Miller K, Smith K, Fredrickson K, Shilling T. Reliability, validity, and minimal
19 20 574 21	detectable change of Balance Evaluation Systems Test and its short versions in older cancer
22 575 23	survivors: a pilot study. J Geriatr Phys Ther 2016;39(2):58-63. doi:
²⁴ 576	10.1519/JPT.000000000000047.
26 27 28 577 29	[59] Mak MK, Pang MY. Balance confidence and functional mobility are independently associated
30 578 31	with falls in people with Parkinson's disease. J Neurol 2009;256:742-749. doi:
32 33 579 34	10.1007/s00415-009-5007-8.
35 36 580 37	[60] Cameron M, Mazumder R, Murchison C, King L. Mini Balance Evaluation Systems Test in
³⁸ 581 39	people with multiple sclerosis: reflects imbalance but may not predict falls. Gait Posture
40 41 582 42 43	2014;39(1):669. doi: 10.1016/j.gaitpost.2013.08.009.
43 44 583 45	[61] Mak MK, Auyeung MM. The mini-BESTest can predict parkinsonian recurrent fallers: a 6-
46 47 584 48	month prospective study. J Rehabil Med 2013;45:565-571. doi: 10.2340/16501977-1144.
49 50 585 51	[62] Dibble LE, Christensen J, Ballard DJ, Foreman KB. Diagnosis of fall risk in Parkinson disease:
52 586 53	an analysis of individual and collective clinical balance test interpretation. Phys Ther
54 55 587 56 57	2008;88:323-332. doi: 10.2522/ptj.20070082.
58 588 59	
60	

589 Table 1

590 Demographic data and scores on balance measures for the entire sample, and fallers vs. non-

591 fallers.

	Entire Total Sample (N=416)	Fallers (N=135)	Non-fallers (N=160)	р
	N %	N %	N %	_
Sex (M/F)	55/45	51/49	58/42	.23ª
Walking Aid (no/yes)	54/46	47/53	68/32	<.001
	Mean (SD)	Mean (SD)	Mean (SD)	-
Age (y)	66.5 (14.2)	66.3 (13.4)	64.4 (14.8)	28 ^b
OLS mean (s)	4.2 (6.3)	3.3 (5.0)	6.9 (7.5)	<.001
TUG test (s)	17.6 (15.3)	20.6 (20.3)	13.3 (9.5)	<.001
Functional Reach (cm)	18.6 (9.7)	16.5 (9.6)	20.5 (9.8)	<.01 ^t
Total score BBT	8.9 (6.4)	7.3 (5.1)	11.8 (6.9)	<.001
Total score ABC 5-levels	29.6 (16.8)	26.0 (15.0)	36.2 (17.1)	<.001
acute stroke event (n=79)				
retrospective study. Parti	cipants were classified a	as fallers if they repor	ted 1 2 or more falls in th	ne
last 6 months.				
SD, Standard Deviation; N	1, Male; F, Female; OLS,	One Leg Stance; TUG	test, Timed Up and Go	
test; BBT, Brief-BESTest; A	ABC 5-levels, Activities-s	pecific Balance Confic	lence scale 5-levels of	
rating.				
0				
p-value was computed be	tween fallers and non-fa	allers.		
$a - v^2$ tost				
$a^{a} = \chi^{2}$ test.				
^a = χ ² test. ^b = Mann-Whitney U-test.				
^a = χ ² test. ^b = Mann-Whitney U-test.				

Missing

data (%)

0.40

0.40

0.00

0.00

0.00

0.00

0.00

0.00

= 416).							
	Median	25% percentile	75% percentile	Skewness	Kurtosis	Min score (%)	Max : (%
ltem 1	1	0	2	0.39	-1.20	42.51	7.
Item 2	2	1	2	-0.47	-0.13	9.42	10
Item 3	1	0	1	0.93	-0.15	46.62	8
Item 4	1	0	1	0.89	-0.25	44.69	9
Item 5	1	0	2	0.59	-1.19	48.07	17
Item 6	1	0	2	0.53	-1.26	45.89	18
ltem 7	1	0	2	0.66	-0.99	43.96	1
ltem 8	2	0	2	0.07	-1.54	36.47	2
Total score	8	4	13	0.54	-0.69	6.00	8
Item 1 - Hip/1	Trunk Late	ral Strength;	; item 2 - Fur	nctional Read	ch Forward	; item 3 and	4-0
Item 1 - Hip/T Stance, Left a							
Stance, Left a	and Right; i	item 5 and 6	- Compensa	atory Steppir			
Stance, Left a	and Right; i	item 5 and 6	- Compensa	atory Steppir	ng- Lateral,	Left and Rig	
Stance, Left a	and Right; i	item 5 and 6	- Compensa	atory Steppir	ng- Lateral,	Left and Rig	
Stance, Left a	and Right; i	item 5 and 6	- Compensa	atory Steppir	ng- Lateral,	Left and Rig	
Stance, Left a	and Right; i	item 5 and 6	- Compensa	atory Steppir	ng- Lateral,	Left and Rig	
Stance, Left a	and Right; i	item 5 and 6	- Compensa	atory Steppir		Left and Rig	
	and Right; i	item 5 and 6	- Compensa	atory Steppir	ng- Lateral,	Left and Rig	
Stance, Left a	and Right; i	item 5 and 6	- Compensa	atory Steppir	ng- Lateral,	Left and Rig	
Stance, Left a	and Right; i	item 5 and 6	- Compensa	atory Steppir	ng- Lateral,	Left and Rig	
Stance, Left a	and Right; i	item 5 and 6	- Compensa	atory Steppir	ng- Lateral,	Left and Rig	
tance, Left a	and Right; i	item 5 and 6	- Compensa	atory Steppir	ng- Lateral,	Left and Rig	
ce, Left a	and Right; i	item 5 and 6	- Compensa	atory Steppir	ng- Lateral,	Left and Rig	
Stance, Left a	and Right; i	item 5 and 6	- Compensa	atory Steppir			

Models	χ^2	df	RMSEA (90% C.I.)	CFI	TLI	SF
Model 1 <i>(Padgett et al., 2012)</i> Model 2	134.0	20	0.12 (0.10-0.14)	0.78	0.70	0
(adapted from Franchignoni & Giordano, 2012)	60.3	18	0.08 (0.06-0.10)	0.92	0.88	0
Model 3 (adapted from Bravini et al., 2016)	26.2	12	0.05 (0.03-0.08)	0.97	0.95	0
Comparison of factor models		Signif	icant difference bety	ween m	nodels ^a	
Model 1 vs. Model 2			p<0.001			
Model 2 vs. Model 3			p<0.001			
Model 3 vs. Model 1			p<0.001			
Square Residual.						
Square Residual. ^a Calculated as a $\chi^2 = \chi^2_2 - \chi^2_1$ with df = df ₂ df ₁						

627 Table 4

Ability of the Brief-BESTest Models 1, 2 and 3 to discriminate fallers from non-fallers compared to

other measures of balance (OLS, TUG test, Functional Reach and ABC 5-levels) (N = 295).

Classification	Brief-BESTest Model 1	Brief-BESTest Model 2	Brief-BESTest Model 3	OLS	TUG test	FR	
Cut-off score	8	8	7	2	12	19	
AUC (95% C.I.)	0.72 (0.66-0.78)	0.72 (0.66-0.78)	0.72 (0.66-0.78)	0.63 (0.55-0.70)	0.62 (0.56-0.68)	0.61 (0.52-0.69	
Sensitivity	74%	72%	74%	63%	68%	67%	
Specificity	54%	58%	58%	55%	53%	49%	
LR+	1.61	1.72	1.76	1.42	1.45	1.33	
LR-	0.48	0.47	0.45	0.66	0.60	0.67	
Correctly Classified	65%	66%	67%	59%	60%	58%	

Y.C.Z.O.J.

²⁸ 631 OLS, One Leg Stance; TUG test, Timed Up and Go test; FR, Functional Reach; AUC, Area Under the

Curve; C.I., Confidence Interval; LR+, positive Likelihood Ratio; LR-, negative Likelihood Ratio.

Model 1

Dynamic Balance

0-24

Model 2

Static Balance

Dynamic Balance

0-24

(Static 0-5; Dynamic 0-19) Model 3

Dynamic Balance

0-24

and factors of the three models of Brief-BESTest.

1			
2 3 4 5	635	Appendix 1	
8	636	Items and factors of the three models of Bri	e
9 10		Model item	
11		(Scoring 0-3 per item)	
12 13		Item 1: Hip/Trunk Lateral Strength	
14		Item 2: Functional Reach Forward	
15		Item 3: Stand on One Leg-Left	
16 17		Item 4: Stand on One Leg-Right	
18		Item 5: Compensatory Stepping–Lateral, Left	
19 20		Item 6: Compensatory Stepping–Lateral, Right	
21			-1
22 23		Item 7: Stand on foam surface with Eyes Closed	נ
23		Item 8: Timed Up and Go test	
25		Total score	
26 27		Total score	
28	637		_
29 30			
31			
32			
33 34			
35			
36 37			
38			
39			
40 41			
42			
43 44			
44			
46			
47 48			
49			
50			
51 52			
53			
54			
55 56			
57			
58			

2 3 4		
5 6	1	Is the Brief-BESTest brief enough? Suggested modifications based on structural validity and
7 8 9 10 11	2	internal consistency
12 13	3	Marco Godi ^a , Marica Giardini ^{a,*} , Ilaria Arcolin ^a , Simona Ferrante ^b , Antonio Nardone ^{a,c} ,
14 15 16	4	Stefano Corna ^a , Roberto Colombo ^a
17 18	5	
19 20	6	Author affiliation:
21 22	7	^a Istituti Clinici Scientifici Maugeri IRCCS, Italy
23 24 25	8	^b Neuroengineering and Medical Robotics Laboratory, Politecnico di Milano, Italy
26 27	9	^c Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Italy
28 29	10	
30 31 32	11	*Corresponding author: Marica Giardini.
33 34	12	Istituti Clinici Scientifici Maugeri IRCCS,
35 36	13	Via per Revislate 13, Veruno 28010, Italy.
37 38 20	14	E-mail address: marica.giardini@icsmaugeri.it
39 40 41	15	Ph: +39 0322 884905
42 43	16	
44 45	17	
46 47 48	18	
49 50	19	
51 52 53 54 55 56 57 58 59 60	20	

1 2		
3 4 5	21	ABSTRACT
5 6 7	22	
8 9	23	Background: The Brief Balance Evaluation Systems Test (Brief-BESTest) could be a useful tool for
10 11 12	24	balance assessment. Although some psychometric characteristics have been examined, others
12 13 14	25	still need to be clarified.
15 16	26	Objectives: To assess the structural validity, convergent validity, discriminant validity and
17 18 19	27	internal consistency of the Brief-BESTest in neurological patients.
19 20 21	28	Design: Cross-sectional.
22 23	29	Methods: Data were from 416 patients with neurological disease and related balance disorders.
24 25 26	30	Patients were assessed with the 5-levels Activities-Specific Balance Confidence Scale (ABC 5-
27 28	31	levels), Brief-BESTest, some simple balance tests, i.e. One-Leg Stance (OLS), Timed Up and Go
29 30 31	32	(TUG) test, Functional Reach (FR), simple balance tests and a fall history questionnaire. Three
32 33	33	models of Brief-BESTest models were examined through confirmatory factor analysis (CFA) and
34 35 36	34	the following indices calculated: Comparative Fit Index (CFI), Tucker-Lewis Index (TLI), Root Mean
37 38	35	Square Error of Approximation (RMSEA). Convergent validity was assessed by calculating the
39 40	36	correlation between Brief-BESTest and ABC 5-levels total scores. Receiver operating
41 42 43	37	characteristics (ROC) assessed the ability of each model to differentiate between people with vs.
44 45	38	without falls. Internal consistency was measured by Cronbach's alpha and coefficient omega.
46 47 48	39	Results: CFA showed Model 3 (CFI=0.97, TLI=0.95, RMSEA=0.05), with item 1 removed and error
49 50	40	covariance between items 3-4 and between items 5-6, to have a significantly better structure
51 52 53	41	than Models 1 and 2 (p<0.001). The correlation between Brief-BESTest and ABC 5-levels was 0.61
54 55	42	(Spearman's rho) for all three models. Area Under the Curve (AUC) of ROC was showed an
56 57	43	acceptable accuracy (0.72) in distinguishing patients with vs. without history of falls (95%
58 59 60	44	C.I.=0.66–0.78) for all models, and superior to AUCs of other simple balance tests (OLS, TUG test,

2 3 4	45	FR). Cronbach's alpha was good for Brief-BESTest Models 1 (0.92) and 3 (0.92), but omega was
5 6 7	46	>0.80 only for Model 3.
7 8 9	47	Limitations: Heterogeneous sample size was a heterogeneous population.
10 11	48	Conclusions: The Brief-BESTest, after some changes, shows good validity and internal
12 13 14	49	consistency in patients affected by different balance disorders, after applying some changes.
15 16	50	
17 18 19	51	Contribution of the Paper:
20 21	52	• Although some psychometric characteristics of the Brief-BESTest have been examined in
22 23 24	53	previous studies, other properties such as validity still need to be clarified.
24 25 26 27 28 29	54	• This study shows that the Brief-BESTest has good validity and internal consistency in
	55	patients affected by different balance disorders, after applying some changes: removal of item 1
30 31	56	and using an appropriate weighting method for the calculation of the total score.
32 33 34	57	• This study confirms the ability of the Brief-BESTest to distinguish between people with vs.
35 36	58	without history of falls, in contrast to other simple balance tests. Moreover, it highlights once
37 38 39	59	again the superiority of a clinical scale composed of several items compared to single-item
40 41	60	measures such as the TUG test and OLS.
42 43 44	61	
45 46	62	
47 48 40	63	Keywords: Brief-Balance Evaluation Systems Test, balance assessment, confirmatory factor
49 50 51	64	analysis, structural validity, internal consistency.
52 53	65	
54 55 56	66	
57 58		
59 60		

INTRODUCTION

Balance disorders are a common finding in a broad spectrum of neurological disorders and are
characterized by a heterogeneous set of signs and symptoms. Patients with balance disorders
experience a reduction in mobility, activities of daily living and muscle strength, leading to
increased risk of falls [1,2,3,4]. Thus, balance assessment is crucial and requires standardized
measurement tools that can monitor equilibrium regardless of the pathology. Unfortunately, no
gold standard exists for evaluating balance [5], and no consensus on which assessment tools to
use in clinical practice [6,7].

A variety of clinical measures has been developed to evaluate different aspects of balance. While simple balance tests such as the Timed Up and Go test, One Leg Stance, and Functional Reach provide accurate evaluation of a single task, they are not able to **do not give** information on multifactorial mechanisms related to postural stability [8]. On the contrary, balance scales which include multiple tasks can provide a more complete picture of balance control in all its complexity [9,10,11].

One of the most recent balance scales is the BESTest, a 36-item scale developed to identify impairments in six balance control subsections, which it has been shown to be a valid and reliable tool [8]. However, one of its drawbacks is that it is time-consuming to administer [12]. For this reason, shorter versions have been proposed such as the Mini-BESTest [12] and the Brief-BESTest [13]. In particular, the Brief-BESTest, an 8-item version of the original scale, has demonstrated good to excellent psychometric properties [8,13,14,15]. It is less time-consuming [16] and more feasible than its parent scale in clinical settings [15], while it encompasses and should adequately evaluate all subsections of balance endorsed by the BESTest [13,17,18].

without a history of falls;

However, the latter hypothesis was rejected through exploratory factor analysis dismantled the latter hypothesis, demonstrating that the Brief-BESTest actually has at most two subsections, or dimensions [19]. Furthermore, Bravini et al. [14] showed by Rasch analysis that all items of the Brief-BESTest except for item 1 account for the same underlying theoretical construct and indicated that the Brief-BESTest should in fact be considered as unidimensional. Therefore, the authors suggested the adoption of a 7-item version of the test. Although some psychometric characteristics of the Brief-BESTest, such as the internal consistency [13,14], reliability [14,17,20] and sensitivity to change [14,20], have been investigated in previous studies, other properties still need to be clarified. In particular, the Brief-BESTest structure has not yet been investigated with **undergone** confirmatory factor analysis (CFA). This statistical tool provides information on possible independent factors and can be very useful for developing shortened forms of an evaluating instrument [21,22]. Finally, the Brief-BESTest seems to have good sensitivity and accuracy in identifying retrospectively people who have had at least one fall [13,17]. However, these findings are based only on small samples of patients with multiple sclerosis [13] or Parkinson's disease [17]. The We aimed in of the present study was to fill the existing knowledge gap by examining the structural validity, convergent validity and discriminant validity of the Brief-BESTest in a large group of patients with a variety of balance disorders. In particular, we hypothesized that: 1) among the three models of the Brief-BESTest presented in the literature [13,14,19], the 7-item version would be the one with the best structural validity; 2) in spite of its conciseness, the 7-item model [14] would have the same ability as the other two Brief-BESTest models to predict patients at risk of falls; discriminate between people with vs.

Page 39 of 93

1

Physical Therapy

2	
3 113 4	3) in discriminating between people with vs. without a history of falls, the Brief-BESTest would be
5 6 114	superior to other simple balance tests such as One Leg Stance, Timed Up and Go test and
7 8 115 9	Functional Reach.
10	
11	
12 ¹¹⁶	
13	
14	
15 117	METHODS
16	
17	
17 18 118	
19	
20	
21 119	Participants
22	
23	
²⁴ 120	This was an observational retrospective study conducted in a group of 416 patients affected by
25	This was an observational recrospective study conducted in a group of 410 patients affected by
26	
27 121	different neurological diseases: 186 females and 230 males; mean age 66.5±16.0 years (mean ±
28	
²⁹ 122	standard deviation) consecutively admitted for in-patient rehabilitation at the Istituti Clinici
30	standard deviation, consecutively dumitted for in patient renabilitation at the istitut enner
31	
₃₂ 123	Scientifici Maugeri IRCCS, Institute of Veruno (Novara, Italy) between February 2014 and April
33	
34 124	2017. Patients' clinical and treatment data were extracted from the electronic medical record
35	
36	and the second terms of the second field terms (NAise as fit Freed). Deticute success structified into
37 ¹²⁵	system and transferred to a specific database (Microsoft Excel). Patients were stratified into
38	
39 126	different groups according to their diagnosis: 118 with Parkinson's disease, 79 with acute stroke,
40	
⁴¹ 127	43 with sensorimotor polyneuropathy, 32 with cerebellar ataxia, 32 with diffuse
42 12/	45 with sensor motor polyneuropathy, 52 with terebenar ataxia, 52 with unuse
43	
44 128	encephalopathy, 31 with chronic stroke, 21 with multiple sclerosis, 19 with traumatic brain
45	
⁴⁶ 129	injury, 16 with vestibular disorder, 13 with neuromuscular disorders, 12 with central nervous
47	j.,,
48	austana na anla ana Indusian avitaria usara, a) abilitu ta maintain an umuinht na sitian usithaut
49 130	system neoplasm. Inclusion criteria were: a) ability to maintain an upright position without
50	
51 131	support for at least 5 seconds; b) ability to understand the required motor tasks; c) no hip or
52	
53	knee replacement surgery within the previous 6 months. Exclusion criteria were: a)
₅₄ 132	knee replacement surgery within the previous o months. Exclusion cittena were, aj
55	
56 133	musculoskeletal injury limiting the ability to walk; b) any other serious cardio-respiratory
57	
⁵⁸ 59 134	problem. The study was carried out in conformity with the Declaration of Helsinki of the World
55	
60	

1 2		
3 4	135	Medical Association and the guidelines for retrospective studies [23]. The local scientific and
5 6 7	136	ethics committee approved the study.
8	137	
10 11		
14	138	Assessment tools
15 16 17	139	Patients' demographic and clinical characteristics were gathered by Aa team of trained physical
10	140	therapists engaged in clinical practice collected patients' demographic and clinical
	141	characteristics. During the routine clinical assessment following admission to the rehabilitation
22 23 24	142	department, patients underwent the following assessments:
25 26	143	- Fall history
27 28 29	145	- run history
30 31	144	A history of falls over the past 6 months was obtained from patients at admission through
32 33 34	145	patient interview. A fall was defined as an unintentional event in which any part of the body
35 36	146	came into contact with the ground [10]. Patients who reported two or more falls in the defined
37 38 39	147	period were classified as 'fallers' [24]. A fall history was not recorded taken in the case of for
	148	patients with acute stroke at the time of admission.
44 45	149	- Brief-BESTest
46 47 48	150	The Brief-BESTest is an 8-item scale with each item scored on a 4-level rating scale from 0 (severe
49 50	151	balance impairment) to 3 (no balance impairment). Its items cover the six subsections of the
51 52 53	152	original BESTest (biomechanical constraints, stability limits/verticality, anticipatory postural
54 55	153	responses, postural responses, sensory orientation, stability in gait); the maximum total score is
56 57 58	154	24 [13]. The Brief-BESTest requires less time and equipment to administer than the BESTest
	155	and the Mini-BESTest; thus, the Brief-BESTest seems to be more feasible for clinical use [17].

- Simple balance tests

1	
2 3 4 5	156
6 7	157
8 9 10	158
11 12	159
13 14 15	160
16 17 18	161
21	162
22 23	163
24 25 26	164
27 28	165
29 30 31	166
32 33 34	167
34 35 36 37	168
38 39 40	169
41 42 43	170
44 45 46	171
47 48	172
49 50 51	173
52 53	174
54 55	175
56 57 58	176
59 60	177

During administration of the Brief-BESTest, we recorded the time required by patients to
complete item 3 (left One Leg Stance), 4 (right One Leg Stance) and 8 (Timed Up and Go test) and
the distance covered by patients during item 2 (Functional Reach). This allowed us to obtain the
scores of three additional simple balance tests: One Leg Stance (OLS) [25,26], Timed Up and Go
(TUG) test [27,28] and Functional Reach (FR) [29,30].
- Activities-specific Balance Confidence Scale
The short version of the Activities-specific Balance Confidence Scale (ABC) is a self-reported 16-
item questionnaire that scores the perceived level of balance confidence when performing
common activities of daily living [31]. We used the 5-levels rating version of rating (ABC 5-levels)
[32] in which each item is scored from 0 (no confidence) to 4 (fully confident), giving a total score
range 0-64.
Data analysis
Descriptive statistics were used to describe mean demographic and balance performance
characteristics of the entire sample and of the two smaller subgroups, classified as fallers and
non-fallers. The analysis of discriminant validity was conducted only in these two subgroups,
i.e. those patients who had a history of falls available. These values were also determined
separately both for fallers and non-fallers. For each item of the Brief-BESTest we calculated:
median value, spread (25 th –75 th percentiles), skewness and kurtosis. Floor and ceiling effects
were analyzed by calculating the percentage of individuals obtaining the lowest and the highest
score for each scale item. In order to detect differences in clinical characteristics between fallers
8

and non-fallers, the Chi-square (χ^2) test was used for two parameters, sex and use of walking aids, while the Mann-Whitney U-test was used for age, OLS, TUG test, FR, total score of Brief-BESTest and total score of ABC 5-levels. Significance was set at p<0.05. All analyses were performed using STATA 13.0 software (StataCorp LLC, College Station, Texas, USA). 14 182 Structural validity Structural validity is usually assessed through CFA [33]. CFA assesses the degree to which 21 184 responses on a p x 1 vector of observable random variables (the Brief-BESTest items) can be used to assign a value to one or more unobserved variable(s) (balance subsections). For this purpose, 26 186 ²⁸ 187 a specific mathematical model is identified and fitted to the patients' data. ₃₂ 188 The original model (Model 1) of the Brief-BESTest [13] comprises one factor with 8 independent 34 189 items that contribute with the same weights to the total score. In the recent literature, two additional models of Brief-BESTest have been presented. Model 2 was designed based on [19]. It includes two factors: one named "static balance" that comprises items 1 and 2, and another 39 191 called "dynamic balance" that contains items 3 to 8. As demonstrated by the authors, items 5 44 193 and 6 showed local dependence, so Model 2 was designed allowing correlation between the errors of these items. In Model 3, was drawn up without item 1 was dropped, as suggested by [14]. In this 7-item model, the error of item 3 was allowed to correlate with that of item 4 and 49 195 51 196 the error of item 5 with that of item 6. ₅₅ 197 For all models, the score of each item ranges from 0 to 3. Then the total score was is obtained by 57 198 multiplying the rated score by the coefficient fitted for each model (see below formula and supplementary data). In order to allow comparison of the score models, we adjusted the

1		
2 3 4	200	coefficients so have been adjusted as to maintain a total score in the range 0 to 24. Appendix 1
5 6 7	201	summarizes the item structure of the three models and their total score.
8 9 10	202	Preliminary analysis conducted on Model 3 showed similar CFA results for patients who used a
11 12 13	203	walking aid and those who did not. For this reason, we decided to consider the entire sample
	204	independently of the walking condition in creating our models.
17 18		We examined tThe structural validity of these three models (from here on Model 1, 2 and 3) was
19 20 21	206	examined through CFA using Structural Equation Modeling (SEM). In view of the very low
25	207	occurrence of missing data (maximum 0.4%), cases with missing data were removed from the
24 25 26	208	analysis. χ^2 was used to identify whether the model fitted the data well. In addition, we assessed
28	209	the models' goodness of fit using the following indices: Comparative Fit Index (CFI) [34], Tucker-
29 30 31	210	Lewis Index (TLI), Root Mean Square Error of Approximation (RMSEA) [35] and the Standardized
32 33	211	Root Mean Square Residual (SRMR) [34]. The criteria adopted to assess goodness of fit
34 35 36	212	performance were: a) CFI and TLI values ≥0.95; b) RMSEA value <0.06; and c) SRMR value ≤0.08
37 38 39	213	[36].
40 41 42	214	The goodness of fit parameters of the three models were compared by computing the χ^2
43 44 45	215	difference tests of each model pair, calculated as a $\chi^2 = \chi^2_2 - \chi^2_1$ with df = df ₂ -df ₁ .
47	216	The standardized factor loadings of the models (i.e. the coefficients of the fitted model) were
48 49 50	217	then transformed into weights that can be applied when scale scores for an individual are
52	218	calculated. They were calculated with a non-refined method called "Weighted Sum Scores" [37];
53 54 55	219	these weights do not change the scale range [38].
56 57 58 59	220	Internal consistency
60	221	The internal consistency of the three Brief-BESTest models was measured by Cronbach's alpha

and the coefficient omega for congeneric models [39]. Cronbach's alpha measures the extent to which the items consistently measure the same construct, with the value ≥0.80 indicating good internal consistency [40]. The coefficient omega is the ratio of the true score variance and the total variance of the scale. Interpretation of coefficient omega is similar to that of Cronbach's 13 226 alpha [41].

Convergent validity

We used the correlation between the three models of Brief-BESTest and the ABC 5-levels total 26 230 score to assess the convergent validity. The ABC scale led to rate rates the balance self-efficacy ²⁸ 231 of patients [31]. This is associated with measures of balance [32], walking capacity [42], functional mobility [43], Activities of Daily Living performance [44], and perceived health status 33 233 [45]. The choice to use the ABC as a competitor an external criterion was also based on the need to avoid the comparisons of ng the three models with a scale that had items similar to the Brief-BESTest. The correlation was assessed by means of Spearman's rho: coefficients <0.30 were 38 235 interpreted as weak, those between 0.30 and 0.49 as moderate, and those \geq 0.50 as strong 43 237 correlations [46].

- ₅₀ 239 **Discriminant validity**

- 53 240

To assess the ability of the three Brief-BESTest models to distinguish between 'fallers' and 'non-56 241 fallers', receiver operating characteristic (ROC) curves were computed, by plotting sensitivity on 58 242 the x-axis against 1 – specificity on the y-axis. In our study, sensitivity was calculated as the

number of patients correctly identified as 'fallers' and specificity as the number of patients Page 45 of 93

Physical Therapy

1 2		
~	244	correctly identified as 'non-fallers'. The optimal cut-off value was chosen on the ROC curve at the
5 62 7	245	point that jointly maximized sensitivity and specificity [47]. For each ROC, the area under the
-	246	curve (AUC) and the positive and negative likelihood ratios (LR+ and LR-) were computed to
10 11 2 12	247	maximize the cut off scores. Low, moderate and high accuracy of discrimination were defined
13 2 14	248	respectively as AUC <0.70, 0.70< AUC <0.90, and AUC >0.90 [47]. In addition, the predictive
15 16 17	249	performance of the three models was compared to that of the OLS, TUG test and FR tests by
18 2 19 20	250 251	reporting the above described parameters and the percentage of correctly classified patients.
23		
24 25 2 26	252	RESULTS
20		
²⁸ 2 29	253	Fall history data, for the analysis of discriminant validity, was available could be collected only
30 31 2 32	254	from in 295 subjects: 135 fallers (45%) and 160 non-fallers (55%). Table 1 reports mean scores
33 2 34	255	and standard deviation for each balance measure as well as information on the use of walking
³⁵ 36 37	256	aids in the overall sample and in fallers vs. non-fallers. We found a significant difference between
38 2 39	257	fallers and non-fallers in the mean score of all clinical evaluations, while mean age and sex did
40 41 42	258	not differ significantly. Table 2 reports descriptive statistics for each item score and total score of
43 2 44	259	the original 8-item Brief-BESTest in the whole sample.
45 46 47 48 49 50 2		Structural validity
51 52 53 2 54 55		
56 57 2 58	263	Analysis of the Brief-BESTest models
59 60 2	264	Figure 1A shows the standardized solution of the CFA for Model 1 that was fitted using all 8

265	items. We found χ^2 value of 134.0 (df = 20, p<0.001), with CFI of 0.78, TLI of 0.70, RMSEA of 0.12
266	(90% C.I. = 0.10–0.14) and SRMR above 0.09. Both CFI and TLI were below the cut-off value of
267	0.95 defined for a well-fitting model. In addition, the RMSEA value suggested that this model
268	exhibited a poor fit of the data.
269	Model 2 (figure 1B) showed better values of goodness of fit with respect to the original model. In
, 270	fact, Model 2 had χ^2 of 60.3 (df = 18, p<0.001), with CFI of 0.92, TLI 0.88, RMSEA 0.08 (90% C.I. =
) 271)	0.06–0.10) and SRMR 0.05. However, only SRMR exhibited a value lower than the preselected
272	well-fitting index value.
273	Figure 1C shows the CFA solution for Model 3. The results show a significantly better goodness of
274	fit for this model (χ² = 26.2, df = 12, CFI = 0.97, TLI = 0.95, RMSEA = 0.05 (90% C.I. = 0.03–0.08),
275	SRMR = 0.03) than for Models 1 and 2. Comparison of Model 3 (χ^2 = 26.2) to Model 1 (χ^2 = 134.0)
276	and Model 2 (χ^2 = 60.3) yielded a difference in χ^2 value of 107.8 and 34.1 respectively and a
277	difference of 6 degrees of freedom, suggesting that Model 3 performed better than the original
278	Brief-BESTest (Model 1) and Model 2. Table 3 summarizes the goodness of fit indices of each
279	model and the significance level of the comparison between each model pair.
280	The factor loadings of each item were significant (p<0.001) and higher than 0.6 for all three
281	models. Item 1 (Hip/Trunk Lateral Strength), when present, and item 2 (FR Forward) had the
, 282)	lowest factor loading.
283	
284	Internal consistency
285	Cronbach's alpha was good for Brief-BESTest Models 1 (0.92) and 3 (0.92), but not for Model 2
286	(0.56 and 0.88, respectively for static and dynamic balance factor). Coefficient omega was higher

Page 47 of 93

1		
2 3 4	287	than 0.80 only for Model 3, while Model 1 (0.75) and Model 2 (0.71 and 0.61, respectively for
5 6 7	288	static and dynamic balance factor) showed a lower coefficient, thus suggesting that only Model 3
8 9	289	had good internal consistency.
12	290	The total score of the Brief-BESTest needs to be weighted considering the loading coefficient of
13 14 15	291	each item. Therefore, scores were adjusted to yield a uniform score range 0-24 for all three
16 17	292	models, where 0 represents severe impairment and 24 no balance impairment. Below are the
18 19 20 21	293	weighted total score equations used to estimate Models 2 and 3:
22 23 24 25	294	Brief-BESTest (Model 2) = (0.860504*item1)+(0.914286*item2)+(1.089076*item3)+(1.048739*item4)+(1.021849*item5)+ (0.994958*item6)+(1.008438*item7)+(1.062185*item8)
28 29 30 31 32 33	295	Brief-BESTest (Model 3) = (0.963107*item2)+(1.133981*item3)+(1.118447*item4)+(1.21165*item5)+(1.165049*item6)+ (1.165049*item7)+(1.242718*item8)
34 35 36 37	296	Convergent validity
38 39 40	297	The relationship of the total score estimated by the three different models of Brief-BESTest and
41 42 43	298	the ABC 5-levels scale was rho = 0.62 (95% C.I. = 0.55-0.70) for Model 1, rho = 0.61 (95% C.I. =
	299	0.54-0.69) for Model 2 and rho = 0.61 (95% C.I. = 0.54-0.69) for Model 3. No significant (p = 0.85)
46 47 48	300	difference was found between the three Spearman correlation coefficients.
49 50 51 52	301	
	302	Discriminant validity
56 57 58	303	Figure 2 shows the ROC curve plotted to assess the ability of the three models of Brief-BESTest to
	304	discriminate between patients with vs. without a history of falls. Table 4 reports the

discrimination parameters (cut-off scores) for Models 1, 2 and 3 and for the simple balance tests (OLS, TUG test and FR). The AUC was 0.72 (95% C.I. = 0.66-0.78) for all three models. Model 3 showed superior sensitivity, specificity and likelihood ratios compared to the other two models. The other simple balance tests (OLS, TUG test and FR) did not reach the AUC value of 0.70, i.e. the cut-off value required to distinguish between fallers and non-fallers. In addition, 13 309 their AUCs were lower than those of the Brief-BESTest models. 19 311 DISCUSSION 26 313 ²⁹ 314 The main purpose of this study was to compare, in a large group of patients with balance ₃₂ 315 disorders, the structural, convergent and discriminant validity of three different models of the 34 316 Brief-BESTest. The Brief-BESTest, in particular Model 3, was found to be unidimensional and to have a good convergent validity with other measures of balance confidence. In addition, the Brief-BESTest confirmed its ability to distinguish subjects with a history of falling from those 39 318 without a history of falling, in contrast to other simple balance tests. 45 320 Structural validity CFA showed that measurement properties of the original Brief-BESTest scale (Model 1) [13] little ₅₁ 322 fitted our data; none of CFA performance indices reached satisfactory values. As suggested in a 53 323 previous study [14], the original Brief-BESTest can be improved by making the following 56 324 modifications: a) removing item 1; b) covarying errors between items 3 and 4 and between items 58 325 5 and 6; c) using an appropriate weighting method for the calculation of the total score. The internal structure of the scale can, in fact, be improved by removing item 1 rather than by

Page 49 of 93

1 2

Physical Therapy

2 3 4	32
5 6	32
7 8 9	32
10 11 12	33
13 14	33
15 16 17	33
18 19	33
20 21 22	33
23 24	33
25 26 27	33
28 29	33
30 31 32	33
33 34	33
35 36 37	34
38 39	34 34
40 41 42	34 34
43 44 45	34
45 46 47	34
48 49 50	34
51 52	34
53 54 55	34
56 57 58 59 60	34

327	increasing the number of factors as proposed earlier [19]. The analysis of structural validity
328	prompted two main considerations. First, item 1 does not belong to the same construct as the
329	other items. This finding, in line with previous studies [14,19], is also supported by the fact that
330	"lift a leg to the side of the body" (item 1) could reflect a general reduction in strength rather
331	than a decreased ability to maintain static balance. Second, the Brief-BESTest is unidimensional
332	because no advantage in terms of fitting performance was found when more than one factor was
333	taken into consideration. In other words, our study confirmed that the Brief-BESTest is not able
334	to measure multiple dimensions of balance as claimed by [13]. The Brief-BESTest items include all
335	subsections covered by the BESTest, but this does not mean that the two scales have the same
336	capability to measure the different aspects underlying postural control. In accordance with other
337	authors, one could object that a unidimensional tool is a poor representation of the balance
338	concept, which by definition is multidimensional. We agree with this objection and believe that
339	the Brief-BESTest can assess only certain aspects of dynamic balance. It neglects static
340	components of balance such as those measured by the "Romberg test". On the other hand, some
341	aspects of balance considered independent in animal models [48], such as walking and
342	maintenance of upright position, could be actually considered aswell belonging to the same
343	construct in humans. In fact, balance control and locomotion are interdependent at many
344	different levels of the central nervous system and these functions share some common principles
345	of organization [49,50]. Furthermore, previous studies have reported that the ability to maintain
346	upright stance could be related to walking [51,52,53] in patients affected by balance disorders.
347	Hence, in these patients it might be misleading for a clinical scale to investigate balance and
348	walking as two separate factors, as also suggested by recent recommendations [54].
349	Internal consistency

2 3 4	350
5 6	351
7 8 9	352
10 11	353
12 13 14	354
15 16	355
17 18 19	356
20 21	357
22 23 24	358
25 26 27	359
28 29	360
30 31 32	361
33 34	362
35 36 37	363
38 39	364
40 41 42	365
43 44 45	366
46 47 48	367
49 50 51	368
52 53 54	369
55 56	370
57 58 59	371
60	

1 2

Despite the large consensus in the psychometric literature that coefficient omega should be used when scales are not congeneric and the assumptions of Cronbach's alpha are not met [41], no previous study has reported omega values for the Brief-BESTest. This is the first study to report both the alpha and the omega coefficients. Based on the latter values, only Model 3 achieved good internal validity. On the contrary, Cronbach's alpha values were found to be good for both Model 1 and 3. Our values of alpha are similar to those reported by [13], and to other studies in both orthopaedic [55] and neurological patients [56]. It is well known that Cronbach's alpha is a function of the number of items. In this regard, it is interesting to note that Model 3, despite its lower number of items, reaches a higher value of internal consistency than the other models. This should denote a superior internal consistency of Model 3.

The discrepancy between the results for Cronbach's alpha and those for coefficient omega can be explained by the fact that the former has been frequently demonstrated to attain quite high values even when the items are measuring different latent variables [57]. On the contrary, the coefficient omega is able to highlight the presence of items that do not belong to the same latent variable. As for the Brief-BESTest, the low values of coefficient omega found for Model 1 could be due to the presence of item 1, which, as highlighted by CFA, seems not to belong to the same construct as the other items.

67 Convergent validity

The three models compared in this study exhibit an equivalent moderate convergent validity (Spearman's rho = 0.61) with the ABC 5-levels scale. This finding confirms previous studies in which the Brief-BESTest showed a moderate correlation with ABC in specific populations, such as chronic obstructive pulmonary disease [15], stroke [11] and cancer survivors patients [58]. This is

Physical Therapy

³ 372 4	not surprising since it is well known that balance confidence is a consequence of balance
5 6 373 7 8	impairments [59].
o 9 374 10 11	Discriminant validity
12 13 375 14	The three Brief-BESTest models exhibited an equ ally ivalent and acceptable accuracy (AUC = 0.72)
15 376 16	of the Brief-BESTest in distinguishing patients with vs. without history of falls. However, our AUCs
¹⁷ 377 18	are lower than those of [17], who found in patients with Parkinson's disease AUC values of 0.82,
19 20 378 21	0.86 and 0.84 respectively for the Brief-BESTest, Mini-BESTest and BESTest, thus indicating a
²² 379 23	moderate accuracy of the three scales in recognising a history of falls. Likely, the small difference
24 25 380	is due to the heterogeneity of our patients. It We cannot be excluded that studying separate
26 27 381 28	disease populations might improve the discriminant validity.
29	
30 31 382	In accordance line with previous studies, we confirm that balance scales can discriminate
32	
33 383 34	between fallers and non-fallers, in contrast to single balance tests which have a we found a low
34 35 36 ³⁸⁴	between fallers and non-fallers, in contrast to single balance tests which have a we found a low level of accuracy in identifying fallers using only a single balance test [11,60,61]. Due to the
34 35 36 ³⁸⁴ 37 38 385	
34 35 36 37 38 38 38 38 39 40 386 41	level of accuracy in identifying fallers using only a single balance test [11,60,61]. Due to the
34 35 36 37 38 38 38 39 40 386 41 42 43 387	level of accuracy in identifying fallers using only a single balance test [11,60,61]. Due to the heterogeneity of patients in our study, it is unlikely that a single test could accurately identify
34 35 36 37 38 38 38 38 39 40 386 41 386 41	level of accuracy in identifying fallers using only a single balance test [11,60,61]. Due to the heterogeneity of patients in our study, it is unlikely that a single test could accurately identify patients at risk of falls. This is in line with recommendations of [62] who suggested to use two or
34 35 36 37 38 38 39 40 386 41 386 41 42 43 387 44 45 388 46 47 48 389	level of accuracy in identifying fallers using only a single balance test [11,60,61]. Due to the heterogeneity of patients in our study, it is unlikely that a single test could accurately identify patients at risk of falls. This is in line with recommendations of [62] who suggested to use two or more clinical tests for an accurate evaluation of the various components of risk of falls in patients
34 35 36 37 38 38 39 40 386 41 386 41 42 43 387 44 45 388 46 47 48 389 49 50	level of accuracy in identifying fallers using only a single balance test [11,60,61]. Due to the heterogeneity of patients in our study, it is unlikely that a single test could accurately identify patients at risk of falls. This is in line with recommendations of [62] who suggested to use two or more clinical tests for an accurate evaluation of the various components of risk of falls in patients with Parkinson's disease. The limited association between single measures of balance and fall
34 35 36 37 38 38 39 40 386 41 386 41 42 43 387 44 45 388 46 47 48 389 49	level of accuracy in identifying fallers using only a single balance test [11,60,61]. Due to the heterogeneity of patients in our study, it is unlikely that a single test could accurately identify patients at risk of falls. This is in line with recommendations of [62] who suggested to use two or more clinical tests for an accurate evaluation of the various components of risk of falls in patients with Parkinson's disease. The limited association between single measures of balance and fall
34 35 36 38 37 38 38 39 40 386 41 42 43 387 44 45 388 46 47 48 389 49 50 51 390 52 53 54 391 56	level of accuracy in identifying fallers using only a single balance test [11,60,61]. Due to the heterogeneity of patients in our study, it is unlikely that a single test could accurately identify patients at risk of falls. This is in line with recommendations of [62] who suggested to use two or more clinical tests for an accurate evaluation of the various components of risk of falls in patients with Parkinson's disease. The limited association between single measures of balance and fall
34 35 36 37 38 38 37 38 38 39 40 386 41 386 42 43 387 44 45 388 46 47 48 389 49 50 51 390 52 53 54 391	level of accuracy in identifying fallers using only a single balance test [11,60,61]. Due to the heterogeneity of patients in our study, it is unlikely that a single test could accurately identify patients at risk of falls. This is in line with recommendations of [62] who suggested to use two or more clinical tests for an accurate evaluation of the various components of risk of falls in patients with Parkinson's disease. The limited association between single measures of balance and fall history could be partly explained bydue to the multifactorial nature of causes of fall.

2	
3	394
4 5	
5 6	395
7	
8	396
9	
10	397
11 12	557
12	398
14	290
15	
16	399
17	299
18	
19 20	400
20 21	
22	401
23	
24	402
25	
26	
27	403
28 29	
30	
31	404
32	
33	405
34	
35	406
36 37	
38	407
39	407
40	408
41	400
42	400
43	409
44 45	
46	410
47	
48	
49	411
50	
51 52	440
52 53	412
55 54	
55	117
56	413
57	
58 59	414
59 60	
50	415

observed in departments of rehabilitation, but may not be representative of other clinical settings. Although the Brief-BESTest assesses balance performance independently of the pathology that causes the problem, future studies should assess psychometric characteristics such as responsiveness, the minimal clinically important difference and sensitivity to change of the Brief-BESTest in specific groups of disease.

The history of falls should be considered useful only for discriminative purposes (i.e. to distinguish fallers from non-fallers) and not to predict patients who will fall in the future. In fact, falls change people's behavior and the cutoff scores for prospective prediction of falls may be very different from those reported in our study.

103 Implications for clinical practice and conclusions

The comparison of the three structural models of Brief-BESTest proposed in the literature clearly
highlights that Model 3, i.e. the shortest version, has psychometric characteristics equal or
superior to the other two. This makes Model 3 the best of the three versions to recommend for
use in clinical practice, given that it is also the fastest to perform. For this reason, in the
supplementary material we provide a simple calculator for the three models tested in this study.
Finally, this study highlights once again the superiority of a clinical scale composed of several
items compared to single-item measures.

2 412 Authors' contributions

³⁵ 413 MGo and AN contributed to the concept/idea/research design. MGo, MGi and IA contributed to
 ⁵⁶ 413 the writing and data analysis. MGi and IA provided data collection. MGo and SC provided project
 ⁶⁰ 415 management and study participants. AN and SC provided facilities/equipment and institutional

1		
2 3 4	416	liaisons. SC and RC contributed consultation in different phases of the study (including review of
5 6 ' 7	417	manuscript before submission).
8 9 10 11	418	Ethical Approval
12 13 ' 14	419	The Scientific Technical Committee of the Istituti Clinici Scientifici Maugeri approved this study
	420	with the following identification number: rrf41.
18 19 20	421	Funding
21 22 4 23	422	This research did not receive any specific grant from funding agencies in the public, commercial,
24 25 26	423	or not-for-profit sectors.
27 28 29 30	424	Conflict of Interest
	425	None declared.
34 35 36 37	426	
	427	
41	428	Bibliography
43 44	429	[1] Geiger RA, Allen JB, O'Keefe J, Hicks RR. Balance and mobility following stroke: effects of
45 46 47		physical therapy interventions with and without biofeedback/forceplate training. Phys Ther
48 49 50	431	2001;81(4):995-1005. PubMed PMID: 11276182.
51 52 ' 53	432	[2] Hyndman D, Ashburn A. People with stroke living in the community: Attention deficits,
	433	balance, ADL ability and falls. Disabil Rehabil 2003;25(15):817-22. PubMed PMID: 12851091.

1

Page 54 of 93

2 3 ∠ 4	134	[3] Horlings CG, Van Engelen BG, Allum JH, Bloem BR. A weak balance: the contribution of muscle
0	135	weakness to postural instability and falls. Nat Rev Neurol. 2008;4(9):504. doi:
7 8∠ 9	136	10.1038/ncpneuro0886.
10 11 ₄ 12	137	[4] Sturnieks DL, St George R, Lord SR. Balance disorders in the elderly. Neurophysiol Clin
13 14 ² 15	138	2008;38(6):467-478. doi: 10.1016/j.neucli.2008.09.001.
16 17 ∠ 18	139	[5] Mancini M, Horak FB. The relevance of clinical balance assessment tools to differentiate
19 20 21	140	balance deficits. Eur J Phys Rehabil Med 2010;46:239. PubMed PMID: 20485226.
22 23 ² 24	141	[6] McGinnis PQ, Hack LM, Nixon-Cave K, Michlovitz SL. Factors that influence the clinical
25 _/ 26	142	decision making of physical therapists in choosing a balance assessment approach. Phys Ther
27 28 ² 29	143	2009;89:233. doi: 10.2522/ptj.20080131.
30 31 4 32	144	[7] Sibley KM, Straus SE, Inness EL, Salbach NM, Jaglal SB. Balance assessment practices and use
33 34 ∠	145	of standardized balance measures among Ontario physical therapists. Phys Ther
35 36 ² 37	146	2011;91:1583. doi: 10.2522/ptj.20110063.
38 39 ∠ 40	147	[8] Horak FB, Wrisley DM, Frank J. The Balance Evaluation Systems Test (BESTest) to differentiate
41 42 43	148	balance deficits. Phys Ther 2009;89:484-498. doi: 10.2522/ptj.20080071.
44 45 4 46	149	[9] Jacobs JV, Horak FB, Tran VK, Nutt JG. Multiple balance tests improve the assessment of
47 ₄ 48	450	postural stability in subjects with Parkinson's disease. J Neurol Neurosurg Psychiatry
49 50 ² 51	151	2006;1;77(3):322-6. PubMed PMID: 16484639.
52 53	152	[10] Jacobs JV, Earhart GM, McNeely ME. Can postural instability tests improve the prediction of
55 56 ∠	153	future falls in people with Parkinson's disease beyond knowing existing fall history? J Neurol
57 58 4 59 60	154	2016;263(1):133-9. doi: 10.1007/s00415-015-7950-x.

2	
3 455 4	[11] Tsang CS, Liao LR, Chung RC, Pang MY. Psychometric properties of the Mini-Balance
5 6 456	Evaluation Systems Test (Mini-BESTest) in community-dwelling individuals with chronic
7 8 457 9	stroke. Phys Ther 2013;93:1102-15. doi: 10.2522/ptj.20120454.
10 11 12 12	[12] Franchignoni F, Horak F, Godi M, Nardone A, Giordano A. Using psychometric techniques to
13 14 459 15	improve the Balance Evaluation Systems Test: the Mini-BESTest. J Rehabil Med 2010;42:323-
¹⁶ 460 17 18	331. doi: 10.2340/16501977-0537.
19 20 461 21	[13] Padgett PK, Jacobs JV and Kasser SL. Is the BESTest at its best? A suggested brief version
22 462 23	based on interrater reliability, validity, internal consistency, and theoretical construct. Phys
24 25 26	Ther 2012;92:1197-1207. doi: 10.2522/ptj.20120056.
27 28 464 29	[14] Bravini E, Nardone A, Godi M, Guglielmetti S, Franchignoni F, Giordano A. Does the Brief-
30 465 31	BESTest meet classical test theory and Rasch analysis requirements for balance assessment in
32 33 466	people with neurological disorders? Phys Ther 2016;96:1610-1619. PubMed PMID:
34 35 467 36 37	27103223.
³⁸ 468 39	[15] Jácome C, Cruz J, Oliveira A, Marques A. Validity, reliability, and ability to identify fall status
40 41 469 42	of the Berg Balance Scale, BESTest, Mini-BESTest, and Brief-BESTest in patients with COPD.
43 470 44 45	Phys Ther 2016;96(11):1807-1815. doi: 10.2522/ptj.20150391.
46 47 47	[16] Leddy AL, Crowner BE, Earhart GM. Utility of the Mini-BESTest, BESTest, and BESTest
48 49 472 50	sections for balance assessments in individuals with Parkinson disease. J Neurol Phys Ther
51 473 52 53	2011;35:90-97. doi: 10.1097/NPT.0b013e31821a620c.
54 55 474	[17] Duncan RP, Leddy AL, Cavanaugh JT, Dibble LE, Ellis TD, Fors MP, Foreman KB, Earhart GM.
56 57 475 58 59 60	Comparative utility of the BESTest, Mini-BESTest, and Brief-BESTest for predicting falls in

2		
3	476	individuals with Parkinson disease: a cohort study. Phys Ther 2013;93:542-550. doi:
4		
5	177	10.2522/ptj.20120302.
0	477	10.2322/ptj.20120302.
7		
8		
	478	[18] O'Hoski S, Winship B, Herridge L, Agha T, Brooks D, Beauchamp MK, Sibley KM. Increasing
10		
11 12 '	479	the clinical utility of the BESTest, Mini-BESTest, and Brief-BESTest: normative values in
13	480	Canadian adults who are healthy and aged 50 years or older. Phys Ther 2014;94:334-342. doi:
14 ·	400	Canadian addits who are nearing and aged 50 years of older. Thys filer 2014, 54:554 542. doi:
17	481	10.2522/ptj.20130104.
18		
19		
20 '	482	[19] Franchignoni F, Giordano A. On "Is the BESTest at its best?" Padgett PK, Jacobs JV, Kasser
21		
22 4	483	SL. Phys Ther 2012;92:1197-1207. Phys Ther 2012;92(9):1236-7. doi:
23		
24 25	484	10.2522/ptj.2012.92.9.1236.
		1012022, ptj.201210112001
26		
27	485	[20] Marques A, Almeida S, Carvalho J, Cruz J, Oliveira A, Jácome C. Reliability, Validity, and
	-05	[20] Warques A, Amelaa S, earvamo S, eraz S, onvena A, sacome e. Kenabinty, vanaty, and
29 20		
30 /	486	Ability to Identify Fall Status of the Balance Evaluation Systems Test, Mini–Balance Evaluation
32		
33 '	487	Systems Test, and Brief–Balance Evaluation Systems Test in Older People Living in the
34		
35 4	488	Community. Arch Phys Med Rehabil 2016;97:2166-2173. doi: 10.1016/j.apmr.2016.07.011.
36		
37		
38	489	[21] McArdle JJ. Current directions in structural factor analysis. Curr Dir Psychol Sci 1996;5:11-18.
39		
40		
41 42 '	490	[22] Norman GR, Streiner DL. PMPH-USA. PDQ statistics; 1st edition, 2003.
42 43		
43 44		
45 4	491	[23] Jansen AC, van Aalst-Cohen ES, Hutten BA, Büller HR, Kastelein JJ, Prins MH. Guidelines were
46		
	492	developed for data collection from medical records for use in retrospective analyses. J Clin
48 [']	492	developed for data collection non medical records for use in recrospective analyses. J Clin
49		
50 '	493	Epidemiol 2005;58(3):269-274. doi: 10.1016/j.jclinepi.2004.07.006.
51		
52		
53 4	494	[24] Jernigan SD, Pohl PS, Mahnken JD, Kluding PM. Diagnostic accuracy of fall risk assessment
54		
55 56	495	tools in people with diabetic peripheral neuropathy. Phys Ther 2012;92:1461-1470. doi:
56 57		
57 58 4	496	10.2522/ptj.20120070.
59		
60		

1		
2 3 49 4)7	[25] Lin MR, Hwang HF, Hu MH, Wu HDI, Wang YW, Huang FC. Psychometric comparisons of the
5 6 49 7	8	timed up and go, one-leg stand, functional reach, and Tinetti balance measures in
7 8 49 9	9	community-dwelling older people. J Am Geriatr Soc 2004;52:1343-1348. doi: 10.1111/j.1532-
10 11 50 12	00	5415.2004.52366.x.
13 14 50 15)1	[26] Vellas BJ, Wayne SJ, Romero L, Baumgartner RN, Rubenstein LZ, Garry PJ. One-leg balance is
16 50 17)2	an important predictor of injurious falls in older persons. J Am Geriatr Soc 1997;45:735–738.
18 19 50 20)3	PubMed PMID: 9180669.
21 22 50 23)4	[27] Sebastião E, Sandroff BM, Learmonth YC, Motl RW. Validity of the timed up and go test as a
24 25 50)5	measure of functional mobility in persons with multiple sclerosis. Arch Phys Med Rehabil
26 27 50 28 29)6	2016;97:1072-1077. doi: 10.1016/j.apmr.2015.12.031.
29 30 50 31)7	[28] Podsiadlo D, Richardson S. The timed 'Up & Go': A test of basic functional mobility for frail
32 33 50 34	8	elderly persons. J Am Geriatr Soc 1991;39:142–148. PubMed PMID: 1991946.
35 36 50 37)9	[29] Franchignoni F, Tesio L, Martino M, Ricupero C. Reliability of four simple, quantitative tests
³⁸ 51 39	0	of balance and mobility in healthy elderly females. Aging Clin Exp Res 1998;10:26-31.
40 41 51 42	.1	PubMed PMID: 9589748.
43 44 51 45	2	[30] Duncan PW, Weiner DK, Chandler J, Studenski S. Functional reach: a new clinical measure of
46 47 47 48	.3	balance. J Gerontol 1990;45(6):M192-7. PubMed PMID: 2229941.
49 50 51 51	.4	[31] Powell LE, Myers AM. The activities-specific balance confidence (ABC) scale. J Gerontol A Biol
52 51 53 54	.5	Sci Med Sci 1995;50(1):M28-M34. PubMed PMID: 7814786.
55 56 51	.6	[32] Franchignoni F, Giordano A, Ronconi G, Rabini A, Ferriero G. Rasch validation of the
57 58 51 59	.7	Activities-specific Balance Confidence Scale and its short versions in patients with Parkinson's
⁶⁰ 51	.8	disease. J Rehabil Med 2014;46:532-539. doi: 10.2340/16501977-1808.

2	
3 519 4	[33] Atkinson TM, Rosenfeld BD, Sit L, Mendoza TR, Fruscione M, Lavene D, Shaw M, Li Y, Hay J,
5 6 520 7	Cleeland CS, Scher HI, Breitbart WS, Basch E. Using confirmatory factor analysis to evaluate
, 8 521 9	construct validity of the Brief Pain Inventory (BPI). J Pain Symptom Manage 2011;41(3):558-
10 11 522 12	565. doi: 10.1016/j.jpainsymman.2010.05.008.
13 14 523 15	[34] Bentler PM. Comparative fit indexes in structural models. Psychol Bull 1990;107(2):238-46.
¹⁶ 524 17 18	PubMed PMID: 2320703.
19 20 525	[35] Browne MW, Cudeck R. Alternative ways of assessing model fit. In: Bollen KA, Long JS,
21 22 526 23 24	editors. Testing Structural Equation Models. Newbury Park: Sage 1993;136–62.
24 25 527 26 27	[36] Hu LT, Bentler P. Cutoff criteria for fit indices in covariance structure analysis: conventional
27 28 528 29	criteria versus new alternatives. Struct Equ Model Multidiscip J 1999;6:1-55. doi:
30 529 31 32	10.1080/10705519909540118.
³³ 34 35	[37] DiStefano C, Zhu M, Mindrila D. Understanding and using factor scores: Considerations for
35 36 531 37 38	the applied researcher. PARE 2009;14(20):1-11.
39 532 40	[38] Schönberger M, Ponsford J, Olver J, Ponsford, M. A longitudinal study of family functioning
41 42 533 43	after TBI and relatives' emotional status. Neuropsychol Rehabil 2010;20:813-829. doi:
44 534 45 46	10.1080/09602011003620077.
47 535 48	[39] Hancock GR, Mueller RO. Rethinking construct reliability within latent variable systems.
49 50 536 51	Structural equation modeling: Present and future-A Festschrift in honor of Karl Jöreskog.
52 537 53 54	Lincolnwood, IL: Scientific Software International 2001;195-216.
⁵⁵ 538 56 57	[40] Cronbach LJ. Coefficient alpha and the internal structure of tests. Psychometrika
57 58 539 59 60	1951;16(3):297–334. PubMed PMID: 8449658.

Page 59 of 93

Physical Therapy

1 2	
3 540 4	[41] Dunn TJ, Baguley T, Brunsden V. From alpha to omega: a practical solution to the pervasive
5 6 541 7	problem of internal consistency estimation. Br J Psychol 2014;105:399-412. doi:
8 542 9	10.1111/bjop.12046.
10 11 12 543	[42] Opheim A, Jahnsen R, Olsson E, Stanghelle JK. Balance in relation to walking deterioration in
13 14 544 15	adults with spastic bilateral cerebral palsy. Phys Ther 2012;92(2):279-88. doi:
16 545 17 18	10.2522/ptj.20100432.
19 20 546 21	[43] Curtze C, Nutt JG, Carlson-Kuhta P, Mancini M, Horak FB. Objective gait and balance
22 547 23	impairments relate to balance confidence and perceived mobility in people with Parkinson
24 25 26	disease. Phys Ther 2016;96(11):1734-1743. PubMed PMID: 27149959.
27 28 549 29	[44] Rand D. Mobility, balance and balance confidence - correlations with daily living of
30 550 31	individuals with and without mild proprioception deficits post-stroke. NeuroRehabilitation
32 33 551 34	2018;43(2):219-226. doi: 10.3233/NRE-172398.
35 36 552 37	[45] Salbach NM, Mayo NE, Hanley JA, Richards CL, Wood-Dauphinee S. Psychometric evaluation
³⁸ 553 39	of the original and Canadian French version of the activities-specific balance confidence scale
40 41 554 42	among people with stroke. Arch Phys Med Rehabil 2006;87(12):1597-604. PubMed PMID:
43 555 44 45	17141639.
46 47 48	[46] Cohen, J. Statistical power analysis for the behavioral sciences. 2nd edition, 1988.
49 50 557 51	[47] Akobeng AK. Understanding diagnostic tests 3: receiver operating characteristic curves. Acta
52 558 53 54	Paediatr 2007;96:664-647. doi: 10.1111/j.1651-2227.2006.00178.x.
55 56 57	[48] Hodgson JA, Roy RR, de Leon R, Dobkin B, Edgerton VR. Can the mammalian lumbar spinal
57 58 560 59 60	cord learn a motor task? Med Sci Sports Exerc 1994;26:1491-1497. PubMed PMID: 7869884.

2 3 561 4	[49] Grasso R, Zago M, Lacquaniti F. Interactions between posture and locomotion: motor
5 6 562 7	patterns in humans walking with bent posture versus erect posture. J Neurophysiol
7 8 563 9 10	2000;83:288-300. doi: 10.1152/jn.2000.83.1.288.
10 11 12 13	[50] Massion J. Movement, posture and equilibrium: interaction and coordination. Prog
14 565 15 16	Neurobiol 1992;38(1):35-56. Review. PubMed PMID: 1736324.
17 566 18	[51] Giardini M, Nardone A, Godi M, Guglielmetti S, Arcolin I, Pisano F, Schieppati M.
19 20 567 21	Instrumental or physical-exercise rehabilitation of balance improves both balance and gait in
22 568 23 24	Parkinson's disease. Neural Plast 2018;2018:5614242. doi: 10.1155/2018/5614242.
²⁵ 569 26	[52] Nardone A, Godi M, Grasso M, Guglielmetti S, Schieppati M. Stabilometry is a predictor of
27 28 570 29	gait performance in chronic hemiparetic stroke patients. Gait Posture 2009;30(1):5-10. doi:
30 571 31 32	10.1016/j.gaitpost.2009.02.006.
³³ 34 35	[53] Morlino P, Balbi B, Guglielmetti S, Giardini M, Grasso M, Giordano C, Schieppati M, Nardone
35 36 573 37	A. Gait abnormalities of COPD are not directly related to respiratory function. Gait Posture
³⁸ 574 39 40	2017;58:352-357. doi: 10.1016/j.gaitpost.2017.08.020.
41 42 575 43	[54] Bloem BR, Marinus J, Almeida Q, Dibble L, Nieuwboer A, Post B, Ruzicka E, Goetz C, Stebbins
44 576 45	G, Martinez-Martin P, Schrag A; Movement Disorders Society Rating Scales Committee.
46 47 48	Measurement instruments to assess posture, gait, and balance in Parkinson's disease:
49 578 50 51	Critique and recommendations. Mov Disord 2016;31(9):1342-55. doi: 10.1002/mds.26572.
52 579 53	[55] Chan AC, Pang MY. Assessing balance function in patients with total knee arthroplasty. Phys
54 55 56 57 58 59 60	Ther 2015;95(10):1397-407. doi: 10.2522/ptj.20140486.

Page 61 of 93

1

Physical Therapy

2	
3 581 4	[56] Huang M, Pang MY. Psychometric properties of Brief-Balance Evaluation Systems Test (Brief-
5 6 582 7	BESTest) in evaluating balance performance in individuals with chronic stroke. Brain Behav
8 583 9	2017;7(3):e00649. doi: 10.1002/brb3.649.
10 11 12 584	[57] Revelle W, Zinbarg RE. Coefficients alpha, beta, omega, and the glb: Comments on Sijtsma.
13 14 585 15	Psychometrika 2009;74(1):145. doi:10.1007/s11336-008-9102-z.
16 17 586 18	[58] Huang MH, Miller K, Smith K, Fredrickson K, Shilling T. Reliability, validity, and minimal
19 20 587	detectable change of Balance Evaluation Systems Test and its short versions in older cancer
21 22 588 23	survivors: a pilot study. J Geriatr Phys Ther 2016;39(2):58-63. doi:
24 25 589 26	10.1519/JPT.00000000000047.
27 28 590 29	[59] Mak MK, Pang MY. Balance confidence and functional mobility are independently associated
30 591 31	with falls in people with Parkinson's disease. J Neurol 2009;256:742-749. doi:
32 33 592 34	10.1007/s00415-009-5007-8.
35 36 593 37	[60] Cameron M, Mazumder R, Murchison C, King L. Mini Balance Evaluation Systems Test in
³⁸ 594 39	people with multiple sclerosis: reflects imbalance but may not predict falls. Gait Posture
40 41 595 42	2014;39(1):669. doi: 10.1016/j.gaitpost.2013.08.009.
43 44 596 45	[61] Mak MK, Auyeung MM. The mini-BESTest can predict parkinsonian recurrent fallers: a 6-
46 47 597 48	month prospective study. J Rehabil Med 2013;45:565-571. doi: 10.2340/16501977-1144.
49 50 598 51	[62] Dibble LE, Christensen J, Ballard DJ, Foreman KB. Diagnosis of fall risk in Parkinson disease:
52 599 53	an analysis of individual and collective clinical balance test interpretation. Phys Ther
54 55 600 56	2008;88:323-332. doi: 10.2522/ptj.20070082.
57 58 601 59 60	

602 Table 1

1 2 3

4 5

6 7 8

9

603 Demographic data and scores on balance measures for the entire sample, and fallers vs. non-

604 fallers.

	Entire Total Sample (N=416)	Fallers (N=135)	Non-fallers (N=160)	р
	N %	N %	N %	-
Sex (M/F)	55/45	51/49	58/42	.23ª
Walking Aid (no/yes)	54/46	47/53	68/32	<.001
	Mean (SD)	Mean (SD)	Mean (SD)	-
Age (y)	66.5 (14.2)	66.3 (13.4)	64.4 (14.8)	28 ^b
OLS mean (s)	4.2 (6.3)	3.3 (5.0)	6.9 (7.5)	<.001
ΓUG test (s)	17.6 (15.3)	20.6 (20.3)	13.3 (9.5)	<.001
Functional Reach (cm)	18.6 (9.7)	16.5 (9.6)	20.5 (9.8)	<.01
Total score BBT	8.9 (6.4)	7.3 (5.1)	11.8 (6.9)	<.001
Total score ABC 5-levels	29.6 (16.8)	26.0 (15.0)	36.2 (17.1)	<.001
			ory was collected (the tw	
subgroups fallers/non-fal	lers) as well as those in	whom a fall history		
	-		was not collected due to	
acute stroke event (n=79)	or failure to complete	the questionnaire (n	was not collected due to =42), as this is a	
subgroups fallers/non-fal acute stroke event (n=79) retrospective study. Parti last 6 months.	or failure to complete	the questionnaire (n	was not collected due to =42), as this is a	
acute stroke event (n=79) retrospective study. Parti	or failure to complete	the questionnaire (nation the prepare of the prepar	was not collected due to =42), as this is a ted 1 2 or more falls in th	
acute stroke event (n=79) retrospective study. Parti last 6 months.	or failure to complete cipants were classified a I, Male; F, Female; OLS,	the questionnaire (nates fallers if they reported on the second s	was not collected due to =42), as this is a ted 1 2 or more falls in th test, Timed Up and Go	
acute stroke event (n=79) retrospective study. Parti last 6 months. SD, Standard Deviation; N	or failure to complete cipants were classified a I, Male; F, Female; OLS,	the questionnaire (nates fallers if they reported on the second s	was not collected due to =42), as this is a ted 1 2 or more falls in th test, Timed Up and Go	

50 614 p-value was computed between fallers and non-fallers. 51

52 53 615 $a = \chi^2$ test.

- 54 55 616 ^b = Mann-Whitney U-test.
- 56 ⁵⁷ 617
- ⁵⁸ 618
- ⁵⁹ 619 60 620
 - 620

Table 2

= 416).

Details on each single item and total score of the original Brief-BESTest (Model 1) in the whole sample (N

1	
2	
3	621
4 5	622
5 6	623
7	
8	624
9 10	021
10	625
12	
13	
14 15	
16	
17	
18	
19 20	
21	
22	
23 24	
24 25	
26	
27	
28 29	
30	62 6
31	626
32	627
33 34	027
35	628
36	
37 38	629
30 39	
40	630
41	
42 43	
44	
45	
46 47	
47 48	
49	
50	
51 52	
53	
54	
55 56	
56 57	
58	

58 59 60

	Median	25% percentile	75% percentile	Skewness	Kurtosis	Min score (%)	Max score (%)	Missing data (%)
ltem 1	1	0	2	0.39	-1.20	42.51	7.73	0.40
ltem 2	2	1	2	-0.47	-0.13	9.42	10.39	0.40
ltem 3	1	0	1	0.93	-0.15	46.62	8.70	0.00
ltem 4	1	0	1	0.89	-0.25	44.69	9.66	0.00
ltem 5	1	0	2	0.59	-1.19	48.07	17.15	0.00
ltem 6	1	0	2	0.53	-1.26	45.89	18.84	0.00
ltem 7	1	0	2	0.66	-0.99	43.96	16.91	0.00
ltem 8	2	0	2	0.07	-1.54	36.47	23.43	0.00
Total score	8	4	13	0.54	-0.69	6.00	8.00	

Item 1 - Hip/Trunk Lateral Strength; item 2 - Functional Reach Forward; item 3 and 4 - One Leg

28 Stance, Left and Right; item 5 and 6 - Compensatory Stepping- Lateral, Left and Right; item 7 -

stand on a foam surface; 8 - Timed Up and Go test.

631 Table 3

1 2 3

4

5

632 Summary of fit statistics of the specified models (N = 416)

Models	χ ²	df	RMSEA (90% C.I.)	CFI	TLI	SRN
Model 1	134.0	20	0.12 (0.10-0.14)	0.78	0.70	0.0
(Padgett et al., 2012)	154.0	20	0.12 (0.10-0.14)	0.78	0.70	0.0
Model 2			/			-
(adapted from Franchignoni & Giordano, 2012)	60.3	18	0.08 (0.06-0.10)	0.92	0.88	0.
Model 3	26.2	12	0.05 (0.03-0.08)	0.97	0.95	0.
(adapted from Bravini et al., 2016)	2012			0.07	0.50	
Comparison of factor models		Signif	icant difference bet	ween m	odels ^a	
Model 1 vs. Model 2			p<0.001			
Model 2 vs. Model 3			p<0.001			
Model 3 vs. Model 1			p<0.001			
df, degrees of freedom; RMSEA, Root Mean-S	Square Eri	or of <i>i</i>	Approximation; C.I.,	Confide	nce	
Interval; CFI, Comparative Fit Index; TLI, Tuck	er-Lewis I	ndex;	SRMSR, Standardize	d Root	Mean	
Square Residual.						
^a Calculated as a $\chi^2 = \chi^2_2 - \chi^2_1$ with df = df ₂ -df ₁						
Calculated as a $\chi = \chi_2 = \chi_1$ with $u_1 = u_2 = u_1$	ŀ					

640 Table 4

Ability of the Brief-BESTest Models 1, 2 and 3 to discriminate fallers from non-fallers compared to

other measures of balance (OLS, TUG test, Functional Reach and ABC 5-levels) (N = 295).

Classification	Brief-BESTest Model 1	Brief-BESTest Model 2	Brief-BESTest Model 3	OLS	TUG test	FR
Cut-off score	8	8	7	2	12	19
AUC (95% C.I.)	0.72 (0.66-0.78)	0.72 (0.66-0.78)	0.72 (0.66-0.78)	0.63 (0.55-0.70)	0.62 (0.56-0.68)	0.61 (0.52-0.69
Sensitivity	74%	72%	74%	63%	68%	67%
Specificity	54%	58%	58%	55%	53%	49%
LR+	1.61	1.72	1.76	1.42	1.45	1.33
LR-	0.48	0.47	0.45	0.66	0.60	0.67
Correctly Classified	65%	66%	67%	59%	60%	58%

Y.C.Z.O.J.

²⁸ 644 OLS, One Leg Stance; TUG test, Timed Up and Go test; FR, Functional Reach; AUC, Area Under the

Curve; C.I., Confidence Interval; LR+, positive Likelihood Ratio; LR-, negative Likelihood Ratio.

648 Appendix 1

60

1

649 Items and factors of the three models of Brief-BESTest.

Model item (Scoring 0-3 per item)	Model 1	Model 2	Model 3
Item 1: Hip/Trunk Lateral Strength			
Item 2: Functional Reach Forward		Static Balance	
Item 3: Stand on One Leg-Left			
Item 4: Stand on One Leg-Right	Dunamic Balance		
Item 5: Compensatory Stepping–Lateral, Left	Dynamic Balance	Dunamia Dalanaa	Dynamic Balanc
Item 6: Compensatory Stepping–Lateral, Right		Dynamic Balance	
Item 7: Stand on foam surface with Eyes Closed			
Item 8: Timed Up and Go test			
		0-24	
Total score	0-24	(Static 0-5; Dynamic 0-19)	0-24

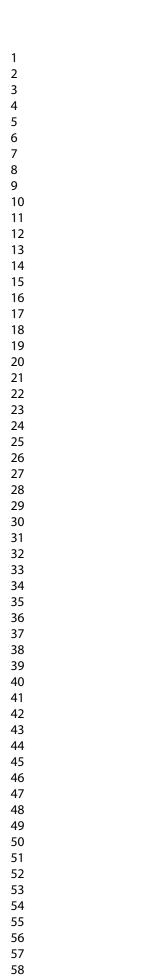
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
40	
47 48	
49 50	
50	
51	
52	
53	
54	
55	

- 56 57
- 58
- 59
- 60

Items
em 1: Hip/Trunk Lateral Strength
em 2: Functional Reach Forward
em 3: Stand on One Leg-Left
em 4: Stand on One Leg-Right
em 5: Compensatory Stepping–Lateral, Left
em 6: Compensatory Stepping–Lateral, Right
em 7: Stand on foam surface with Eyes Closed
em 8: Timed Up and Go test

Total score (range 0-24)

Static Balance (range 0-5)


Dynamic Balance (range 0-19)

 * to obtain the total Score of Model 3 is not necessary the score of item 1

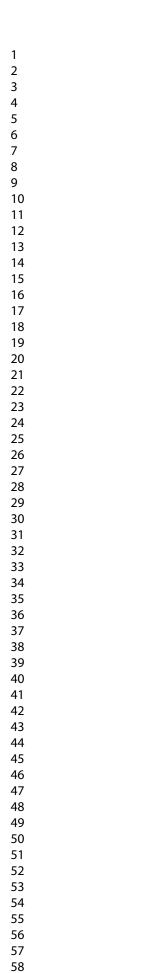
1	
2	
3	
3 4	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
11	
14	
15	
16	
11 12 13 14 15 16 17	
18	
10	
20	
20	
21	
19 20 21 22	
23	
24	
25	
24 25 26	
20	
27	
28	
29	
30	
31 32	
32	
33	
24	
34	
35	
36	
37	
38	
39	
40	
40 41	
42	
43	
44	
45	
46	
47	
48	
49	
50	

tor per peries only

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55	tor per perien on
60	PTJ Manuscript in Review

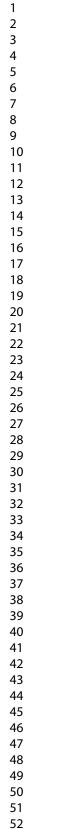
PTJ Manuscript in Review

to peer peries only

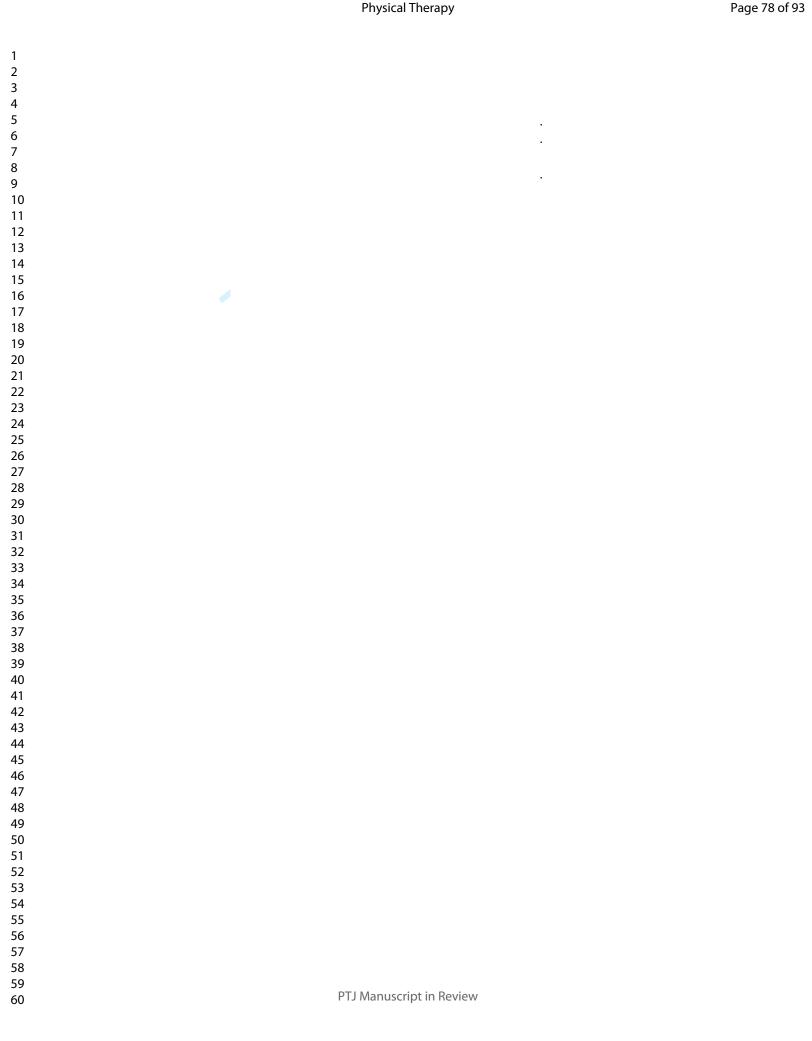

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55	
60	PTJ Manuscript in Review

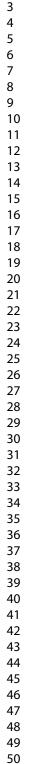
Insert the score of each items
in the cells below
3
0
0
2
3
1
3
2

Model 1	Model 2	Model 3*
	Static Balance	
Dynamic Balance	Dynamic Balance	Dynamic Balance


14.00	13.95	13.01
	2.46	
	11.52	

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55	
60	PTJ Manuscript in Review



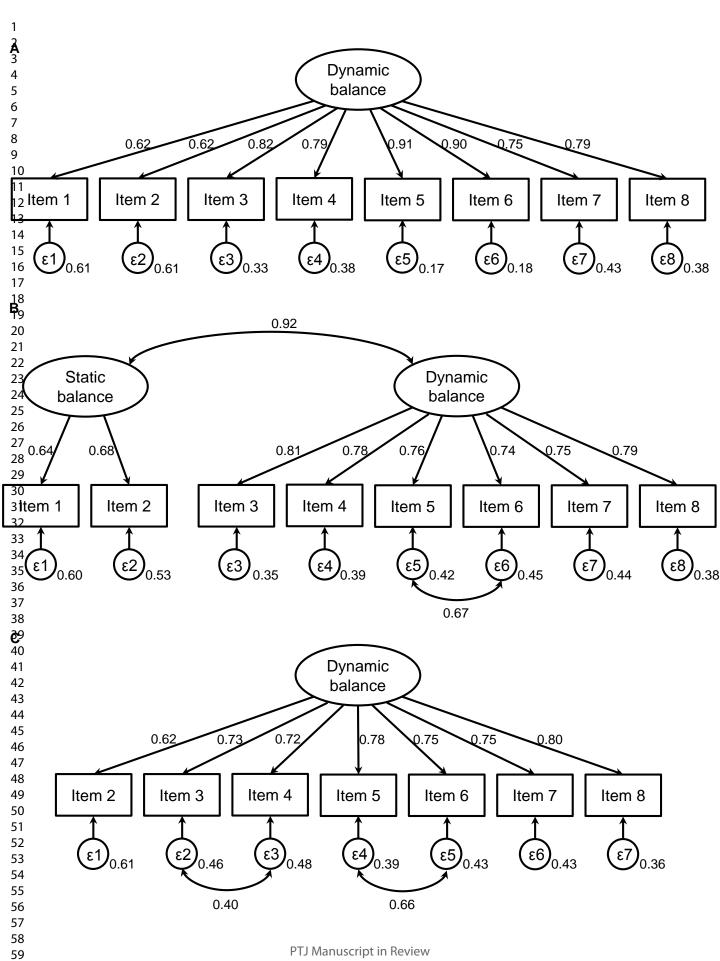

tor peer peries only

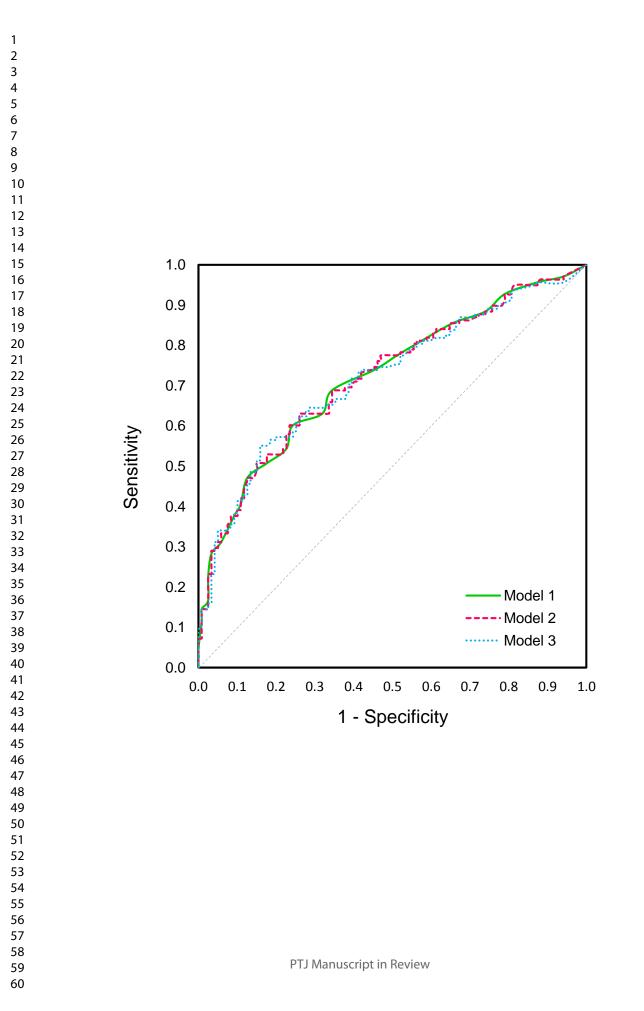
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55	tor peer Review only
60	PTJ Manuscript in Review

tor peer peries only

- <page-footer><page-footer><page-footer><page-footer>

PTJ Manuscript in Review




1 2 3 4 5 6 7 8 9 10 11 2 3 14 5 6 7 8 9 10 11 2 3 14 5 6 7 8 9 10 11 2 3 14 5 6 7 8 9 10 11 2 3 3 4 5 6 7 8 9 0 11 2 3 3 4 5 6 7 8 9 0 11 2 3 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 3 4 5 6 7 8 9 0 11 2 2 3 4 5 6 7 8 9 0 1 2 2 3 4 5 6 7 8 9 0 1 2 2 3 4 5 6 7 8 9 0 1 2 2 3 4 5 3 3 4 5 6 7 8 9 0 1 2 2 3 4 5 6 7 8 9 0 1 2 2 3 4 5 6 7 8 9 0 1 2 2 3 4 5 6 7 8 9 0 1 2 2 3 4 5 5 6 7 8 9 0 1 2 2 3 4 5 5 6 7 8 9 0 1 2 2 3 4 5 5 6 7 8 9 0 1 2 3 3 4 5 5 6 7 8 9 0 1 2 3 3 4 5 5 6 7 8 9 0 1 2 3 3 4 5 5 6 7 8 9 0 1 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
59 60	PTJ Manuscript in Review

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55	Normalization Normalization <td< th=""></td<>
60	PTJ Manuscript in Review

