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CCS CONCEPTS

• Software and its engineering → Compilers; • Com-

puter systems organization→ Embedded software.
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1 INTRODUCTION

Fixed point computation represents a key feature in the de-
sign process of embedded applications. It is also exploited as
amean to data size tuning for HPC tasks [2]. Since the conver-
sion from floating point to fixed point is generally performed
manually, it is time-consuming and error-prone.However, the
full automationof such task is currently unfeasible, as existing
open source tools are not mature enough for industry adop-
tion. To bridge this gap,we introduce our TuningAssistant for
Floating point to Fixed point Optimization (TAFFO). TAFFO
is a toolset of LLVM compiler plugins that automatically con-
verts computations from floating point to fixed point. TAFFO
leverages programmer hints to understand the characteristics
of the input data, and thenperforms the code conversionusing
the most appropriate data types. TAFFO allows programmers
to equally apply fine-grained precision tuning to awide range
of programming languages, whereas most current competi-
tors are limited to C. Moreover, it is easily applicable to most
embedded [1] andhigh performance applications [10, 11], and
it allows easy maintenance and extensions.
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2 PROPOSED SOLUTION

The structure of TAFFO introduces new compiler passes in
the LLVM compilation flow without modifying neither the
existing compiler passes nor the compiler front-end. This ap-
proach differentiates TAFFO from other solutions found in
literature [3, 5, 7, 8]. The complexity of finding the best preci-
sion mix for a given program is exponential in the number of
values to be tuned and in the possible precision levels. We ask
the programmer to annotate the source code to limit the scope
of TAFFO’s analyses and transformations. The user to specify
the range only on the input values and TAFFO propagates
them to all the intermediate values. The framework operates
with the intermediate representation of the compiler. TAFFO
performs the allocation of data types and – in case of fixed
point – the allocation of the position of the point for each
value. Thus, each intermediate valuemay be representedwith
a potentially different data format. Then, TAFFO replaces the
original codewith equivalent code that exploits thepreviously
defined data types.
After the code conversion, the framework analyzes the

converted code to check if it actually represents an acceptable
improvement with respect to the baseline, through a func-
tional evaluation. The error bounds are computed via a data
flow analysis, namely the Error Estimation.

2.1 Code Analysis and Conversion

The programmer-inserted annotations are parsed and con-
verted intoLLVMmetadata.Then,TAFFOrunsacodeanalysis
based on interval arithmetic [9] to propagate the value ranges
to all the intermediate values defined in the LLVM-IR. From
these ranges we derive the minimum data width required by
each value. Integer and fractional parts are logically parti-
tioned so as to prevent a priori any overflow problem.

After that, our solution transforms the LLVM-IR as if a type
changewasperformed in the original source code.Weallocate
separatememory locations for the fixed point values. The con-
version of constants – both literals and in-memory constants
– do not require any memory duplication. TAFFO currently
supports the interprocedural transformation of memory op-
eration on scalar, array, and pointers values via load, store,
and getelementptr instructions.
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Figure 1: Speedup (Tf l t/Tf ix ) of the mixed precision

versions over the reference floating point version.

Function calls are handled via duplication of the function
in the LLVM-IR. The duplicated functions are subject to con-
version as well. When the code conversion pass meets an in-
structionwith an unknown conversion – as in the case of calls
to an external function – it restores the original data type and
it leaves that instruction unchanged. This fallback behaviour
preserves the program semantics in case of uncertainty.

2.2 Error Estimation

After the code conversion, we can decide whether the mixed
precision satisfies the user requirements on the error. To this
end, the Error Estimation step statically evaluates the mixed
precision LLVM-IR bitcode.We run an error propagation anal-
ysis to project the truncation error we introduced with the
fixedpoint computationon theoutput. Thepropagation is per-
formed by representing the absolute error associated to each
LLVM-IR instruction by means of affine forms [6], combined
with the intervals resulting from the value range analysis (c.f.
[5]). This approach allows us to keep track of each single error
source, exploiting error cancellation when possible.

An affine form [6] is the representation of a variable x as

x =x0+
n∑
i=1

xiϵi ,

where x0 is the central value, and each ϵi is a noise symbol
of magnitude xi . Each noise symbol is a symbolic variable
representing a single error source. Affine forms are combined
with the intervals resulting from the value range analysis, as
detailed in [5]. In this setting, to each instruction x we asso-
ciate a rangerx and an errorex , represented as a zero-centered
affine form. Sum and subtraction are performed term-wise on
the magnitudes of corresponding noise symbols. This allows
us to exploit the possible cancellationof errors due to the same
noise symbol. The error of a mul instruction with operands
x andy is computed as

x×y= (rx+ex )(ry+ey )

=rx×ry+rx×ey+ry×ex+ex×ey .

Division is treated similarly, that is a multiplication by the
inverse of the divisor. Non-linear operations such as mathe-
matical functions from the C standard library are treatedwith
linear approximations, as suggested in [6] and [4]. Whenever
it is possible we exploit the LLVM facilities to unroll loops on
a copy of the codewhich is later discarded, in order to analyze
the error they introduce. The unrolling is performed on a copy
of the loop, which is discarded after the analysis.

3 EXPERIMENTAL EVALUATION

Benchmark Errorf eedback Errorabs Errorr el metric
Blackscholes 0.005579455 0.00000006 0.4502% ARE
FFT 0.079661725 0.02281871 1.2478% ARE
Inversek2j 0.0005 0.0000485 0.0051% ARE
Jmeint 0.09673511 0.01654037 0.0118% MR
K-means - - 2.8583% RMSE
Sobel - - 0.0316% RMSE

Table 1: Quality of the result for the mixed precision

versions according to the AxBenchmetrics

We evaluate TAFFO on two different types of hardware: an
HPC-like computer architecture (AMD node) and an embed-
ded systems’ development board (f207 node). We exploit the
set of CPU applications from the AxBench [12] benchmark
suite, which is composed of representative error-tolerant ap-
plications (a key feature, since we need to objectively assess
the precision impact of our transformation). This benchmark
suite also provides metrics to measure the quality of the re-
sult for each application. We exclude the jpeg benchmark in
AxBench from our assessment as it does not perform any
floating point calculation. Thus, this evaluation includes 6
benchmarks. All AxBench benchmarks but inversek2j show
speedups ranging from 12.5% to 366.8% on the HPC AMD
node. Although the speedup is not as important as in the
AMD platform, the trend is confirmed also on the embedded
system f207 node. Concerning the error estimator,we observe
that its error-bounds prediction is always conservative. This
guarantees its reliability in assessing whether the accuracy
of the converted code is sufficient.

4 CONCLUSIONS

We presented TAFFO, a plugin-based extension of the LLVM
compiler framework to provide to the programmers support
when performing precision tuningwith fixed point data types.
TAFFO enables speedups in 5 out of the 6 AxBench bench-
marks that include significant floating point computation, at
the cost of limited error (<3% for all benchmarks, considering
the application-specific metric provided by AxBench).
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